
Modelling Context for Information Environments

Rudi Belotti, Corsin Decurtins, Michael Grossniklaus,
Moira C. Norrie, and Alexios Palinginis

Institute for Information Systems,
ETH Zurich,

8092 Zurich, Switzerland
rudi.belotti@switzerland.org

{decurtins, grossniklaus, norrie, palingins}@inf.ethz.ch

Abstract. Context-awareness has become an important consideration in the de-
velopment of mobile and ubiquitous systems. While efforts have been made to
develop general context models and application frameworks, it remains the case
that often the notion of context supported is very restrictive and/or the represen-
tation of context is based on simple key-value pairs. As a result, most existing
systems lack well-defined semantics and typing for context that would facilitate
the general implementation, maintenance and adaption of context-aware systems.
In this paper, we present a general context model that consolidates the models
underlying many other approaches, while moving to a higher-level of abstraction
in terms of semantic context description.

1 Introduction

As humans, every time we act and speak, we do it in a given context. Adapting to context
in our daily lives is very easy for us and most of the time it is a completely subconscious
action. We implicitly change our behaviour depending on the situation and in relation to
the environment. Context is the driving force behind our ability to discriminate what is
important and what is not. It allows us to enrich our knowledge about a certain situation
by drawing on related memories and experiences. Hence, only through context are we
able to manage the tremendous amount of information that surrounds us at any given
point in time. For instance, the implicit use of context during a dialogue between humans
has been shown to increase the conversational bandwidth [1].

The nature of the information that surrounds us is not unlike the data that can be found
in ubiquitous and mobile applications. As in real life, vast amounts of information are
readily available from an almost unlimited number of sources. To make such information
environments work, the need to distinguish relevant from irrelevant information arises,
as well as the necessity to augment the information by associating related knowledge.
If such applications are ever to be successful, it will entirely depend on their ability to
deliver the right information to the right user at the right time. We believe that context
is a powerful instrument to achieve the dissemination of relevant information that those
applications demand.

Many of us dream of better applications that have at least an inkling of what we
are doing or where we are working and adapt themselves accordingly. This adaptation

http://nbn-resolving.de/urn:nbn:de:bsz:352-277114


44

can come in various forms. For instance, a very simple adaptation would be having
the user interface adapt according to the situation by presenting the toolbars which
offer the actions that are needed to perform the next task we have in mind. A more
complex example would comprise the delivery of useful and relevant information via
mobile devices such as mobile phones or personal digital assistants (PDAs) to support
expedient collaborative work. A PDA, for instance, could be used to display background
information on the knowledge and know-how of a co-worker whenever this person
enters the room. Mobile phones on the other hand could simply adapt their ringing
profile automatically depending on the situation. Context in this example would also
allow calls that are irrelevant to the current setting, such as an important meeting, to be
filtered out.

Recently, a lot of research has been dedicated to context and context-aware ap-
plications. Nowadays, the first results on context-aware computing are already ap-
pearing in various application domains. Work on context has mainly been concen-
trated in the areas of philosophical implications of context [11], low-level implemen-
tation of context-aware systems [30, 4] and the development of more general frame-
works [27, 28] that provide a basis for the engineering of such applications. We feel,
however, that all of the models used in these approaches lack precise and expres-
sive semantics for context as well as typing. In this paper, we present our compre-
hensive model for context that aims at consolidating existing approaches. As it is
based on a well-defined object model and therefore features well-defined semantics
and typing, it propels the reusability and interchangeability of context in a given
application.

In Sect. 2 existing work on context and context-aware applications is presented and
related to our work. Section 3 introduces our own model for context and gives an overview
of the various parts of the model. Sections 4 to 6 then examine certain aspects of the
model in greater detail. Final remarks and conclusions are given in Sect. 7.

2 Related Work

Context has become a well researched topic over the past few years with contributions
from a wide variety of domains, including philosophy [11], linguistics and social sciences
as well as many different fields of computer science. In the following we present related
work from some of these areas and state how these results relate to our own approach.
The aim is not to give a complete overview of all related work, but rather to provide
an overview of the various approaches that people have adopted to tackle the problem
of context. A more complete survey on related work, especially in the field of mobile
computing, is available in [9].

The problem of context has a long tradition in different areas of cognitive science.
Several formalisations [17, 10] of context have been proposed and, in the field of Compu-
tational Linguistics [18], context is a central notion for understanding and working with
text or speech. Cognitive system engineers and specifically people in the area of Human
Computer Interactions (HCI) have recognised that cognition does not exist without a
context and have started applying the theory to practical applications [4].



45

The first implementations of context-aware systems originate in the area of appli-
cation development for ubiquitous and pervasive computing. The solutions tend to be
application-driven, i.e. context is not necessarily regarded as the main research topic, but
rather just used to implement a certain functionality for a given application. In [2], for
instance, although a context layer is described in the architecture, its design is heavily
affected by the fact that the system is built with the focus on multi-channel acquisi-
tion and delivery and therefore not considered as a general purpose context model. In
other approaches context providers — physical sensors and software components — are
added to the applications to allow them to sense their environment and gather infor-
mation about users, location and possibly other properties of the physical environment.
Context is an integral part of these systems. The integration of sensors and the reactions
and adaptations of the system to the context are customised and tailor-made for each
application. Most of the systems do not have an explicit model of context. Context is
just additional data that the application can use to provide the desired functionality. An
interesting example of such an application is described in [30] where active badges are
used to sense the location of people and forward calls for a given person to a telephone
in the same room.

The notion of context has also been integrated into various application frameworks,
e.g. for web engineering. The output generated by a web application usually depends on
various explicit parameters. These parameters include, for instance, the exact URL that
was requested or the input of a form. In addition to these explicit parameters, the output
can also depend on implicit parameters, i.e. parameters which are not specified explicitly
by the user, but rather form the context of the current session. These implicit parameters
might include the preferred language of the user, the browser that is used to access the
web application (e.g. an HTML browser or a WAP phone) or the current time. Also,
the history of the current session, i.e. the documents that the user has accessed before
the current request, can be part of this context. A discussion on implicit and explicit
application parameters can be found in [15].

The web modelling language WebML and the corresponding CASE tool WebRatio
have also incorporated a notion of context [3]. This context is used to provide users
with a personalised and customised view of the web information system. Pages of the
application can be defined to be context-aware, which means that the context elements
are available to the page in the form of data units. The page can then be customised
according to these context data units.

We have developed our own context-aware web publication frameworks OMS Web
Elements (OMSwe) [23, 22] and the eXtensible Content Management (XCM) [7, 8] as an
extension of an object-oriented database system. The database contains, not only objects
of the application domain, but also metadata that controls the assembly of documents
along with templates that are used to render the pages into a specific output format. For
each of these objects, multiple variations can coexist. Each variation is annotated with
special attributes known as characteristics. For example, for an object of the application
domain, this might be the language of the content, whereas, for a template object, it
might be the type of the output format. In the process of responding to a specific user
request, the correct variants of the objects are selected according to the context of the
request.



46

In the realm of ubiquitous and pervasive computing, many researchers have worked
on application-specific context models [29]. The focus of such applications is the phys-
ical context instances such as location, temperature etc. and the relationship between
them. The application specification handles the context acquisition and manages both
the context information and the interoperability with the application in a hard-wired
manner.

While the approaches that we have described so far are quite feasible for standalone
context-aware applications, they are certainly not practical for the integrated suites of
context-aware applications that have recently been developed in, for example, theAware-
Home [13] and Gaia [26] projects. To achieve a better separation of the sensors for the
context aggregation and the context-aware applications, various people started to de-
velop context frameworks. These frameworks allow the integration of various sensors
through corresponding drivers and present a sensor-independent view of the context
information to the applications. Instead of having sensors and context as an integral
part of the application, the systems use a context component that provides context in-
formation for multiple applications. In some frameworks, the applications are also able
to modify and insert additional context information and thus are able to act as context
deliverers for other applications. A well-known representative of this approach is the
Context Toolkit [27], which was used for a variety of research projects, including the
previously mentioned AwareHome. Another example is the context component of the
Gaia project.

Proposed frameworks define further system architectures [5, 28, 31] that offer general
mechanisms and services to the underlining applications. In [12], this kind of service
infrastructure is even shifted towards network-accessible middleware infrastructures.

Whereas context frameworks provide a good solution for the problems of aggregation
and decoupled provision of context information, they do not really solve the problem
of the lack of semantics. In most frameworks, context values are nothing but key-value
pairs or higher-order tuples, with little explicit semantics. Some systems provide simple
taxonomies for the values, but these conventions are neither checked nor enforced by the
system. The interpretation of the context information is left completely to the application.
Thus a real separation of context producers and context consumers is not achieved by
context frameworks alone. With our background in information systems, we believe
that the lack of semantics and expressiveness of context in the previously described
approaches is actually the biggest drawback and makes them inadequate for use in a
general context model and framework for information environments.

Various people have come up with definitions for context.A precise definition of con-
text is very important for users of context frameworks and developers of context-aware
applications in general. Schilit [28], for example, identified the computing environment
(processors, devices, displays etc.), the user environment (location, social situation,
nearby people etc.) and the physical environment (e.g. lighting and noise level) as the
key components of context. Dey and Abowd [1] describe context as:

[...] any information that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered relevant to the inter-
action between a user and an application, including the user and applications
themselves.



47

These definitions have also been incorporated into some context frameworks. The
Context Toolkit, for instance, is based on the definition of Dey and Abowd. However, the
integration is very weak and the system provides little means of checking and enforcing
the definitions. In most implementations, the efforts of defining context are only used
for naming conventions. For this reason, other researchers have formalised definitions of
context in the form of ontologies.With corresponding changes to the context frameworks,
these definitions can be exploited by the systems and thus more powerful semantics can
be built right into the frameworks and applications.

The previously mentioned definitions of context are mostly influenced by the ubiqui-
tous and pervasive computing community. Another community which is very interested
in context is the HCI community. Researchers from this field have brought aspects of er-
gonomics, psychology, sociology and even philosophy into the discussion. Dourish [6],
for example, says that context is not information per se, but rather a property of existing
information. Every data object can be “contextually relevant” to another object for a par-
ticular activity of a user. In other words, there is no separation between context objects
and normal application objects.

The notion of a subject for context values, i.e. an entity that the context value is
attributed to, has been implemented for example by the context framework of the Gaia
project. They use quadruples for the representation of context: Context(ContextType,
Subject, Relater, Object). The context Objects have a ContextType and a Subject that
they attribute. The nature of this attribution is described by the Relater property.

As for another requirement of Dourish, namely the integration of context and data
model, relatively little research has been done in this area. Of course, it is always possible
to use object identifiers or primary keys for context keys, values or subjects to work
around this problem. However, we believe that a real integration of context models
and data models is necessary to bring context-aware computing to the next level. The
information modelling community certainly has great expertise in such approaches and
this is actually where we see our main contribution. In the following sections, we will
describe our approach for the modelling of context and explain some of the special
features in more detail.

3 A Conceptual Data Model for Context

The purpose of this work is neither to develop just another context-aware application
nor to create a framework and an infrastructure for building context-aware applications.
Instead, by consolidating requirements and experiences from earlier context-aware ap-
plications and frameworks, including our own, we seek to develop a conceptual data
model around the notion of context.

Based on the approaches presented in the previous section, we agree that frame-
works, toolkits and service infrastructure in general, increase code reusability in a
system. However, due to their complexity and the service-oriented description, many
existing frameworks are difficult to comprehend due to the lack of a clearly defined con-
ceptual information model. The specification of a framework reflects the infrastructure
underneath which, inevitably, is influenced by the system on which it is implemented.
Service-oriented specification is not sufficient in heterogeneous environments, where in-





49

– The abstract notion of context as information that can be used to characterise the
situation of an application entity [1]. Depending on the level of detail when consid-
ering the situation, context information can be anything from a single temperature
measurement to an arbitrary complex structure, including entities of the application
domain itself, representing multiple aspects of the entity’s environment.

– Context information is gathered by providers. They supply a wide range of context
information, from real world environment properties such as temperature sensing
to complicated social behaviour aspects of the entity in the current situation. This
is the reason for using a general notion of providers rather than the one of sensors
typically used in supplying characteristics of a physical environment.

– Notifiers bridge the world between the environment properties and the entities in-
terested in them. Crucial to the applicability of a context-aware application is the
interaction between the context model and the application model. The mechanism
allows both the automatic notification on context change or the explicit context
acquisition upon request.

Instances of these modules and the interaction between them should be a subject of
well defined definitions. Thus all model components have to be based on a type system.

In the following sections, core domain concepts of our model, such as the acquisition
of context, types and operations on context, event triggering and the binding of context
to an application are presented in more detail.

4 Context, Types and Application Entities

The core concept of the model is the context element, which represents the context
abstraction. In most of the related discussions and definitions, context information char-
acterises an application entity which is illustrated in the model of Fig. 2 by the asso-
ciation hasContextProperty in the lower right corner. The cardinality constraint
of (1,1) on the source of the association reveals that any context element is associ-
ated with exactly one application entity. Reusability and semantic relevance of context
elements of the same class, such as that of the temperature of a building and of the
temperature of a human is introduced in our model through well defined context types.
Thus, based on a context type, we instantiate for multiple application entities distinct
context. We should remark here that, at this level of abstraction, it does not make sense
to distinguish sensed and calculated context as in the work of Dey. As an example, the
temperature reading of a sensor or the social situation are both context elements that
characterise the entity "room A45" of a building.

From the semantic point of view, this simple context/entity model is enough to express
definitions and formalisms found in [1, 17, 25]. Nevertheless, the difference between the
approaches is the kind of information that composes the context and the flexibility to use
references to application entities. As discussed in [9], different approaches use diverse
data structures to express and exchange context information. The lack of a general, yet
flexible, model makes the exchange of context information a tedious task.

We propose a solution to the problem by introducing a type system along with our
context model concepts. The type system provides types for three major domains:





51

Attribute values specifying the quality or confidence of the context values could also
be modelled by using the concept of semantic categories. As an example, imagine the
confidence value of a face recognition sensor. Due to changes in the lighting conditions,
the sensor might work better in some situations than in others. A framework based on
our model can classify an otherwise convenient attribute definition, as a quality value.
In other approaches, confidence might qualify a complete sensor such as a camera.
Thus declaring the confidence of the measurement on the sensor level. By modelling
the quality as a class of an attribute, we can define quality values for each measurement
and not just a single unique value for all measurements of a sensor. Further, through the
context composition, we can define the overall confidence of the sensor by composing
the complex context information. Imagine, for instance, face recognition context based
on a camera with a given quality value based on the camera’s resolution. By using further
sensors, such as lighting sensors or badge detection, we could create a composite face
recognition context with a quality value that takes into account all gathered information.

The proposed type system is general enough to describe both simple value properties
and complex composite context elements. By incorporating references to application
types, context-aware applications can control the interaction with context information.
Furthermore, context information not only consists of simple basic values, but can also
use any application specific entity. In Fig. 2, this is apparent from the attrOfType
association bound to Types with ApplTypes being a specialisation of it.

Nevertheless a type system can only ensure data type integrity and consistency,
disregarding semantic constraints. By introducing restrictions on base types, subtypes
of application types and semantic classification of attributes, the application can en-
sure a wide range of semantic constraints. An ontology as presented in [14] could
be beneficial and its hierarchy, which is formed based on the constituents of each
context type, can be modelled appropriately by composed contexts. For example, the
Environment:Sound:Intensity type presented in the above mentioned work
could be modelled with the following context types in our model:

contextType environmentContext characterising environment {
sound: soundContext;

};

contextType soundContext {
intensity: intensity; // restriction of string , enumeration
frequency: hertz; // restriction of integer

};

The example defines two context types — the environmentContext and the soundCon-
text. The first is constrained to be bound only to application entities of type environment
or subtypes of it. Thus we can ensure context information especially declaring the en-
vironment of application entities of a given application type. Each of the contexts has
property values, those of sound, intensity and frequency, respectively. The attributes of
the soundContext are restrictions of BaseType, while the environmentContext context
is a composite context that uses the soundContext.







54

It is not the purpose of our model to describe how to physically react to the incoming
changes of context. These changes are propagated to the interested entities in the appli-
cation layer, which are responsible for taking the appropriate actions. This feature makes
our solution compatible with the active context awareness model presented in [16].

7 Conclusions

We have presented a general and abstract conceptual model for context and consoli-
dated it with related work from various domains. The model supports a flexible and
semantically expressive context representation that can be used for various applica-
tions scenarios. A sophisticated type system enables consistency checks at the sys-
tem level and enables the definition and exchange of context information, something
missing in the diverse data structure approaches used in earlier works. With the pro-
posed model, it is possible to add new context elements at any time, and define new
behavioural patterns for them, resulting in a very flexible and adaptable solution. Ad-
ditional flexibility gives us the possibility to use object references as context values
rather than just simple basic values. We believe that the proposed model contributes in
the understanding and representation of context and could offer a common information
model, based on which, application specific context models and ontologies could be
defined.

Future work will include the implementation of the context model and its integration
in a platform for ubiquitous and mobile information environments. We are currently
developing a context-aware news application with a specific application context model
based on the current proposal.

References

1. Anind K. Dey and Gregory D. Abowd. Towards a Better Understanding of Context and
Context-Awareness. In Proceedings of the CHI 2000 Workshop on The What, Who, Where,
When, and How of Context-Awareness, The Hague, Netherlands, apr 2000.

2. Luciano Baresi, Devis Bianchini,Valeria DeAntonellis, Maria Grazia Fugini, Barbara Pernici,
and Pierluigi Plebani. Context-aware composition of e-services. In Proceedings of 4th
International Workshop on Technologies for E-Services, 4th International Workshop (TES),
pages 28–41, Berlin, Germany, September 2003.

3. Stefano Ceri, Florian Daniel, and Maristella Matera. Extending WebML for Modeling Multi-
Channel Context-Aware Web Applications. In Proceedings of MMIS’2003, International
Workshop on Multichannel and Mobile Information Systems, December 2003.

4. Anind K. Dey, Daniel Salber, Gregory D. Abowd, and Masayasu Futakawa. The conference
assistant: Combining context-awareness with wearable computing. In ISWC, pages 21–28,
1999.

5. Anind K. Dey, Daniel Salber, Masayasu Futakawa, and Gregory D. Abowd. An architecture to
support context-aware applications. Technical report, Georgia Institute of Technology, June
1999.

6. Paul Dourish. What we talk about when we talk about context. Personal and Ubiquitous
Computing, 8(1), 2004.



55

7. Michael Grossniklaus and Moira C. Norrie. Information Concepts for Content Management.
In Proc. Intl. Workshop on Data Semantics in Web Information Systems (DASWIS 2002),
Singapore, December 2002.

8. Michael Grossniklaus, Moira C. Norrie, and Patrick Büchler. Metatemplate Driven Multi-
Channel Presentation. In Workshop on Multi-Channel and Mobile Information Systems, WISE
2003, Roma, Italy, December 2003.

9. Guanling Chen and David Kotz. A Survey of Context-Aware Mobile Computing Research.
Technical Report TR2000-381, Dept. of Computer Science, Dartmouth College, November
2000.

10. Ramanathan V. Guha. Contexts: A formalization and some applications. PhD thesis, Stanford
University, December 1991.

11. Martin Heidegger. Sein und Zeit. Neomarius Verlag, Tuebingen, 1927.
12. Jason I. Hong and James A. Landay. An Infrastructure Approach to Context-Aware Comput-

ing. Human-Computer Interaction, 16, 2001.
13. Cory D. Kidd, Robert Orr, Gregory D. Abowd, Christopher G. Atkeson, Irfan A. Essa, Blair

MacIntyre, Elizabeth D. Mynatt, Thad Starner, and Wendy Newstetter. The aware home:
A living laboratory for ubiquitous computing research. In Cooperative Buildings, pages
191–198, 1999.

14. Panu Korpipää and Jani Mäntyjärvi. An Ontology for Mobile Device Sensor-Based Context
Awareness. In CONTEXT 2003, LNAI, volume 2608, pages 451–458, Berlin, 2003. Springer-
Verlag.

15. Henry Lieberman and Ted Selker. Out of context: Computer systems that adapt to and learn
from context. IBM Systems Journal, 39(3):617–631, 2000.

16. Louise Barkhuus and Anind K. Dey. Is Context-Aware Computing Taking Control Away
from the User? Three Levels of Interactivity Examined. In UbiComp 03 Conference, Seattle,
oct 2003. To Appear.

17. John McCarthy. Notes on formalizing contexts. In Ruzena Bajcsy, editor, Proceedings of
the Thirteenth International Joint Conference on Artificial Intelligence, pages 555–560, San
Mateo, California, 1993. Morgan Kaufmann.

18. Surav Mehmet and Akman Varol. Modeling context with situations. In Proceedings IJCAI-95
Workshop on Modelling Context in Knowledge Representation and Reasoning, pages 145–
156, Montreal, Canada, 1995.

19. Moira C. Norrie. A specification of an object-oriented data model with relations. In Pro-
ceedings of International Workshop on specifications of Database Systems, pages 211–227,
Glasgow, July 1991.

20. Moira C. Norrie. An Extended Entity-Relationship Approach to Data Management in Object-
Oriented Systems. In Proceedings of ER’93, 12th International Conference on the Entity-
Relationship Approach, December 1993.

21. Moira C. Norrie and Alexios Palinginis. A Modelling Approach to the Realisation of Modular
Information Spaces. In 14th Conference on Advanced Information Systems Engineering
(CAiSE’02), May 2002.

22. Moira C. Norrie and Alexios Palinginis. Empowering Databases for Context-Dependent In-
formation Delivery. In Ubiquitous Mobile Information and Collaboration Systems (UMICS),
CAiSE Workshop Proceedings, June 2003.

23. Moira C. Norrie and Alexios Palinginis. Versions for context dependent information services.
In Conference on Cooperative Information Systems (COOPIS 2003), Catania-Sicily, Italy,
November 2003.

24. Moira C. Norrie, Alain Würgler, Alexios Palinginis, Kaspar von Gunten, and Michael Gross-
niklaus. OMS Pro 2.0 Introductory Tutorial. Institute for Information Systems, ETH Zürich,
March 2003.



56

25. Jason Pascoe. Adding Generic Contextual Capabilities to Wearable Computers. In ISWC,
pages 92–99, 1998.

26. Manuel Román, Christopher K. Hess, Renato Cerqueira, Anand Ranganathan, Roy H. Camp-
bell, and Klara Nahrstedt. Gaia: A middleware infrastructure to enable active spaces. IEEE
Pervasive Computing, pages 74–83, Oct-Dec 2002.

27. Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context toolkit: Aiding the devel-
opment of context-enabled applications. In Proceedings of the 1999 Conference on Human
Factors in Computing Systems (CHI ’99), pages 434–441, Pittsburgh, PA, May 1999.

28. Bill N. Schilit. A System Architecture for Context-Aware Mobile Computing. PhD thesis,
Columbia University, 1995.

29. Bill N. Schilit, Norman Adams, and Roy Want. Context-Aware Computing Applications. In
IEEE Workshop on Mobile Computing Systems and Applications, 1994.

30. Roy Want, Andy Hopper, Veronica Falcão, and Jonathan Gibbons. The active badge location
system. ACM Transactions on Information Systems, 10(1):91–102, January 1992.

31. Terry Winograd. Architectures for Context. Human-Computer Interaction, 16, 2001.


	Text1: Erschienen in: Ubiquitous mobile information and collaboration systems: Second CAiSE Workshop, UMICS 2004, Riga, Latvia, June 7 - 8, 2004; revised selected papers / Luciano Baresi ... (ed.). - Berlin [u.a.] : Springer, 2004. - S. 43-56. - (Lecture notes in computer science ; 3272). - ISBN 978-3-540-24100-3
http://dx.doi.org/10.1007/978-3-540-30188-2_4
	Text2: Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-277114


