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Abstract. “Algebraic Cryptanalysis” against a cryptosystem often com-
prises finding enough relations that are generally or probabilistically
valid, then solving the resultant system. The security of many schemes
(most important being AES) thus depends on the difficulty of solving
multivariate polynomial equations. Generically, this is NP-hard.

The related methods of XL (EXTENDED LINEARIZATION), Grébner Bases,
and their variants (of which a large number has been proposed) form a
unified approach to solving equations and thus affect our assessment and
understanding of many cryptosystems.

Building on prior theory, we analyze these XL variants and derive asymp-
totic formulas giving better security estimates under XL-related algebraic
attacks; through this examination we have hopefully improved our un-
derstanding of such variants. In particular, guessing a portion of variables
is a good tidea for both XL and Grébner Bases methods.

Keywords: XL, Grobner Bases, multivariate quadratics, algebraic crypt-
analysis, asymptotic security estimates

1 Introduction

Modern cryptography relies critically on the difficulty to solve certain problems.
RSA, currently dominant, depends on factoring; as integer factoring techniques
improves and the speed of computers exponentiates ahead of embedded parts,
it takes longer for smart cards to do modular arithmetic at a comfortable secu-
rity level. Thus schemes relying on other hard problems are proposed. Solving
generic multivariate polynomial systems is provably NP-hard ([22]), and many
cryptosystems, including all multivariates (the input to the public maps are cut
into small separate variables as opposed to treated as a big unit), depends on
its difficulty. Systematic and algorithmic equations-solving have centered mostly
around Grobner Bases methods (cf. [2,19,20]). We will describe variants of the
related XL method ([11]). Comparison shows FXL to be best, and that guessing
to make the equations suitably overdetermined is a generally good idea.

Goal: To solve a (usually) quadratic system over a finite field K = GF(q). We
denote the number of variables and equations by n and m respectively, and the
equations are given as polynomials ¢1(x) = fa(x) = - - = £,,(x) = 0.
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Procedure of Basic XL ([11]): Denote (per [42]) by xP the monomial x?lxlf

- xbn and its total degree |b| = by +---+b,. T = TP = {xP : |b| < D} is the
set of degree- D-or-lower monomials. Multiply each equation ¢; by all monomials
xP € T(P=2) Solving as a linear system R = R(P) = {xP¢;(x) =0:1<j <
m, |b| < D — 2} in all the monomials x® € 7(P), or reduce the system to a
univariate equation in some variable. The number of monomials will be denoted
TP) = T = |T|, total number of equations R(?) = R = |R|, and the number of
independent equations I(P) = I = dim(spanR).

Many claims have been made about XL and associated algebraic attacks. For
applications to stream ciphers, see [7,8]; to PKC’s especially about its variant
types, see [9, 12]; for block ciphers and the somewhat contentious related method
of XSL, see [13], and also [29,30]. We will build on recent theoretical develop-
ments in XL ([15, 36,40, 42]) for better security estimates under XL and related
methods, including Grobner Bases. More details can also be found in [9,12, 13].

1.1 A Framework for Estimating Security Levels

We need to solve a system or run a partial elimination. In this, we may apply
any algorithm that takes time aN“ to multiply two N x N matrices towards
system-solving using Bernstein’s Generalized Gaussian Elimination (GGE, [3]),
with a time cost of (with By, (1, f2 depending on a and w):

Ep(T,R) = BoR* + SiTR* ™' + B,T?R¥ 2.

While w goes as low as 2.368 ([6]) in theory, practically we will use w = 1g7 =~
2.8, By = 1.16, B1 = 48.5, B3 = 0 (cf. [3,27,35,40]). If the system matrix can be
blocked efficiently via coloring analysis ([16]), only the dominant block counts
for T and R. When m,n — oo so does R/T. However ([1,5]) we can generate
an almost-minimal equations randomly or via some extended-Buchberger type
algorithm. So we will assume asymptotically R/T ~ a constant.

On the other hand, then there is no way to beat sparse-matrix methods for
finding a unique solution to a sparse system of equations. Standard estimates for
Lanczos, Conjugate Gradients or Wiedemann methods ([17, 24, 38]) resemble

ErL(T,R) = (co+c11gT) t T R,

where ¢ counts the terms in each equation (= ("‘2"2))7 and ¢g, ¢; are constants.
We shall use an optimistic ¢g = 16, ¢y = i for a complexity estimate in CPU
cycles, which we should divide by 2% to get a rough estimate in 3DES blocks ([40]
and simulations); the Fp estimate above is in contrast in field multiplications

which is 276 of a 3DES block (the NESSIE unit, cf. [31]).

1.2 Basic Combinatorial Results Concerning XL

Over K = GF(g) Lemma 1 of [42] gives T(P) = [tP] ((1 —t9)"(1 —¢)~(n+D)
RP) = mT(P=2) (here [u]s is the coefficient of the monomial u in the series
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expansion of s), so if D is roughly proportional to n, then so is lg7. For large
q (ie. ¢ > D), the above reduces to TP) = ("ED) and for ¢ = 2 to T(P) =

Zf:o (?)7 S0

Lemma 1. If D ~ wn, then the Stirling formula and other asymptotics give

lgT ~n[(l1+w)lg(l+w)—wlgw]+o(n), forlarge g; (1)
n[—(1—w)lg(l —w) —wlgw] + o(n), over GF(2); (2)
~n [lgmin(z="(1 — 29)/(1 — 2))| 4 o(n), in general. (3)

This is why we mostly need only! Dy, the minimal operative degree D of XL:

Proposition 2 ([42]) If equations ¢; are semi-regular, then for all D < D,

— ta\n — P\
T —1I=[tP] Gun(t) = [t7] ((11— ti”)“ (11—;”) . W

The degree of reqularity Dyey = min{D : [tP] G, »(t) < 0} is the smallest D
such that Eq. 4 cannot hold if the system has a solution. The generating function
Gun(t) is also called the Hilbert Series. Dy = min{D : [tP] Gy, »(t) < 0} is the
(minimal) operative degree and usually equal to Dyeq. Further, if the (€;)i=1...m
are non-semi-regular, the value I can only decrease.

Corollary 3 ([15,42]). T — I = [P]((1—¢)™ "Y1 +1)™) for generic
quadratic equations if D < min(q,D?‘gg), where D¢, is the degree of the low-
est term with a non-positive coefficient in the expansion of G .(t) = (1 —
tym L1 4 ¢)™. Again, the number I may only decrease for non-generic equa-

tions.

Corollary 4. With semi-regular quadratic equations over GF(2), we have
for all D < Dyeg, T — I =[tP]GQ), (1) = P (L +6)"(1+ )™ (1—t) 7).

So Do = min{D : [tP] G\2,(t) < 1} & D,y = min{D : [tP] G, (t) < 0}.

Remark: If T — I = [tP] G,,, (t) for all D, i.e., there are never any dependen-
cies between the relations R other than those generated by ¢;[¢;] = ¢;[¢;] and
¢971¢;] = [44], then the polynomials ¢; form a regular sequence. This is obviously
impossible if m > n, but the formula may yet hold until D is so large that the
RHS of Eq. 4 becomes non-positive. This is the meaning of “no extraneous de-
pendencies” in [28,40], and semi-regularity in [2]: the XL-equations constructed
according to an extension of the Buchberger criteria ([19]) have no extrane-
ous interdependencies. Bardet et al (nor anyone else) give no general properties
implying semi-regularity. As pointed out by C. Diem ([15]), the [42] proof is inac-
curate. Commutative algebra has the concept of a sequence of polynomials being

1 An anonymous reviewer for Crypto’04 opined that this is all the analysis necessary.
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generic ([18]). It may be possible to prove Eq. 4 rigorously for generic polynomi-
als ([15], using the mazimal rank conjecture by R. Froberg (|21]); Diem proves
rigorously Cor. 3 in [15], and opines that Prop. 2 probably holds in general.

In any event, since it is also confirmed by many simulations ([1, 40, 42]) we
will henceforth assume that Prop. 2 holds in general in the discussions below.

2 XL/FXL and Groébner Bases with Guessing

We refine the estimates given for XL and FXL in [40] to use as a yardstick
against which other XL variants can be measured. In the process we show that
a suitable amount of guessing is generally useful with XL and Grébner Bases.

2.1 The Old and the New: XL Estimates over Large Fields

It is known ([11,15,40]) if f = m —n equal to (a) 0, then Dy = 2" for 2" < ¢;
(b) 1, then Dy = n + 1; and (c) a constant > 2, then Dy = n/2 — o(n). Indeed

Proposition 5 ([40]) If fairly large m and q satisfy the premise to Cor. 8, then

m

Dyey = 5~ (hf_l,l)\/g—&— O(1) ~ % —\/fm, for small f(=o(v/m)). (5)

1
(5 —Ve+ g) m+0(m3), for f =cm, mT > c>m Y27 (6)

Here f =m —nand hy1 = vV2k+ 1+ O(k=%) is the max. zero of the Hermite
polynomial Hy(z), known from analysis (cf. [37]). We also have

2
Proposition 6 When m=n < q <2™, Dy~ q+ g —Vnerfe ! (2).
n

Proof. If we assume generic quadratic equations, and that D > ¢ but is no larger
than the smaller of 2¢ or D,.q, then Prop. 2 reduces to

T-1=["] (1-m)(1—-t)y" " 1+t)").

Set m = n and we may estimate T' — I by the Central Limit Theorem as

2(D—q— %)

n - n n '7n7ﬁ m D—q—%
2 —nZ?:Oq(j)%Q (1—#]00‘/_ e 2du>—2 [1—%erfc( \jﬁ?ﬂ’

. —2
where we use the complementary error function erfcr := \/g ffoo ez dt.

Prop. 6 implies that when m = n pure XL is infeasible for large dimensions.
In the variant FXL, the attacker guesses at a number (denoted f) of variables
and then runs XL, repeating until a solution is found. For XL or FXL with a
given f, we can get very tight bounds ([40]) for D,.q4. Since we have 1g Cxp, ~
wlgT + flgq where w is the exponent of the elimination complexity (= 2.8 for
Strassen-like methods), we may then use Eq. 6 to find (cf. also [40]) that



On Asymptotic Security Estimates in XL 405

Proposition 7 The optimal ¢ = f/n in FXL is the minimum point of
(gg)c+w[(5-ve—5)lg(3—ve—35) = (3-vet+5)lg(z—vet+5) — (1 — o) lg(l - ¢)]
for sufficiently large q, and is denote co = co(q). This applies to F4-Fs equally?.

Corollary 8. Even when we start with n/m =1— e+ o(1) for a positive ¢, the
marginal cost of guessing is the same, so when € > cg, then we should not guess
any asymptotically significant portion of variables, but if € < co, we should guess
at roughly (co — e)m =n — (1 — ¢o)m more variables.

For ¢ = 2% and w = 2 (Lanczos) the minimum occurs at ¢y = f/n ~ 0.049,
and we see that 1g Cpy, ~ 2.4n (compared to 3.0n for f = o(n)). If w = 2.8
then the minimum is 1gCryx, ~ 3.0n (in contrast to 4.2n for f = o(n)) when
co = f/n ~ 0.0959. This proves that a suitable amount of guessing is a valuable
concept in algebraic analysis of the XL-Grobner-Bases family.

There is an alternative way to guess called XFL ([9, 42]) which delays guessing
until the elimination has been performed on the highest-degree block of equa-
tions. What this does is effectively to lower D by 1, but its biggest drawback
compared to FXL is not being compatible with Lanczos-like methods ([40, 42]).

Everyone ([12,42] seems to consider FXL (and XFL) less than serious con-
tenders for small fields, in particularly GF(2). But once we discard the notion
that XL can be subexponential for roughly constant n/m, we will actually see,
as below, that they are worthy all-around performers.

2.2 XL/FXL/XFL Estimates over Small Fields, Particularly GF(2)

To estimate the behavior of D4 in small fields, one uses the method of Coa-
lescent Saddle Point ([4, 23, 39]). Suppose we start with m = n, ¢ = 2 (an equal
number of quadratic equations and variables) and guess at f = cn variables,
then our asymptotic analysis starts with using Cauchy’s Integration Formula:

At () - 2]

where w := D/n. At saddle points s the bracketed expression is stationary, so

1-c 2s W 3 2 _
s 119 S—O,or( c—1—-w)s"+(—w—-2)s"+(—c+1—w)s—w=0. (7)

Asymptotic behavior is determined at the saddle (stationary) points s. The
method of Coalescent Saddle Points applies when we want an asymptotic ex-
pression to vanish, which means that the dominant term(s) of g, (D) must
cancel, and this happens only when the cubic has double roots (|2, 4]):

dw* +(8 4 8¢) w® + (8c* — 12¢ + 24) w’ + (4¢® — 16¢° + 20) w+c* —2¢° —* +4c—2 = 0,

2 In the saddle-point computations of [2], one can easily seen that the coefficient of n
in the asymptotic expansion of Dy for F4-F5 is the same as that for XL/FXL, so
the entire derivation carries over, as does most of this paper to F4-Fs.
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by taking the discriminant of the cubic. This is just like the behavior of F4-Fs5.
We may write w via the Cardano-Ferrari formula or (when c is small) as a series:

W = Dreg/n = wo(c)+0(n# ); wo(c) = 0.0900—0.159 ¢+0.0568 ¢>+0.00800 > +O(c*).

Given D,.4, we can estimate the complexity of the elimination phase via Eq. 2.
lg Cxrjcoe ~ wWl(l—c)lg(l—c)— (1 —c—w)lg(l —c—w) —wlgw] + c) n + o(n),

lg Crxr/Lanczos ~ (2[(1 —¢)lg(l —¢) — (1 —c—w)1g(1 — c —w) —wlgw] + ¢) n + o(n).

We plot lgT and w, the asymptotic coefficient of n in lg C' against ¢, the pro-
portion of variables fixed (looking at both Lanczos and GGE with the Strassen
estimate) in Fig. 1(a). The minimum point is the optimal ¢, or ¢y = ¢g(g,w).

(a) Over GF(2) (b) Over GF(3)
Fig.1. FXL/XFL cost (for w = 2, 1g7) and w vs. Proportion of Variables Guessed

We can check that asymptotically, for Lanczos-like (resp. Strassen-like) meth-
ods we should fix (guess at) some ~0.45n (resp. 0.67n) variables for an asymp-
totic rate of C' a2 207857 (vesp. 20-8657) times a rational function. With “straight”
XL or Fgs we should get C a2 208737 (resp. 21-222n),

Example: We apply Prop. 2 and Sec. 1.1 instead of asymptotics. Suppose we
have m = n = 200 over GF(2). Straight XL with Lanczos is expected to take
about 224! cycles while FXL with Lanczos, guessing at 120 (!) variables should
be about 2199 cycles, already a little faster than brute-force. The GGE/Strassen
case is even more exaggerated: straight XL should be 23%° multiplications; with
152 (1) variables guessed FXL should be around 22%¢, and XFL around 2'%.

For ¢ > 2, we need more asymptotics, e.g., for ¢ = 3, lgT/n is (up to o(1)):

a (Ta— 3w + Va2 + 6aw — 3w?) (—(a—w)+\/a2+6aw—3w2)
alg 5 —wlg .
2 (20 — w) 2(2a —w)

Hence we can get the similar plot for GF(3) in Fig. 1(b).

This means that asymptotically, XL methods (and its relatives the Grobner
bases methods) are faster than brute-force by rather more than was acknowl-
edged in [2,42], through the technique of guessing (FiXing). So FXL and XFL
have their places for small fields too.

Comment: The above discussion is asymptotic; earlier disregard for FXL over
small fields may well be justified for all practical dimensions.
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3 Reassessing XL’ and XLF

In [9], it was proposed that the variants XL’ ([12]) and XLF can break SFLASH"?
([34]) and the instance of HFE used in HFE Challenge 2. The former has ¢ =
27, m = n = 26 (was 37, cut down with some guesses), and the latter ¢ =
24, m = n = 32. It was pointed out ([40]) that the estimates in [9] were wrong.

We show below that, surprisingly, XL’ and XLF are not likely to lead to
asymptotically significant gains. In fact, they are asymptotically dominated by
FXL. Le., they lead to a higher leading-term (proportional to n) coefficient of
the logarithm of the security complexity lg C'.

3.1 XL’ and Its Security Estimates for Large q

XL runs just like XL ([12]) except at the very end. Instead of coming down to
one equation in one variable, we try to come down to a system of > r equa-
tions in r variables and then solve by brute-force. We hope that this gives us
a lower D than the Dy for regular XL. In general we only require T — I <
(tP1(1 =)= (1 — t9)") — r with complexity

n+D n+D—2 qD (r+ D
ns((3)n (5 AR

Unfortunately, this decreased D may still not be small enough:

SFLASH"?: [9] gave D =7, r = 5. But here, T — I = 3300336 > ("}”) = 792
so XL’ does not work. We actually need D > 93 ([1]).

HFE Challenge 2: [9] gave D = 8, r = 10, for which T'— I = 107594213 >
("1P) = 43758. XL’ may work at D = 15, r = 19 ([1]).

Indeed, it was established ([40]) that XL’ is not very useful for large m, ¢ and
small f = m—mn. In fact, when f = 1 or 2, XL’ operates if and only if D > m —r;
if m =n, XL’ will not run at D = m+1—r, but will at D = m+2—r for r large
enough (around r > m/2). When r is small, we need a much larger D, around
om/r (r!)l/ ". We show additionally below that XL’ is asymptotically unsuitable
for f = m —n small, g large. What may be more surprising is that things do not
get much better for small fields (Sec. 3.2).

Proposition 9 For large n, ¢ and any f =m —n = o(n),

1. with r/n =a+ o(1), XL’ needs at least the degree D ~n —r + o(n);
2. XL’ does not lead to asymptotically significant gains.

Proof. Assuming D ~ wn, r ~ an, asymptotically we can evaluate as follows:

const [n + f n[—wlnw—(1—w) In(1—w)+o(1)]
T—INDf1< D )Ne

< en[(a+w) In(atw)—wlnw—alnato(1)] <T + D)
~ D :
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or (a+w)ln(a+w)—alna = —(1—w)In(1 — w), which has the simple solution
of w =1—a. So the first part is proved. A reasonable approximation is that the
minimum value of Cy;> should happen when each of the elimination part and the
brute-force part takes equal amount of time. I.e.

w((l+w)n(l+w)—whw)=(—whw—-(1—-w)n(l —w))+ (1 —w)Ing.

This has no solution between 0 and % for most practical values of w and g,
so asymptotically for f > 2, XL’ is not a significant improvement (because
Dyeqg < m/2). Assuming f = 1 we can find numerical solutions: E.g., when
w = 2.8, ¢ = 256 we find that w = 0.592, which leads to 1g Cx,; ~ 3.267m >
lg Cxp, ~ 3.00m over a fairly wide range of m (cf. Sec. 2.1).

3.2 Asymptotic Inefficiency of XL’ for GF(2)

What is most surprising is that we can show that asymptotically, XL’ does not
work so great over GF(2) either, even though it was designed for that field. Let’s
assume that m = n + o(n) and D = wn. We may compute the saddle points
according to Eq. 7 (with ¢ = 0). For any w < 0.089979 (the asymptotic limit for
Dycg/n), Eq. 7 has three real roots of which we take the largest as s (we can
verify this to be the dominant saddle point). The magnitude of T'— I can be
approximated by 1g(T — I) ~ n (Ig(1+ s) —1g(1 + s?) —wlgs). If we run XL’
with r ~ am then

1g(T—1) ) ~ lg((g))

n

~lg(1+s)—lg(1+s?)—wlgs ~ alga—wlgw—(a—w)lg(a—w

up to o(1). If w ~ 0.89979 (i.e., D < Dyeg), then a ~ 0.85735. Even for w =
lg 7 ~ 2.8, the brute-force searching stage would have a cost around 2!273", more
than the XL /elimination cost of 212227 (cf. Sec. 2.2). Suppose w decreases, a
goes up and it gets even worse for XL .

An obvious tweak is XFL’: Combined XFL and XL’. Suppose we first fix
f ~ cn variables before doing XL’ at D ~ wn and r ~ an. However, as we
repeat the computations above, we may verify that for ¢ all the way up to 1,
XFL’ is still no improvement over XFL asymptotically.
Remark: Sec. 3.1-3.2 does not mean that XL’/XFL’ is useless. It just says that
XL is unlikely to offer significant gain over GF(2) and by inference other small
fields. There are still cases in which XL’ will let us lower D by a little. If we are
running XL/XFL with a Strassen-like elimination, we might as well pick up on
XL’ possibilities for free anyway.

3.3 XLF and Its Estimates
XLF ([9]) tries to utilize the Frobenius relations of K = GF(q) when ¢ = 2*:

— Each generated XL equation in R is raised to the second, fourth,. .. powers

easily (since this is a linear operation) as equations in (z?),.. ., (x?kil), for
k times as many variables and equations.
k—1
— Consider (z7), (z}), ..., (z2 ) independent variables in addition to z;. Use

the fact that equivalent monomials are equal as new equations.
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We know that ([40]) no more than AT = k (n'&L}?g JQJ) — 1 extra equations are
provided by XLF. Consequently when D < ¢, a necessary (and likely sufficient)
operating condition for XLF is
[P (L =)™t (L 0)™) = ("TAE) < [D/2]. (9)

Eq. 9 is how we can easily check that the cryptanalysis of [9] is nonfunctional.

The principal drawback ([1]) to XLF is that the dependencies are also copied
k times. Indeed we can show this inefficiency to be intrinsic, i.e., when f =
m —n < 2, we can prove ([40]) that XLF needs D > n/2 to operate. Of course
this does not imply XLF to be useless, just less of an improvement than FXL,
and that it does not lead to asymptotically significant gains.

Proposition 10 XLF is asymptotically dominated by FXL.
Proof. According to Eq. 9, for a fixed f and D ~ wn we will have asymptotically
lg(T—1)~ (—wlgw — (1 —w)lg(l —w))n

Assuming equality this yields as the only solution w = 0.573, which is greater
than w = 0.5 from FXL/XFL. The complexity is 2417 or 229%™ depending on
whether Lanczos or Strassen is used, which is greater than that of FXL/XFL.

4 Further Discussions

Security levels of SFLASH and HFE challenge 2 under the variants of XL in-
cluding FXL/XFL, XLF, and XL’ can be updated using the formulas given in
the text, and we tabulate them with some asymptotic estimates:

Table 1. XL estimates (3DES blocks): Previous ([9]) v. Bernstein (w = 2.8) v. Lanczos

XL Variant XL FXL | XL’ | XFL | XLF
e 2282 982 | 958 | 971 | 967
n=206qg=2
(SFLASqu) B 2280 9101 | 9I18 | 999 |g117
L|| 2% 285 I n/A | N/A | 222
n = 32, p|| 2! N/Aa | 270 | 203 | 276
g=2* (ure  |g 9151 997 | 9115 | 993 9145
challenge 2) [ 9115 257 | N/a | N/a 2112
Asymptotic  |L|| g Bm\@ 224 | N/A | N/a 230
for big n, ¢ B ( m ) 93:0n { 93.3n | 53.0n |9d.2n
Asymptotic in|L|| 208 27857 N/A | N/A |N/A
GF(2) N P P P R

We will discuss a little about the remaining variant (one that we cannot
quantify very well) before concluding.
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4.1 A Brief Discourse on XL2 (and XSL)

This was first proposed ([12]) as an addendum to XL over GF(2), to add useful
equations. The following formulation does not depend on ¢ = 2, however. Let
T’ count the monomials that when multiplied by a given variable will still be in
T =TP) Le. T' = |T}|, where 7T = {xP : 2;xP € T} for each i. Suppose I is
not as large as T — D, but C =T+ 1 —T > 0 (i.e. we have enough equations
to eliminate all monomials not in 7;'), then:

1. When doing elimination from the XL equations R = R(P), remove mono-
mials not in 77 first. We are then left with relations R, that gives each
monomial in 7 \ 7/ as a linear combination of those monomials in 77, plus
C' equations R with only monomials in 77.

2. Repeat for 7 to get equations Ry and R, (we expect that |R)| = C).

3. For each £ € R, use Ro to write every monomial in 7 \ 73 in the equation
21¢ = 0 in terms of those in 7;. Do the converse for each 3¢, £ € R),. We
get 2C new equations.

Imai et al commented ([36]) that XL can be considered a variation of the Fy4-
F; algorithms and that XL2/XSL variants can be explained in terms of the
Buchberger criteria ([36]). According to expert commentary ([1]), we should not
restrict XL to two variables, but should operate on all variables at once, which
resembles Grobner Bases methods, and is generally consistent with the comment
from [36]. We comment on these observations made in [42] about XL2 :

— Even when I — (T'—T") = C > 0, XL need not run because some of the I
independent equations may lack the monomials® in 7\ 7;.

— If ¢ > D, XL2 operates when T(P) — [(P) <« 7(P=1) _(R(P=1) _ [(D=1))

We only need to eliminate the top monomials to run XL2 on all variables.
That XL2 can run at least once is almost equivalent to XL on the homo-
geneous top-degree portion of the original equations terminating. For large
q, this is essentially identical to having one fewer variable or rather, the re-
quirement is that G5, (D) = [tP](1 — )™ " (1 4+ t)™ < 0.

— Running XL2 at degree D on all variables x; is equivalent to taking the
relations R(P*Y (i.e., the XL system created at degree D + 1) and eliminate
all the highest (degree-(D + 1)) monomials to come down to degree D.
Running XL2 to raise the degree by 1 does more work than FXL for large q.

Going up one dimension results in between 2x to 3x as many equations and
monomials with the dimensions we are working with. Doing XL2 with the
entire n variables result in nx as many equations at the top level (substitu-
tion with known equations still takes the same order of time). In general it
is only worthwhile if n*~! is less or equal to

3 Example ([42]): Assume large ¢, m = 11, n =7, and D = 3. We have 11x (7+1) = 88
equations in XL — all independent — and (7;;2) = 84 cubic monomials, but only 77
equations actually have cubic terms.
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n n g w—1 n — n _gyw—1 n n _oyw—1
(BRI ) (a0 = Rt

Note: We said nothing about going up 2 dimensions or more, but it start
to resemble to an algorithm for Grébner Bases; (cf. Sec. 4.2 below).

XSL is a modified XL construction when the equations are highly overdeter-
mined, very sparse, and can be grouped cleanly into S-Box’es that share very
few variables. Equation are multiplied only by monomials from other S-Boxes.
Count the monomials and equations thus generated as T' and I. XSL is harder to
analyze and less well quantified. We point out a possible pitfall below, because
XSL use thes “T” Method” as the last stage, which looks very much like XL2.

4.2 An Example Depicting the Pitfalls of Repeated XL2 Runs

Take any multivariate signature scheme with a 160-bit message or digest treated
as 20 bytes, i.e., ¢ = 256, m = n = 20. If memory is not a problem, using FXL
with f = 2 and an optimistic estimate for the Lanczos algorithm, we expect to
do 27 3DES blocks (289 CPU operations, cf. [40]) and 100GB of RAM. The
previous observations ([42]) means we cannot operate XL2 for f = 2. For f = 3,
we can start operating XL2 at D = 6. We will find 13017 equations in R’ that
came from elimination between the degree-6 equations. If we multiply these by all
variables, collate and eliminate again, we would have accomplished equivalent
work to taking the XL system of equations (with n = 17, m = 20, D = 7)
and eliminating all degree-7 and degree-6 monomials. Alas, there are insufficient
equations for this purpose, hence XL2 cannot repeat in the same memory space.

So let us start with D = 7 instead. Using GGE with w = 2.8, the initial-
ization takes about ~ 2°* multiplications at the top block. We have 31350
equations that started at degree 6 or lower, plus 54093 equations that resulted
from elimination on the degree-7 top block.

In running XL2, we must multiply a matrix of 54093 x 17 = 919581 rows and
245157 columns by a 245157 x 100947 to collate the equations, which takes about
2°6 multiplications with suitable blocking, then eliminate down from a system
of 919581 + 330600 = 1250181 equations in 100947 variables (of which 85443
can be eliminated first at lower cost), that takes about 257 multiplications or 2°°
3DES blocks. We can check that it is possible to eliminate down to degree D = 6
equations, for example because there are I®® — I(®) = 983535 extra independent
equations in going from degree 6 to 8, and only 980628 monomials of degree
7 and 8. The next XL2 step will take somewhat less than the above, and the
total amount of time taken will be around 2°% multiplications per guess, or 252
multiplications (27 3DES blocks) total. Other choices of f seem little better.

Comment: That XL2 can run once does not guarantee that it can repeat mul-
tiple times. This casts some doubt as to the applicability of the XSL attack.

4.3 Conclusion

Of the many XL variants, we have thus determined that FXL (XFL) is the best
overall performer for very large n and relatively small f = m — n. Some of our
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conclusions, such as those of Sec. 2.2, apply equally well to modernized Grobner
Bases Methods, because the two have very similar asymptotic characteristics.
Le., in F4-F5 over GF(2), we often really want to guess at a substantial propor-
tion of the bit-variables before starting to run the algorithms. Guessing helps
both memory and time requirements of the XL or Grobner Bases algorithm.
Much remains still to be done in order to understand the impact of algebraic
attacks on the security of very special systems such as derived from AES.
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