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Abstract. Any implementation of an information system must ensure that an 
operation is only applied if its execution does not lead to a violation of any of 
the integrity constraints defined in its conceptual schema. In this paper we 
propose a method to automatically determine the operations that may 
potentially violate an OCL integrity constraint in conceptual schemas defined 
in the UML. This is done by determining the structural events that may violate 
the constraint and checking whether those events appear in the operation 
specification. In this way, our method helps to improve efficiency of integrity 
checking since its results can be used to discard many irrelevant tests.  

1. Introduction 

A complete conceptual schema (CS) must include the definition of all relevant 
integrity constraints [5]. An integrity constraint states a condition that must be 
satisfied in each state of the information base (IB). Some constraints are inherent in 
the conceptual model in which the language is based but almost all constraints require 
an explicit definition [12, ch. 5]. Many constraints cannot be expressed using only the 
graphical constructs provided by the conceptual modeling language and require the 
use of a general-purpose (textual) sublanguage [3, ch.2]. In the UML this is usually 
done by means of invariants written in the OCL language [10]. 

The content of the IB changes due to the execution of the operations provided by 
the information system. Therefore, it must be guaranteed that the IB state resulting 
from these operations is consistent with regards to the set of integrity constraints 
specified over the CS. Moreover, if the application of an operation leads to an IB state 
where some integrity constraint is violated then the operation should be rejected and 
the contents of the IB should remain unchanged. 

In general, the effect of an operation over the IB may be specified by means of a 
set of structural events (see for instance [7, 13]).  A structural event is an elementary 
change in the population of an entity type (i.e. a class) or relationship type (i.e. an 
association) such as: create object, reclassify object, create link, etc. In particular, in 
the UML, structural events are a subset of the actions defined in the Actions Package 
[8, p.203+]. 

We may assert that a given operation will not violate a certain integrity constraint 
if we know that none of its structural events may induce the violation of such 



 

constraint. In this context, our work is aimed at proposing a method that 
automatically determines the structural events that may violate a constraint. 

Our approach allows detecting those constraints that are irrelevant to a given 
operation and thus must not be taken into account during the process of checking 
integrity constraints after the operation execution. Hence, we may substantially 
improve the efficiency of this process since only the constraints we know can actually 
be violated by the operation must be taken into account. 

Roughly, the rationale of our method is to find out the set of potentially violating 
structural events (PSEs, from now on) for each constraint and then compare this set 
with the set of structural events included in the operation to see if the operation 
includes some of them, and thus, its execution can violate that constraint.  

The knowledge provided by our method may also be useful in the area of schema 
validation. For instance, if after applying our method we realize that a particular 
constraint can never be violated (none of the operations affects it) we can think of 
removing the constraint. 

To our knowledge, ours is the first proposal to address the problem of determining 
the exact set of PSEs for an integrity constraint in conceptual schemas defined in 
UML and OCL.  

Previous work addressing similar problems can be found in the fields of deductive 
or relational databases. Therefore, an alternative approach to solve this problem could 
consist of translating the OCL constraints into logic or SQL (using [2], for instance) 
and then make use of the algorithms developed for those technologies to determine 
the set of PSEs of the constraint.  

Unfortunately, algorithms for deductive databases are not powerful enough for 
dealing with the expressiveness of OCL since this language allows negation, 
recursion, bag semantics (also known as duplicate semantics) and aggregation 
operations (like size or sum) which are hardly handled by those algorithms (see [4] 
for a discussion of their limitations). On the other hand, algorithms for relational 
databases (like [1]) support the required OCL constructs but lack precision when 
determining the relevant PSEs that may violate a constraint. For this reason, we 
believe that using an ad-hoc method to reason directly about the OCL expression that 
defines the integrity constraint (like the one we propose in this paper) is the best 
solution to deal with this problem in conceptual models defined in UML. 

Our work could be included in any architecture aimed at generating automatically 
the implementation of an information system from its specification like [6]. It is also 
helpful in the context of the MDA [9] when deriving platform specific models from a 
platform independent model. 

The structure of the paper is as follows. The next section reviews structural events 
in the UML. Section 3 outlines how to obtain the simplified OCL expressions that our 
method will deal with. Section 4 presents our method to determine PSEs that may 
violate an integrity constraint. Finally, we present our conclusions and point out 
future work in Section 5. 



2. Structural Events in the UML 

The main goal of this paper is to determine the set of structural events that may 
(potentially) violate an integrity constraint defined over the conceptual schema by 
means of OCL. A structural event is an elementary change in the population of an 
entity type or a relationship type such as create object, reclassify object, create link, 
etc. 

The precise number and meaning of structural events depends on the particular 
conceptual modeling language used. In UML, structural events are a subset of the 
actions defined in the Actions Package [8, p.203+]. Each action is a fundamental unit 
of behaviour specification. An action takes a set of inputs and converts them into a set 
of outputs. Structural events correspond to the actions that modify the contents of the 
IB. They are the only actions that, when applied, may cause the violation of a 
constraint. 

In fact, we are only interested in base structural events. A structural event is base if 
its effect may not be specified by means of other (base) structural events. Intuitively, 
it is not difficult to see that determining whether a non-base structural event may 
violate an integrity constraint can be performed just by considering whether one of 
the events that define it may violate such constraint.  

The base structural events that we find in the UML are the following (for more 
details about them see [8, p.203+]): 

- AddStructuralFeatureAction: it adds values to a structural feature. It supports 
also the update of the current value of a structural feature by a new one. A 
structural feature may represent either an attribute or an association end. 

- CreateLinkAction: it creates a new link of an association between a set of 
participants. 

- CreateLinkObjectAction: it creates a new link when the association is an 
association class. 

- CreateObjectAction: it creates a new object as an instance of a specified 
classifier. 

- DestroyLinkAction: it destroys links and link objects 
- DestroyObjectAction: it destroys an object. 
- ReclassifyObjectAction: it replaces the current classifiers of an object by a 

new set of classifiers. 
- RemoveStructuralFeatureValueAction: it removes a value from a structural 

feature. 

We show in Figure 2.1 an example that will be used throughout the paper. It 
contains a conceptual schema that represents information about the departments of a 
company and their employees, which may be either freelance or not, and four 
integrity constraints specified in OCL. Those constraints ensure that each department 
has a worker older than 45 (constraint OldEmployee), that the department boss may 
not be a freelance (NotBossFreelance), that two different employees may not have the 
same name (UniqueName), and that the assignment of each freelance must be 
between 5 and 30 hours (ValidAssignment). 



 

We may be interested to specify also two different operations to update the 
contents of the previous conceptual schema. Since UML provides only a metamodel 
for structural events but no concrete syntax to define them, we have used in our 
examples the syntax proposed in [11]. Next to each concrete action we add the 
equivalent structural event of the UML. 

ContractFreelance is aimed at contracting a new freelance for a given department. 
It creates a new instance for the classifier Freelance, initializes its values and relates 
it with the department passed as a parameter to the operation. On the other hand, 
FireEmployee fires an employee (either a normal employee or a freelance), deleting 
also its relationship with the department. 

Department Employee

Freelance

{incomplete} 

WorksIn employee

1 *

Managesmanaged boss

0..1 1

assignment : natural 

name : string name : string
 age : natural

context Department inv OldEmployee: 
  self.employee->exists(e| e.age>45) 
 
context Department inv NotBossFreelance: 
  not self.boss.oclIsTypeOf(Freelance) 
 
context Employee inv UniqueName: 
  Employee.allInstances()->forAll(e1,e2 | e1<>e2  
  implies  e1.name<>e2.name) 
 
context Freelance inv ValidAssignment: 
  self.assignment>=5 and self.assignment<=30 

employer

  
context System::ContractFreelance(name: string, age: natural, assig: natural, department: 
string) 
   create object instance f of FREELANCE; -- CreateObjectAction 
   f.name=name; --AddStructuralFeatureAction 
   f.age=age; --AddStructuralFeatureAction 
   f.assignment=assig; --AddStructuralFeatureAction 
   select one d from instances of DEPARTMENT where selected.name=department; 
   relate f with d across WORKSIN; -- CreateLinkAction 

context System::FireEmployee(name:string) 
  select one e from instances of EMPLOYEE where selected.name=name; 
  select one d related by e->DEPARTMENT; 
  unrelate e from d across WORKSIN; -- DestroyLinkAction 
  delete object instance e; -- DestroyObjectAction 

Figure 2.1 - Example of a conceptual schema 

3. Simplifying OCL Expressions 

Our method assumes a simplified representation of the OCL expression that defines 
an integrity constraint. Such a simplified representation may be automatically 



obtained from the original OCL expression and it does not entail a loss of expressive 
power on the constraints we may deal with. 

First, we reduce the number of different operations that appear in an OCL 
expression by using some of the equivalences among operations already defined in 
the OCL Standard Libray [10, ch. 11]. Second, we simplify the structure of the OCL 
expressions by transforming them into conjunctive normal form. We provide in the 
appendix the list of substitutions we perform to simplify the OCL expression and 
describe the rules to transform the expression into conjunctive normal form. 

As a result of this transformation, each integrity constraint is a conjunction of 
disjunctions, where each OCL expression appearing in a disjunction is an expression 
that evaluates to a boolean type. Obviously, to satisfy the constraint the IB must 
satisfy each disjunction. A disjunction is satisfied if at least one of its literals is 
satisfied. The literal of a disjunction may be only a forAll iterator over an expression, 
an arithmetic comparison, an equality comparison between objects or sets, a boolean 
attribute, the not operator and the oclIsTypeOf and oclIsKindOf operators over an 
expression. 

Applying the first step to our example, we get the following new expressions to 
define the constraints OldEmployee and UniqueName (the rest of constraints remain 
unchanged): 

context Department inv OldEmployee: 
  self.employee->select(e| e.age>45)->size()>0 
context Employee inv UniqueName: 
  Employee.allInstances()->forAll(e1,e2|not e1=e2 implies not e1.name=e2.name) 

As a result of the second step, the expression defining UniqueName is converted to 
conjunctive  normal form, resulting in: 

context Employee inv UniqueName: 
  Employee.allInstances()->forAll(e1,e2 | e1=e2 or not e1.name=e2.name) 

4. Our Method  

A naïve approach to solve the problem of determining the structural events that may 
violate an OCL integrity constraint would conclude that any insertion, update or 
deletion over an entity or relationship type referenced within the OCL expression 
may violate the constraint since, obviously, any modification (insert/update/delete) of 
a model element not appearing in the expression may not cause its violation.  

However, such naïve approach is not precise enough since it includes in the result 
events that will never violate the integrity constraint. In other words, the set of 
structural events provided by this naïve solution is a superset of the structural events 
that may actually violate the constraint. For instance, following this approach we 
would determine that nine base structural events may violate the constraint 
OldEmployee: insert / delete / update entity type Department, insert / delete / update 
relationship type WorksIn and insert / delete / update entity type Employee. 



 

However, only four structural events may actually violate the constraint: insertion 
of Department, deletion and update of WorksIn and update of Employee. Intuitively, 
it is not difficult to see the other five events may never violate OldEmployee. So, the 
most precise solution contains just a 44%  (4 of 9) of the events of the naïve one. 

The goal of our method is to substantially improve the results obtained with the 
naïve solution by determining, at definition time, the exact set of base structural 
events that may actually violate an OCL integrity constraint. As we will see, our 
method will obtain in the previous example just the four structural events that may 
really violate the constraint.  

We must note that the events we obtain may violate the constraint but this does not 
necessarily imply that the constraint is violated every time those events are executed 
(it depends on the exact parameters of the event at execution time). For this reason, 
we call the events obtained by our method potentially violating structural events 
(PSEs). 

We consider that a state of the IB satisfies an integrity constraint Ic if Ic does not 
evaluate to false in that state. Then, we have that a base structural event is a PSE for a 
given constraint when such event can modify the state of the IB in a way that after the 
execution of the event the constraint evaluates to false. In a similar way, we assume 
that a select expression selects those elements that evaluate the select condition to true 
(but not when they evaluate to false nor undefined). 

Our method assumes that the OCL expression that defines an integrity constraint is 
represented as an instance of the OCL metamodel [10, ch.8]. For this reason, we treat 
the OCL expression as a binary tree where each node represents an atomic subset of 
the OCL expression (an instance of any metaclass of the OCL metamodel: an 
operation, an access to an attribute or an association …).  

The left child of a node is the source of the node (the part of the OCL expression 
previous to the node). The right child of a node is the argument of the operation (i.e. 
the second argument, we can think of the left child, the source, as the first argument) 
if the node represents a binary operation (such as ‘>’, union, ‘+’,…) or the body 1 of 
the iterator if the node represents a loop expression (a forAll, select…). 

We show in Figure 4.1 the constraint OldEmployee (self.employee->select(e| 
e.age>45)->size()>0) as an instance of the OCL metamodel. 

The operator ‘>’ (represented as an instance of the metaclass OperationCallExp 
having as a referred operation an operation called ‘>’) is the root of the tree. The first 
child of the root is the source of the operator (self.employee->select(e| e.age>45)-
>size()) whereas the second child is the argument of the operation (the integer literal 
0). The first child of the child node is an operation (size) with a single child  (select). 
The select node has two children. The first one is its source, an access to an 
association end (employee) with a last child (the access to the variable self). The 
second one, its body, is the operation ‘>’ between the attribute age (left child) and the 
integer 45 (right child).  

                                                           
1 The expression that is evaluated for each element in the collection 



 :OclConstraint

name = OldEmployee
kind ="inv"

:Class 
name = Department 

:OperationCallExp :Operation 
name = ">" 

:OperationCallExp
:Operation 

name = "size" 

:OperationCallExp
:Operation 

name = "select" 

:AssociationEndCallExp
:AssociationEnd 

name = "employee" 

:VariableExp

:VariableDeclaration 
varname = "self" 

:IntegerLiteralExp

integerSymbol = 0

:OperationCallExp

:AttributeCallExp
:IntegerLiteralExp 
integerSymbol   = 45 

:Attribute

name="age"
:VariableExp

:VariableDeclaration 
name="e"

  constrainedElement

body

referredOperation

  
  

referredOperation

source

source
referredAssociationEnd

referredVariable 

referredOperation

source

source argument

body

referredOperation 

source
argument

referredAttribute
source

referredVariable
  

Figure 4.1 – Constraint OldEmployee as an instance of the OCL metamodel 

Given the binary tree that represents the OCL constraint, our method performs two 
different steps to determine the base structural events that may violate it: 

1. Marking the tree. It is needed to mark each node (i.e. each atomic subset of the 
OCL expression) with information about its context. This information allows 
us to discard the events that may not actually violate the constraint. 

2. Drawing base structural events. It determines the PSEs by taking the mark and 
the subexpression corresponding to each node into account. 

 
This section is aimed at explaining these two steps in detail. We need first to 

introduce a set of internal events we use to determine the set of UML base structural 
events that may violate an integrity constraint.   

We deal with a representative subset of possible OCL expressions. In particular, 
we cover the whole range of model element, boolean, collection and set operations 
and loop expressions. However, due to space limitations, we do not address 
expressions that contain operations over integers, reals or strings (except for the 
operation ‘+’ chosen as a representant of this group of operations) nor specific 
operations for Bags, OrderedSets and Sequences. 

We assume that taxonomies over relationship types are represented by converting 
both relationship types to a reified entity type (i.e. an association class) and then 
defining the taxonomies over them. We also assume that multivalued attributes are 
represented by means of a binary relationship between the entity type where the 
attribute is defined and the datatype of the attribute. In this way we do not need to 



 

provide a specific reasoning to deal with these two particular constructs since they are 
already dealt as taxonomies over entity types and as relationship types, respectively. 

4.1 Internal Events 

To determine the PSEs that may violate an OCL integrity constraint our method 
reasons about a set of internal events that do not correspond exactly to the base 
structural events of the UML. Nevertheless, the result of our method in terms of those 
internal events can be easily translated into the base structural events of the UML. 
The internal events we use are more basic and precise than those of UML. Besides 
this, their independence of a particular language allows us to incorporate our results 
to different sets of structural events providing that we define the correspondence 
between our internal events and those different sets. 

The internal events we use are the following. We state in each case its 
correspondence with the base structural events of the UML. 

- InsertET: insertion over an entity type et. It creates a new instance of et. The 
new object can have its attributes initialized but it does not participate in any 
relationship. It corresponds to a CreateObjectAction over the entity type, a 
CreateLinkObject (if et is an association class), any of them over a subtype of 
et (which induces an insertion over et) or by a reclassify action that adds the 
classifier et to an existing instance, plus several AddStructuralFeatureActions 
to initialize the attributes of the new object. An example is an insertion in the 
entity type Employee, which could be caused either by a 
CreationObjectAction over Employee or Freelance. 

- UpdateAttribute: it updates the value of an attribute of an entity type et. It 
corresponds to an AddStrucuturalFeature for that attribute (possibly preceded 
by a RemovalStructuralFeatureAction) over an instance of et or any of its 
subtypes or supertypes. Example: a change in the salary of an employee. 

- DeleteET: it deletes an instance of an entity type et. The corresponding actions 
are: a DestroyObjectAction over et, a DestroyLinkAction (if et is an 
association class), any of them over a supertype or subtype of et (both induce 
the deletion of the instance over et) or by a reclassify action that removes the 
classifier et from an existing instance. Example: the deletion of an employee. 

- SpecializeET: it specializes an instance of a supertype of an entity type et to 
et. It is equivalent to a ReclassifyObjectAction with an empty set of old 
classifiers and only the entity type et in the set of new classifiers. Example: an 
employee becoming a freelance. 

- GeneralizeET: it generalizes an instance of a subtype of an entity type et to et. 
It is equivalent to a ReclassifyObjectAction with an empty set of new 
classifiers and a direct subtype of et in the set of old classifiers. Example: an 
employee that finishes working as a freelance but remains as employee. 

- InsertRT: creation of a new link in a relationship type rt. It can be produced 
by a CreateLinkAction or a CreateLinkObject (if rt  is an association class) 
over rt. Example: the assignment of an employee to a department. 



- UpdateParticipant: it updates one of the participants of a link of a 
relationshiptype rt. It corresponds to an AddStructuralFeature for the 
association end of that participant over a link of rt. Example: a change of the 
department boss.  

- DeleteRT: it deletes a link of a relationship type rt. The equivalent action is a 
DestroyLinkAction over rt. Example: to remove an employee from a 
department. 

4.2 Marking the Tree 

To compute the set PSEs it is not enough to examine each part of the OCL expression 
separately. For instance, to determine whether constraint OldEmployee may be 
violated either by an employee assignment or by an employee dismission we may not 
take into account just the subexpression self.employee->select(…)->size(). In fact, 
both events may change the resulting value of evaluating this subexpression. 
However, since after the size operation we find the ‘>’ operator, only firing an 
employee may induce the violation of this constraint. On the contrary, if we had used 
‘<=’ instead, the expression could be violated by employee assignments. 

Each node of the binary tree that represents the OCL expression is marked to 
indicate which information of the node must be propagated to its children. There are 
four different symbols to propagate: 

 ‘+’:  it indicates that the constraint can be violated by an increase in the 
value or in the number of items of the expression 

 ‘-‘:  it indicates that the constraint can be violated by a decrease in the 
value or in the number of items of the expression 

 ‘u’:  it indicates that the constraint can be violated by a change in the 
value or in the items of the expression 

 ‘und’: it indicates the node does not propagate any kind of information 
As an example of the first two symbols consider the operation ‘>’. A node 

representing a call to this operation propagates the symbol ‘-‘ to the left child (i.e. the 
first argument) and the symbol ‘+’ to the right child (the second argument).  The 
semantics of this operation justifies this propagation. To violate an expression like ‘A 
> B’ there are two options: decrease the value of A (this is why we propagate the 
symbol ‘-‘ to the left) or increase the value of B (this explains the ‘+’). 

The symbol ‘u’ is used, for instance, when accessing an attribute. A reference to an 
attribute can be violated due to an update of the value of the attribute. The same 
happens with the select iterator. The result of a select can differ not only because an 
insertion or deletion on the collection where we apply the select. It can also change if 
we replace any of the objects of the collection (maybe the old object was not selected 
for the select expression but the new one is or vice versa). As an example, imagine 
that we replace the employee e1 by the employee e2 in the department d1. The 
number of employees of d1 remains constant but if e1 was the only employee older 
than 45 years old and e2 is younger than that age, constraint OldEmployee will be 
violated since no employee will be returned by the select expression.  



 

Finally, the symbol ‘und’ is used by operations like ‘and’ or ‘or’. It denotes that 
the node does not influence its children expressions at all. The events that can violate 
‘A and B’ are the same that violate A plus those of B stand-alone.  

To mark the nodes of the tree we traverse the tree in preorder. In a preorder 
traversal we process all nodes of the tree by first processing the root and then, 
recursively, processing in preorder the children subtrees. In each node, we take into 
account the kind of node and the information received from its parent node to decide 
which information propagates the node to its children.  

Table 4.1 shows the symbol propagation for each kind of node and symbol. 
Sometimes we propagate more than one symbol. In such a case, the final value is 
obtained by applying the table information to each received symbol. When a cell 
contains n/a (not applicable) it means no constraint exists that includes such 
combination. When a node has two children the cell states the symbol (or symbols) 
for each child. 

 
 1. 

and,or 
2. 
>=,> 

3. 
<,<= 

4. 
= 

5. 
not 

6.oclI
sType 

7. 
attribute 

8. 
forAll 

9.assEnd, 
assClass2 

1. und und   und  -     +  +    - +-u  +-u und +u +u  +u  und n/a  
2. + n/a n/a n/a n/a n/a n/a +u n/a + 
3. - n/a n/a n/a n/a n/a n/a +u n/a - 
4. u n/a n/a n/a n/a n/a n/a u  n/a u 

 
 10. 

select 
11. 
size 

12. 
sum 

13. 
collect 

14 U,∩ 
count 

15.  -  
(set) 

16. 
allInstances 

17.var 
or ct3 

18. + 
(Integers) 

1. und n/a n/a n/a n/a n/a n/a n/a n/a n/a 
2. + +u  und + +u +      + + u  +u +u  -u und und +-4  +- 
3. - -u  und - -u  -      -  -u    -u -u   +u und und +-  +- 
4. u u  und n/a n/a  u   u  u     u u     u und und u  u 

Table 4.1 - Marking the binary OCL tree 

We show in Figure 4.2 the result of marking the binary tree that represents the 
constraint OldEmployee (a simplified version of the tree of Figure 4.1). Next to each 
node we add information about the cell (or cells) used to process that node. CX.Y 
means that we access the cell at row X and column Y. 

We start with the operation ‘>’.  Since it is the root of the tree it does not receive 
any initial information. To mark its children we use the cell 1.2 (row 1, column 2) 
which states that the left child must be marked ‘-‘ while the right must be ‘+’. The 
size operation receives the symbol ‘-‘. Thus, cell 3.11, we propagate the ‘-‘ to its child 
(the select). The select sends (cell 3.10) the symbols –u to its source (employee) and 
und to its body. Employee, in its turn, propagates –u (column 9 rows 3 and 4) to the 
variable self. The rest of the tree is marked in a similar way. 

                                                           
2 A navigation through an association end or an association class 
3 Node that represents any variable or constant (literal) appearing in the constraint. 
4 If we add natural values we only need to propagate the symbols ‘+’ on row 2 and ‘–‘ on row 

3. However, when adding integers, since they can be negative, we propagate both symbols. 



  C1.2

C2.17 C3.11

- +

:OperationCallExp 
              ( > )

:OperationCallExp
           ( size )

:OperationCallExp 
         ( select )

:OperationCallExp 
              ( > )

:AssociationEndCallExp
          ( employee ) 

:VariableExp 
      ( self ) 

:AttributeCallExp
         ( age )

:VariableExp
      ( e )

:IntegerLiteralExp
            ( 0 )

:IntegerLiteralExp
            ( 45 )

-

- +

und -u 

-u 

+u

C3.10

C3.9,
C4.9

C1.2

C3.7 C2.17 C3.17, 
C4.17 

C2.17,C4.17

  
Figure 4.2 - Marking the constraint OldEmployee 

4.3 Drawing Base Structural Events  

Once the tree is marked as explained in the previous section, we may determine the 
PSEs that may violate the integrity constraint. They are computed as the set of PSEs 
for the root of the constraint plus, recursively, the set of PSEs for each child node of 
the root. Hence, we need now to traverse the tree in postorder which implies to 
process all nodes of the tree by first recursively processing in postorder the children 
subtrees and then the root.  

Table 4.2 describes the set of PSEs we determine for each node in terms of the 
node type and its mark. Notation: s(c1) indicates that the set of PSEs for that node is 
the sum of the PSEs for its child, and so s(c1,c2) when the node has two children. 
s(c1) + X denotes that the node adds the event X to the set of PSEs of that node. 
Blank cells indicate the node does not affect the computation of the PSEs. In addition, 
to make the table clearer, we use shorthands to indicate the internal events: iET 
(insertET), uAt (updateAttribute), dET (deleteET), iRT (insertRT), uPa 
(updateParticipant), dRT (deleteRT), speET (specializeET), genET (generalizeET).  

Of particular interest is the function opp(X). This function is used to denote that 
the set of PSEs for a node is the opposite of the set of PSEs returned by its children. 
This is the case of nodes representing the not operator. The set of PSE for a not 
operator over an expression is defined as just the opposite of the set of PSEs for the 
expression stand-alone. 

A similar thing happens with a select expression. An event that can violate the 
body of a select may decrease the number of elements returned by the select 



 

expression. Therefore, when we need to obtain the set of PSEs that increase the 
number of selected elements we apply the opposite function to the set of PSEs of the 
select body. The opposite of an insertion is a deletion and vice versa. The opposite of 
an update event is the event itself. Therefore, the opposites for each event are: 
opp(iET)=dET, opp(uAt)=uAt, opp(dET)=iET, opp(iRT)=dRT, opp(dRT)=iRT, 
opp(uPa)=uPa.  

 
 1. 

and,or 
2. 
>=,> 

3. 
<,<= 

4. 
= 

5. 
not 

6.oclIs
Type 

7. 
attribute5 

8. 
forAll 

9.assEnd , 
assClass 

1.und s(c1,c2) s(c1,c2) s(c1,c2) s(c1,c2) opp(c1) s(c1)+ 
genET 

s(c1)+ uAt  s(c1,c2) n/a  

2. + n/a n/a n/a n/a n/a n/a s(c1)+ uAt  n/a s(c1)+iRT6 
3.- n/a n/a n/a n/a n/a n/a s(c1)+ uAt  n/a s(c1)+dRT7 
4.u n/a n/a n/a n/a n/a n/a s(c1)+ uAt  n/a s(c1)+uPa 

 
 10. 

select 
11. 
size 

12. 
sum 

13. 
collect 

14. U,∩ 
count 

15. - 
 (Set) 

16. allIn 
stances 

17.var   
or ct 

18. + 

1. und n/a n/a n/a n/a n/a n/a n/a n/a n/a 
2. + s(c1, opp(c2)) s(c1) s(c1) s(c1,c2) s(c1,a1) s(c1,c2) iET  s(c1,c2) 
3.- s(c1,c2)  s(c1) s(c1) s(c1,c2) s(c2,a1) s(c1,c2) dET  s(c1,c2) 
4. u  n/a n/a       

Table 4.2 - Determining the set of PSEs 
As an example, we discuss the possible options when the node represents a 

reference to an association end involved in a navigation of the OCL expression 
(column 9 of Table 4.2). When the association end is labeled with a ‘+’ the constraint 
may be violated by an insertion over the association (event insertRT) where the 
association end belongs. Remember that ‘+’ pointed out that the constraint can be 
violated due to an increase of the number elements obtained through a navigation 
over the association using that association end, and thus, the events that can cause the 
violation are those events that increase such number. That is precisely what the event 
insertRT does.   

In a similar way, if it is labeled with a ‘-‘, the critical event is the deletion of a link 
of the association (event deleteRT) since we are interested in reducing the number of 
links of the association. Finally, if it is labeled with the symbol ‘u’ the problematic 
event is the replacement of a participant in that association end (updateParticipant) 
even if the total number of elements does not vary. 

Figure 4.3 applies table 4.2 to our example. Since the traversal is in postorder we 
start by processing the leaves of the tree. First, we process the access to the variable 
self, already marked with the symbols ‘-‘ and ‘u’. We must then consider column 17 
rows 3 and 4 of Table 4.2 which states that this subexpression does not produce any 
PSE. After this step, we consider the association end (employee) using row 3 and 4 of 
column 9 to initialize the set of PSE with the events insertET(Department, in this 
case), deleteRT(WorksIn) and updateParticipant (association end WorksIn-Employee). 
Next, we process the second child of the select expression (its body, e.age>45), 

                                                           
5 When the attribute is preceded by self the event iET is added to the set of PSEs. 
6 If the association end is referenced inside the body of a select expression, the event dET is 

added to the set of PSEs 
7 When self precedes the the association end the event iET is added to set of PSEs 



which produces the event updateAttribute (attribute age of entity type Employee). 
After that, we analyse the select itself adding the events generated by its two children. 
The execution will continue with the process of the size operation (no additional 
events) and the integer constant 0, to end up with the root of the tree, the operation 
‘>’ that returns the final set of PSEs for the whole expression. 

At the end of this process, we have that the constraint OldEmployee may be 
violated by the internal events: updateAtribute(age), updateParticipant(WorksIn-
Employee), deleteRT(WorksIn) or insertET(Department). Note that a deleteET over 
Employee does not violate the constraint. It is the deletion of the link between the 
employee and the department (deletion that can be a preliminary before deleting the 
employee itself), which may violate it. 

  C1.2

C2.17C3.11 

:OperationCallExp
              ( > )

:OperationCallExp
           ( size )

:OperationCallExp
         ( select )

:OperationCallExp
              ( > )

:AssociationEndCallExp 
          ( employee ) 

:VariableExp 
      ( self ) 

:AttributeCallExp
         ( age )

:VariableExp
      ( e )

:IntegerLiteralExp
             ( 0 ) 

:IntegerLiteralExp
             ( 45 ) 

uAge 

C3.10 

C3.9,
C4.9 

C1.2

C3.7 C2.17C3.17,
C4.17 

C2.17,C4.17

uAge 
iDepartment, dWorksIn, 
uWorksIn-Employee 

iDepartment, dWorksIn,
 uWorksIn-Employee,uAge 

iDepartment, dWorksIn,
 uWorksIn-Employee,uAge 

RESULT:
iDepartment  
dWorksIn  
uWorksIn-Employee 
uAge 

  
Figure 4.3 - Computing PSEs for OldEmployee 

4.4 Applying the Method  

After computing the set of PSEs for each constraint we compare its set of events with 
the events that appear in the operation specification to see which is the exact set of 
constraints each operation may violate.   

There is only one step missing. The set of PSEs is described using our internal 
events while the system operation is specified using the set of external events 
provided by the specific conceptual modelling language used, UML in this case. 
Therefore, before doing the comparison, we transform the set of PSE into the set of 
corresponding external events using the rules described in section 4.1 

As an example, we apply the method to the whole CS of figure 2.1, obtaining the 
following results: 



 

1. Set of PSE for each constraint:  
a. OldEmployee: updateAtribute(Age),  updateParticipant(WorksIn-

Employee), deleteRT(WorksIn), insertET(Department) 
b. NotBossFreelance: specializeET(Freelance), insertRT(Manages), 

updateParticipant(Manages-Boss). 
c. UniqueName: insertET(Employee), updateAttribute(Name-Employee) 
d. ValidAssignment: insertET(Freelance), updateAttribute(Assignment). 

2. Once transformed into the structural events of the UML, the set of events is: 
a. OldEmployee: AddStructuralFeature over the attribute age, and 

AddStructuralFeature over the association end Employee, a 
DestroyLinkAction over the association WorksIn and a 
CreateObjectAction over Department. 

b. NotBossFreelance: ReclassifyObjectAction adding the classifier 
Freelance to a non-freelance Employee, CreteLinkAction over 
Manages and an AddStructuralFeature over the associationEnd boss. 

c. UniqueName: CreateObjectAction over Employee, 
CreateObjectAction over Freelance and AddStructuralFeatureAction 
over the attribute name. 

d. ValidAssignment: CreateObjectAction over Freelance and 
AddStructuralFeatureAction over the attribute assignment.  

3. Finally, with this information we can determine which constraints may be 
violated by each operation 

a. ContractFreelance may only violate ValidAssignment and 
UniqueName but not the other two constraints. 

b. FireEmployee may only violate OldEmployee 

We would like to remark that with our method we provide an important efficiency 
improvement to integrity checking. As seen in the previous example, instead of 
checking all four constraints after the execution of each operation, we have that after 
ContractFreelance we only have to check two of them and just one after 
FireEmployee.  

5. Conclusions and Further Work 

We have proposed a new method to determine whether the execution of a given 
operation may potentially violate an integrity constraint. This is done by determining 
the structural events that may violate the constraint and comparing them with those 
events that appear in the operation specification.  

The main contribution of our work is the use of this knowledge to check only those 
constraints that can actually be violated by the execution of an operation. We think 
this is an important contribution since all existing strategies that pursue an automatic 
code generation of the information systems from their specification can benefit from 



this knowledge (since they do not have to consider all constraints but just the relevant 
ones after each operation execution) to provide more efficient implementations. 

Checking integrity constraints efficiently requires at least solving two different 
problems. The first one is the one we have addressed in this paper. The second one is 
to provide efficient (incremental) algorithms to check an integrity constraint when we 
know it can be violated by the execution of an operation. This is a direction in which 
we plan to continue our work. 
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Appendix A 

To obtain the simplified representation of the OCL expression that defines an 
integrity constraint we perform the following steps. First, we reduce the number of 
different operations that appear in an OCL expression by using some of the 
equivalences among operations already defined in the OCL Standard Libray [10, ch. 
11]. Second, we simplify the structure of the OCL expressions by transforming them 
into conjunctive normal form. 

A.1 Reducing the number of different operations 

The following equivalences (taken mainly from the OCL Standard Libray [10, ch. 
11]) allow to simplify the OCL expressions by reducing the number of operations we 
consider. In each case, we replace the left part of the equivalence by the expression 
appearing in the right part. 

- Boolean type: 
• <> ↔  not = 
• X = true ↔  X 
• Y = false ↔  not Y 
• X=Y ↔  (X and Y) or (not X and not Y) 

- Collection type: 
• collection->includes(Obj) : Boolean ↔ collection->count(Obj)>0 
• collection->excludes(Obj): Boolean ↔ collection->count(Obj)=0 
• collection->includesAll(c2:collection): Boolean ↔ c2->forAll(x| 

collection->count(x)>0)  
• collection->excludesAll(c2:collection): Boolean ↔ c2->forAll(x | 

collection->count (x)=0)  
• collection -> isEmpty() ↔ collection->size()=0 
• collection->notEmpty() ↔ not collection->size()=0 

- Predefined iterators over collection types: 
• collection->exists(expr) ↔  collection->select(expr)->size()>0 
• collection->reject(expr) ↔ collection->select(not expr) 
• collection->one(expr) ↔ collection->select(expr)->size()=1 

- Set type: 
• set->including(Obj): Set ↔  set->union( Set{Obj}) 
• set->excluding(Obj): Set ↔  set->- (Set{Obj}) 

We also define two general syntactical equivalences: 
• Self inclusion: we explicitly add the variable self wherever it is omitted 
• Collect operation: we use the collect operation when possible. So, we 

replace expressions of the form self.A.b (where A represents a 
navigation with multiplicity higher than 1 and b is an attribute) by 
self.A>collect(b). 



A.2 Transforming to conjunctive normal form 

A logical formula is in conjunctive normal form if it is a conjunction (sequence of 
ANDs) consisting of one or more clauses, each of which is a disjunction (OR) of one 
or more literals (or negated literals).  

OCL expressions that form the body of OCL constraints can be regarded as a kind 
of logical formula since they can be evaluated to a Boolean value. Therefore, we can 
define a conjunctive normal form for the OCL expressions exactly in the same way as 
that of the logical formulas. The only difference is the definition of a literal. We 
consider a literal any subset of the OCL constraint that can be evaluated to a Boolean 
value and that does not include a Boolean operator  (or, xor, and, not and implies). 
We say that an OCL constraint is in conjunctive normal form when the OCL 
expression that appears in its body is in conjunctive normal form. This also applies 
for OCL expressions appearing in the body of forAll, and select iterators.  For 
instance, constraint UniqueName is not in CNF since it includes an implies operator, 
and thus, it needs to be transformed. 

Any logical formula can be translated into a conjunctive normal form by applying 
a well-known set of rules. We use the same rules in the transformation of OCL 
expressions with the addition of a new rule to deal with the if-then-else construct. The 
rules are the following: 

1. Eliminate the if-then-else construct and the implies and xor operators 
using the rules: 

a. A implies B ↔ not A or B 
b. if A then B else C ↔ (A implies B) and (not A implies C) ↔ 

(not A or B) and (A or C)  
c. A xor B ↔ (A or B) and not (A and B) ↔  (A or B) and (not A 

or not B) 
2. Move not inwards until the negations be immediately before literals by 

repeatedingly use the laws: 
a. not (not A) ↔ A 
b. Morgan’s laws: not (A or B) ↔ not A and not B 

   not (A and B) ↔ not A or not B 
3. Repeteadly distributive or over and by means of: 

a. A or (B and C) ↔  (A or B) and (A or C) 

It is important to note that in this transformation we do not need to use any 
Skolemization process to get rid of existencial quantifiers since all free variables that 
appear in OCL expressions are assumed to be universally quantified.  
 

 


