
Model Composition Directives

Greg Straw, Geri Georg, Eunjee Song, Sudipto Ghosh, Robert France, and
James M. Bieman

Department of Computer Science
Colorado State University, Fort Collins, CO, 80523
{straw, georg, song, ghosh, france,

bieman}@cs.colostate.edu

Abstract. An aspect-oriented design model consists of a set of aspect models
and a primary model. Each of these models consists of a number of different
kinds of UML diagrams. The models must be composed to identify conflicts
and analyze the system as a whole. We have developed a systematic approach
for composing class diagrams in which a default composition procedure based
on name matching can be customized by user-defined composition directives.
This paper describes a set of composition directives that constrain how class
diagrams are composed.

1 Introduction

Solutions to design concerns (e.g., security and fault tolerance concerns) may cross-
cut many modules of a design model. The cross-cutting nature of these solutions can
make understanding, analyzing and changing the solutions difficult. This complexity
can be addressed through the use of aspect-oriented modeling (AOM) techniques,
where the design of a cross-cutting solution is undertaken in an independent fashion,
and the resulting aspect models are composed with primary models of core function-
ality to create a complete system design. Composition is necessary to identify con-
flicts across aspect and primary models, and to identify undesirable emergent proper-
ties in composed models.

We have developed an AOM technique in which aspect and primary models are
expressed using the UML [12]. Each model consists of a variety of UML diagrams.
Composition of aspect and primary models involves composing diagrams of the same
types. For example, the class diagram in an aspect model is composed with the class
diagram in a primary model. The AOM technique uses a default, name-based compo-
sition procedure in which model elements with the same syntactic type and name are
merged to form a single element in the composed model. The default procedure as-
sumes that elements of the same syntactic type with the same name represent different
and consistent views of the same concept. This may not be the case if the aspect and
primary models are developed independently. Often, a more sophisticated form of
composition is needed to produce composed models with desired features. Composi-
tion directives can be used to modify the default composition procedure [6]. In this
paper we rigorously define and significantly extend a set of composition directives in-
formally described in our previous work [6], and show how the composition direc-

bieman
To appear in Proc. UML 2004.

tives can be used to alter the basic default composition procedure. We also give ex-
amples of how composition directives can be used to resolve conflicts in composed
models produced by the default composition procedure.

2 Composition in AOM

An aspect-oriented design model consists of a primary model and aspect models [6].
A primary model consists of one or more UML diagrams that each describes a view
of the core functionality. The core functionality determines the primary structure of a
design. In our AOM approach an aspect model describes a family of solutions for a
design concern that each cross-cuts the primary model. Aspect models consist of pa-
rameterized UML artifacts that describe generic solutions to design concerns [7,11].
An aspect model cannot be directly composed with a primary model. A context-
specific aspect model must first be created by binding the aspect model’s template pa-
rameters to application-specific values. The context-specific aspect can then be com-
posed with the primary model.

Conflicts across aspect and primary model views and undesirable emergent proper-
ties can be identified during composition or during analysis of the composed model.
Composition directives can be used to resolve conflicts or remove undesirable emer-
gent properties during composition. For example, a composition directive can (1) in-
dicate that properties in aspect models override conflicting properties in primary
models (or vice versa), (2) specify that particular primary model elements must be
removed or added during composition, and (3) determine the order in which two or
more aspects are composed with a primary model.

Figure 1 illustrates a simple composition example. Figure 1(a) shows an aspect
model consisting of a single class diagram template. The aspect model describes a
family of solutions (from a structural perspective) in which entities that produce out-
puts (buffer writers) are decoupled from output devices through the use of buffers.
Template parameters are preceded by the symbol “|”. Figure 1(b) shows a context
specific aspect model created from the aspect model in Figure 1(a). The context spe-
cific aspect model is obtained using the following name bindings:

(|Buffer<-Buffer), (|Output<-FileStream),
 (|BufferWriter<-Writer), (|write()<-writeLine())

The result of composing the context-specific aspect class diagram shown in Figure
1(b) with the primary model class diagram shown in Figure 1(c) is shown in Figure
1(d). In the primary model the output producer sends outputs directly to the output
device. In the composed model a buffer is introduced between the output producer
and the output device. Composition of the context-specific aspect model and the pri-
mary model is carried out using a default name-based composition procedure. The
procedure merges model elements that have the same name and syntactic type to pro-
duce a single model element in the composed model. If the matching model elements
are associated with invariants (e.g., expressed in the OCL) the invariant associated
with the merged element in the composed model is formed by taking the logical
‘AND’ of the invariants. Operation specifications, expressed as OCL pre and post-

conditions, can also be merged for matching operations. The precondition of the
merged operation in the composed model is formed by taking the logical “OR” of the
preconditions associated with the matching operations, and the postcondition is
formed by taking the logical “AND” of their postconditions. Composition using the
simple default procedure can produce undesirable results. In Figure 1(d) an associa-
tion between Writer and FileStream exists in the composed model, but the intent is
that the writer be completely decoupled from the output device, and thus the associa-
tion should be removed. A composition directive can be used to alter the composition
so that it includes removal of this association.

Fig. 1. Default Composition Example

3 Requirements for Composition Directives

In this section we motivate the need for composition directives and identify some of
the directives that can be used to resolve conflicts. We restrict our attention to models
that consist only of class diagrams.

Consider operations addUser(u: User, mId: MgrID), doAddUser(u: User) in a
class Repository that is part of a context specific aspect model, and an operation ad-
dUser(u: User) defined in a primary model class named Repository. The addUser
operation in the primary model adds a user (instance of User) to a collection of users
(instance of a class Users). The addUser operation in the context specific aspect
model calls the doAddUser operation if and only if the client calling the operation is
authorized to add a user. The doAddUser operation adds a user to the collection.
Composition of the two matching addUser operations produces a conflict because the
two operations have different specifications. This is an example of a property conflict
– a property conflict occurs when two matching elements (elements with the same
name and syntactic type) are associated with conflicting properties (in this case pre
and postconditions). In this example, the intention is to merge the doAddUser(u:

User) operation in the context specific aspect model with the addUser(u: User) opera-
tion in the primary model. To resolve this conflict, composition directives should re-
name the addUser operation in the (context specific) aspect model to checkAndAd-
dUser, and rename the doAddUser operation in the aspect model to addUser.

In some cases, renaming elements may not be the appropriate way to resolve a
property conflict. Consider a context specific aspect model that includes a class
FileStream with an attribute maxWriters: int that is associated with the constraint
{maxWriters = 1}. Now consider a primary model with a class named FileStream
that contains an attribute maxWriters: int, with the constraint {maxWriters = 2}. If
the matching attributes are merged, a property conflict will arise because the merged
constraint ({maxWriters = 1 and maxWriters = 2}) is inconsistent. This conflict can
be resolved by specifying, through a composition directive, that one operation over-
rides the other, such that properties from the overriding element take precedence over
those in the element being overridden. However, override relations can produce a cy-
clic-override conflict when a cycle exists between two elements such that there are
override relations specifying both as dominant elements.

In some cases, elements may need to be added or deleted during composition in or-
der to produce a composed model that has desired properties. For example, associa-
tions may be added to provide correct access to other elements, or may be removed if
they pose a security risk. Composition directives can be used to add or delete model
elements during composition.

With the ability of renaming, adding, and removing elements comes the risk of yet
another type of conflict: the nonexistent-reference conflict. A nonexistent-reference
conflict arises when a reference in one of the models refers to an element that no
longer exists, or exists under a different name. To resolve this conflict, the reference
elements in a model must be updated.

In a system with multiple aspects, the order in which aspect models are composed
with a primary model may be important in the cases where different orderings pro-
duce different composed models [6]. Composition directives can be used to specify
the order in which multiple aspects are composed with a primary model.

With the addition of ordering relationships, an additional type of conflict becomes
possible. A cyclic-ordering conflict occurs when there is a cycle among ordering rela-
tionships defined over multiple aspects. These conflicts can be resolved by analyzing
the aspects to correct the order relationships.

The above examples give rise to the following set of actions that can be specified
by composition directives:

• Creating new elements.

• Adding elements to a Namespace.

• Deleting elements from a Namespace.

• Renaming elements.

• Changing references to an element.

• Specifying override relationships between matching elements.

• Specifying ordering relationships among multiple aspects.

4 Composition Directives

In this section, short descriptions of the composition directives are followed by illus-
trated examples. For more detailed specifications of the directives, refer to our tech-
nical report [13]. Many of these descriptions refer to ModelElements, Names, and
Namespaces from the UML meta-model [12]. References to Aspect in these descrip-
tions refer to a context specific aspect model. Two types of composition directives are
used in our AOM approach: Low-level composition directives are used to customize
the composition of a single context specific aspect model and a primary model, and
high-level composition directives are applied to two or more aspect models and are
used primarily to specify the order in which aspect models are composed with a pri-
mary model. The set of composition directives defined in this paper is not intended to
be a complete set, but serves as a starting point for the eventual definition of a com-
plete set of composition directives.

4.1 Low-level Composition Directives

Creating New ModelElements. The directives for creating new ModelElements are
collectively referred to as constructors. Each constructor will have a different set of
operands, but each will consist of the necessary properties to define each (see
Example 2 in section 4.2). The use of a constructor results in the creation of a
reference to a new ModelElement. The constructors are used as follows:

newHandle = create<ModelElement.name> { parameters …}

Adding ModelElements to a Namespace. Once a new ModelElement is created, it is
not yet a member of a Namespace. The directive for adding ModelElements to a
Namespace is add. The add directive has two operands: (1) The ModelElement to
be added, and (2) the Namespace the ModelElement is being added to. The add
directive is used as follows:

add addition :ModelElement to owner :Namespace

Removing ModelElements. The directive for removing ModelElements from a
Namespace is remove. It has two operands: (1) The ModelElement to be removed,
and (2) the Namespace to remove the ModelElement from. The remove directive is
used as follows:

remove member :ModelElement from owner :Namespace

Renaming ModelElements. The directive for renaming ModelElements is rename.
The rename directive has two operands: (1) The ModelElement to rename, and (2)
the new Name. The rename directive is used as follows:

rename target :ModelElement to newName :Name

Replacing References to a ModelElement. Removing a ModelElement may lead to
invalid references that refer to a non-existent ModelElement. The
replaceReferences directive can change these references to a different
ModelElement. This directive has three operands: (1) The original Name of the
ModelElement the references refer to, (2) the replacement Name for the references,
and (3) the Namespace containing the references. The third operand defines a scope
for the replacement of references. The replaceReferences directive is used as
follows:

replaceReferences originalName :Name
 with replacementName :Name in owner :Namespace

Overriding ModelElements. An override relationship specifies that one
ModelElement’s properties take precedence over properties of another
ModelElement. The overrides directive has two operands: (1) The
ModelElement that will take precedence, and (2) the ModelElement that will be
overridden. When an override relation is defined for two ModelElements, the
relationship is honored for all contained ModelElements. This directive is used as
follows:

superior :ModelElement overrides inferior :ModelElement

4.2 Composition Examples

Illustrated examples show the use of the composition directives for composing a sin-
gle primary and context specific aspect. Each aspect model may be woven into mul-
tiple areas of a primary model. For simplicity, these examples only show only one
portion of the primary model, which represents one portion of the design for which
the aspect is to be woven.

Example 1. Consider the example in Figure 2. In the context specific aspect model,
the UserMgmt class contains a operation called getRepositorySize() that retrieves the
size of SystemMgmtAuthRepository. Note that this operation has been created from
the aspect model with a name that will cause a property conflict. The conflict is with
the operation of the same name in UserMgmt in the primary model. The operation
primary::UserMgmt::getRepositorySize() returns the size of UserRepository, which is
a different operation. To resolve this conflict, the rename directive can rename one
or both operations, and the replaceReferences directive can update any refer-
ences to the old Name. The following composition directives are applied:

(1) rename aspect::UserMgmt::getRepositorySize()
 to aspect::UserMgmt::getAuthRepositorySize()

(2) replaceReferences
 aspect::UserMgmt::getRepositorySize()
 with aspect::UserMgmt::getAuthRepositorySize()
 in aspect

(3) rename primary::UserMgmt::getRepositorySize()
 to primary::UserMgmt::getUserRepositorySize()

(4) replaceReferences
 primary::UserMgmt::getRepositorySize()
 with primary::UserMgmt::getUserRepositorySize()
 in primary

Fig. 2. Example 1: Before Application

Fig. 3. Example 1: After Application. (1) and (3) note the name changes.

The result of applying the directives is shown in Figure 3. Where applicable, the
effects of the composition directives are denoted in the composed model using the
corresponding numbers. The names of getRepositorySize() in aspect and pri-
mary are changed to getAuthRepositorySize() and getUserRepositorySize(), respec-

tively. The references to the operation names are changed throughout each model to
reflect the name change, and to avoid reference conflicts.

Example 2. The following example, from France et al.[6], illustrates the use of the
create, add, remove and replaceReferences directives. In Figure 4, the
UserAuth class performs authorization checks for Managers requesting the addition or
deletion of users from the system. In the primary model, Manager has a direct asso-
ciation with UserMgmt, which provides the addUser and deleteUser services. In the
composed model, Manager needs to make these requests to UserAuth and should
have no direct access to the UserMgmt class. The first step to specifying this compo-
sition is to recognize the accesses association as a prohibited element to be removed:

(1) remove primary::Manager::accesses
 from primary::Manager

This does not result in a well-formed primary model however, since there may be
references to the accesses association in Manager. References to accesses in the pri-
mary model must be changed to uaccesses in the context specific aspect model, since
it is the association intended for making the addUser and deleteUser requests, and re-
places accesses:

(2) replaceReferences primary::Manager::accesses
 with aspect::Manager::uaccesses
 in primary::Manager

Fig. 4. Example 2: Before Application

The definitions of the addUser and deleteUser operations in UserAuth include an
authorization check for a given MgrID, and if the Manager is authorized its request, a
call is made to the appropriate operation doAddUser or doDeleteUser. The doAd-
dUser and doDeleteUser operations are intended to request the add and delete ser-
vices, however there is no connection to the UserMgmt class that provides these ser-

vices. The first step to solving this problem is to create an association between
UserAuth and UserMgmt:

(3) userAuthEnd = createAssociationEnd {
 isNavigable = true,
 aggregation = aggregate,
 participant = aspect::UserAuth,
 multiplicity = 1 },

 userMgmtEnd = createAssociationEnd {
 isNavigable = true,
 aggregation = none,
 participant = primary::UserMgmt,
 multiplicity = 1 },

 userAuth-userMgmt = createAssociation {
 name = “UserAuth-UserMgmt”,
 connection = [userAuthEnd,
 userMgmtEnd] }

Once the new Association is created, we need to add it to the appropriate Name-
space, which in this case is the composable aspect design model (i.e., a single primary
model and a context specific aspect) since the association spans both the primary and
context specific aspect models. The new AssociationEnds must be added to their re-
spective participants as well:

(4) add userAuth-userMgmt to comp,
 add userAuthEnd to aspect::UserAuth,
 add userMgmtEnd to primary::UserMgmt

There are two options for specifying the correct operation calls: The first option is
to define doAddUser and doDeleteUser to delegate to UserMgmt via the new associa-
tion. The second option is more concise, and simply replaces the call of doAddUser
and doDeleteUser to the appropriate operations in UserMgmt, and deletes doAddUser
and doDeleteUser. This is the option we will use, and results in the following compo-
sition directive:

(5) replaceReferences aspect::UserAuth::doAddUser
 with primary::UserMgmt::addUser()
 in aspect,

 remove aspect::UserAuth::doAddUser
 from aspect::UserAuth,

 replaceReferences aspect::UserAuth::doDeleteUser
 with primary::UserMgmt::deleteUser()
 in aspect,

 remove aspect::UserAuth::doDeleteUser
 from aspect::UserAuth

The result of the composition is shown in Figure 5. The X’s mark the ModelEle-
ments removed by the composition directives. The dependencies from the addUser

and deleteUser operations in UserAuth illustrate the calls to the respective operations
in UserMgmt.

Fig. 5. Example 2: After Application

Example 3. Figure 6 illustrates the need for defining an override relationship. The
primary model shows a simple system for writing to a FileStream. This system only
supports one Writer, as there is no concurrency control.

The following invariants are defined for maxWriters in the context specific aspect
model and primary models:

context primary::FileStream::maxWriters
 inv: maxWriters = 1

context aspect::FileStream::maxWriters
 inv: maxWriters = 2

The FileStream in the context specific aspect model supports up to two Writers,
while in the primary model, it only supports one. The default composition behavior is
to take the logical ‘AND’ of constraints over matching properties, but in this case that
behavior would not be appropriate. In the composed model, the intended result is the
support of up to two Writers, so the following override relationship is defined:

(1) aspect::FileStream::maxWriters
 overrides primary::FileStream::maxWriters

Another override relationship is needed. The definition of write() in pri-
mary::FileStream simply writes the Line to the FileStream without any checks. The
definition for write() in aspect::FileStream supports multiple Writers, and thus ob-
tains the semaphore through calls wait() and signal() in the Semaphore class. This is
the desired behavior in the composed model, so the following override relationship is
defined:

(2) aspect::FileStream::write()
 overrides primary::FileStream::write()

Fig. 6. Example 3: Before Application

All properties of primary::FileStream are overridden by their respective properties
in aspect::FileStream. This same behavior can be achieved using the following com-
position directive, since any declared override relationship is honored for contained,
matching ModelElements:

(3) aspect::FileStream overrides primary::FileStream

Fig. 7. Example 3: After Application

Figure 7 shows the result of applying the composition directive (3). The depend-
ency from aspect::FileStream to primary::FileStream illustrates the created override
relationship between the two classes. When composition is performed, the definitions
and constraints for write() and maxWriters in the context specific aspect model are
used rather than those for the respective properties in the primary model.

4.3 High-level Composition Directives

In a system with multiple aspects, the order in which aspect models are composed
with a primary model is important: Different ordering can result in different com-
posed models [6]. The weave order for an aspect design model containing multiple
aspects can be defined using weave-order relationships that specify that one aspect is
to be woven before another. Any ordering of multiple aspects can be achieved using
binary relations [13], which allows a developer to specify the important relationships
in the weave order. A weave ordering relationship can be created using either the
follows directive or the precedes directive. The precedes directive has two
operands: (1) the aspect to be woven first, and (2) the aspect to be woven second.

former :Aspect precedes latter :Aspect

Conversely, the same relationship can be created using the follows directive,
both directives are only provided for convenience.

later :Aspect follows earlier :Aspect

4.4 Weave-Ordering Example

Example 4. Consider the following aspect design model in Figure 8(a). There are
three different aspects and the primary model. Without any direction, the aspects will
be woven in an arbitrary order. In this example, the aspect authentication needs to be
woven before the aspect authorization, since authorization without authentication is
meaningless. Therefore, we declare the following composition directive to make the
order explicit.

(1) authentication precedes authorization

We could have also defined a composition directive using the follows directive
with the operands reversed to achieve the same result. Suppose we also wish to
weave the errorChecking aspect last. The following composition directives achieve
this:

(2) errorChecking follows authorization

(3) errorChecking follows authentication

The result is shown in Figure 8(b). The dependency from authentication to au-
thorization illustrates the weave-order relationship that specifies that authentication
must be woven before authorization, and the dependencies from errorChecking to
each of the other aspects illustrates the two binary weave-order relationships that
specify errorChecking as the last aspect to be woven.

Fig. 8. Example 4: Specifying Weave Order

5 Related Work

Clarke et al. describe an approach similar to AOM which is based on subjects [3,4,5],
where a subject is a particular view of the comprehensive system. There is no pri-
mary design; instead everything is a subject and the overall system design is obtained
through the composition of all subjects. The compositions of subjects include the ad-
dition or overriding of named elements in a model. One limitation of this approach is
that there is no support for the merging of constraints associated with a model. There
is also no support for the deletion of elements, except when an element is implicitly
deleted as a result of being overridden. The operation supports conflict reconciliation
through precedence and override relationships between conflicting elements, but noth-
ing further. We describe directives that support the composition of constraints, and
the deletion of model elements.

Brito and Moreira describe an aspect composition process that identifies match
points in a design element and defines composition rules [2]. Rules use identified
match points, a binary contribution value (either positive or negative) that quantifies
the affects on other aspects, and a priority for a given aspect. In the context of AOP
[10], Kienzle et al. describe composition rules based on dependencies between as-
pects [9]. Both papers [2,9] focus primarily on relationships that can exist between
aspects. We describe the possible relationships between aspects as weave-order rela-
tionships and override relationships instead of priority and dependency as done by
Brito and Moreira. This paper expands further on composition directives that are
meant for varying the default composition behavior.

6 Conclusions and Future Work

This paper defines a set of composition directives that facilitate the customization of
model composition. These directives can form the basis for the development of tools
to support the AOM approach described in France et al. [6]. The directives also pro-
vide a common vocabulary for describing composition actions. Illustrated examples
demonstrate the use of each directive.

The defined directives are expressive [1] in the sense that they possess the follow-
ing two properties. First, the directives can specify common composition actions such
as renaming and replacing classes and operations. Second, the directives can be used
to specify creation and removal of model elements, making it possible to significantly
alter how models are composed.

 Empirical evaluation is needed to validate the AOM approach in real world design
settings. Specifically (1) the amount of effort required to specify the kinds of compo-
sitions that are required in real world designs needs to be empirically evaluated; (2)
the development of a tractable method of identifying conflicts in a composed model
needs to be investigated; and (3) the currently defined composition directives need to
be tried in a real design setting, and evaluated for their ability to support the kinds of
composition actions that actually occur. This evaluation could result in the specifica-
tion of some common composition strategies [8] to manage the complexity of specify-
ing compositions and is an area of future work.

We are also exploring how to express the applicability and consequences of using
composition directives in terms of pre and postconditions for directives. We plan to
investigate the use of the Object Constraint Language [12] for this purpose.

Acknowledgements

This material is based in part on work supported by the U.S. National Science Foun-
dation under grants CCR-0098202 and CCR-0203285, and by the AFOSR under grant
FA9550-04-1-0102. Any opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation or the AFOSR.

References

1. R. Allen, and D. Garlan. 1997. A Formal Basis for Architectural Connection. ACM Trans on
Software Engineering and Methodology. vol 6, no 3, pp.213-249, July 1997

2. I. Brito, and A. Moreira, Towards a Composition Process for Aspect-Oriented Require-
ments. In Proceedings of the Workshop on Early Aspects: Aspect-Oriented Requirements
Engineering and Architecture Design. Boston, MA, March 2003.

3. S. Clarke and J. Murphy. Developing a tool to support the application of aspect-oriented
programming principles to the design phase. In Proceedings of the International Conference
on Software Engineering (ICSE '98), Kyoto, Japan, April 1998.

4. S. Clarke, W. Harrison, H. Ossher, and P. Tarr. Separating concerns throughout the devel-
opment lifecycle. In Proceedings of the 3rd ECOOP Aspect-Oriented Programming Work-
shop, Lisbon, Portugal, June 1999.

5. S. Clarke. Extending standard UML with model composition semantics. Science of Com-
puter Programming, Volume 44, Issue 1, pp. 71-100. Elsevier Science, July 2002.

6. R. B. France, I. Ray, G. Georg, and S. Ghosh. An Aspect-Oriented Approach to Design
Modeling. IEE Proceedings - Software, Special Issue on Early Aspects: Aspect Oriented
Requirements Engineering and Architecture Design. (To Appear)

7. R. B. France, D. K. Kim, S. Ghosh, and E. Song. A UML-Based Pattern Specification
Technique. IEEE Transactions on Software Engineering, Volume 30, No 3, March, 2004.

8. G. Georg, R. B. France and I. Ray, Composing Aspect Models. In Proceedings of the Work-
shop on Aspect Oriented Modeling with UML, San Francisco, CA, October 2003.

9. J. Kienzle, Y. Yu, and J Xiong. On Composition and Reuse of Aspects. In Proceedings of
the Foundations of Aspect-Oriented Languages Workshop , Boston, MA, March 2003.

10. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J-M. Loingteir and J. Ir-
win. Aspect-oriented programming. In Proceedings of the European Conference on Ob-
ject-Oriented Programming (ECOOP ’97), volume 1241 of Lecture Notes in Computer Sci-
ence, pages 220-242, Jyvaskyla, Finland, June 1997.

11. D. K. Kim, R. France, S. Ghosh. A UML-Based Language for Specifying Domain-Specific
Patterns. Special Issue on Domain Modeling with Visual Languages, Journal of Visual Lan-
guages and Computing, 2004. (To Appear).

12. The Object Management Group (OMG). Unified Modeling Language. OMG,
http://www.omg.org/docs/formal/03-03-01.pdf . Version 1.5, March 2003.

13. G. Straw, G. Georg, E. Song, S. Ghosh, R. France, J. M. Bieman. Primitives of Composi-
tion Directives. Technical Report CS 04-103, Computer Science Department, Colorado
State University, 2004.

