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Abstract. We use the tools from game theory to understand the im-
pacts of the inherent congestion pricing schemes in TCP Vegas as well
as the problems of parameter setting of TCP Vegas on its performance.
It is shown how these inherent pricing schemes result in a rate control
equilibrium state that is a Nash equilibrium which is also a global opti-
mum of the all-Vegas networks. On the other hand, if the TCP Vegas’
users are assumed to be selfish in terms of setting their desired number of
backlogged packets in the buffers along their paths, then the network as
a whole, in certain circumstances, would operate very inefficiently. This
poses a serious threat to the possible deployment of Vegas-based TCP
(such as FAST TCP) in the future Internet.

1 Introduction

The Internet has been a huge success since its creation in the early 70’s. It has a
big impact on the way we interact and communicate. As the Internet evolves, it
is shared, used by millions of end-points and many kinds of applications. They
compete with each other for the shared resources and their demand for resources
(such as bandwidth) is growing rapidly. As a result, congestion at certain points
of the network is inevitable. The TCP protocol suite was originally designed to
control congestion in the Internet and to protect it from congestion collapse.
Basically, TCP is a closed loop control scheme. Congestion in the network is fed
back to the source in the form of losses (Reno-like versions) or delay (such as
TCP Vegas) The source then reacts to the congestion signal from the network
by reducing its transmitting rate. In other words, we can consider packet loss
and high queueing delay as the cost of (aggressively) sending packets into the
network. The higher the rate, the higher the cost (certainly, the relationship
is not necessarily linear in nature), given a fix network. Furthermore, as the
Internet has been gradually transforming from a government sponsored project
to a private enterprise (or even a commodity), the economics of the Internet
becomes more and more important issue. Consequently, Internet connectivity
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and services will have to confront issues of pricing and cost recovery. In this
perspective, the cost of congestion can be in monetary form. Introducing cost
of congestion into the network creates balance, stability and high utilization of
resource usage.

From what has been discussed so far, the cost of congestion, in our case, can
be either price or delay (the application is delay-sensitive). It is suggested in [13]
that congestion pricing could be implemented by using ”smart market” where
price for sending a packet varies on a very short time scale. Specifically, for the
TCP implementation, the congestion price is updated every round-trip time.

A natural question arises then: Why TCP Vegas? There is a number of rea-
sons that motivate us to re-examine TCP Vegas. Firstly, it is because TCP
Vegas has inherent pricing schemes in its design that resemble the congestion
pricing schemes proposed in the literature. We believe that by better under-
standing TCP Vegas’ inherent pricing schemes, we will have a better insight
into understanding and designing pricing schemes for TCP traffic in general.
Secondly, the emergence of very large bandwidth-delay product networks such
as the transatlantic link with a capacity in the range of 1 Gbps - 10 Gbps, new
transport protocols have been proposed to better utilize the network in these
circumstances. One promising proposal is the FAST TCP [18]. Since the design
of FAST TCP is heavily based on the design of TCP Vegas, there is a need to
reconsider the benefits as well as the drawbacks of TCP Vegas in order to have
an insight into the performance and possible deployment of FAST TCP in the
future Internet.

Given the pricing schemes (parameter setting), another natural question
arises then: Are these schemes efficient? Is there any equilibrium state from
where no one has the incentive to deviate? Game theory (see [4] for a compre-
hensive introduction) provides us the tools to answer these questions as we will
illustrate later in the paper. We use these game-theoretic tools to investigate the
impact of the pricing schemes and parameter setting in TCP on the performance
of each user as well as the network as a whole.

Regarding the related work, we would like to divide it into two classes. The
first class mainly deals with game-theoretic analysis of flow control mechanisms
in the Internet. Scott Schenker in his pioneering paper [2] used game-theoretic
approach to analyze the flow control mechanisms (for Poisson arrivals) with
different queueing disciplines at the routers. Korilis et al in [3] also used game-
theoretic approach to study the existence of equilibria in noncooperative optimal
flow control, especially those with QoS constraints. Recently, Akella et al in [1]
also used the tools from game-theory to examine the behavior of TCP Reno-like
(loss-based) flow controls under selfish parameter setting. Our work is different
from their work in the sense that we study delay-based versions of TCP. We
provide an extensive analysis of the parameter setting problem of the traditional
TCP Vegas, the modified version of TCP Vegas (TCP Vegas under REM) as
well as FAST TCP. The second class deals with the mechanisms and issues of
congestion pricing in the Internet. We would mention here the work of MacKie-
Mason et al [13], [14]. These papers apply economic theory (”club theory”) to



study basic issues of congestion pricing in the Internet. Incentive-compatible
pricing strategies in noncooperative networks are introduced and analyzed in
[8]. A survey on Internet pricing and charging in general can be found in [6].
These papers deal with the general pricing problems. Our paper, on the other
hand, deals specifically, from game-theoretic point of view, with TCP Vegas and
its variants.

The main contributions of the paper are the followings. First, we prove that,
under the inherent congestion pricing schemes in TCP Vegas, there exists a
unique Nash equilibrium of the rates of the TCP Vegas flows sharing a common
network and this equilibrium rate vector is also system-wide optimal. Secondly,
we provide an extensive game-theoretic analysis of the parameter setting problem
in TCP Vegas. We conclude that, in this case, the Nash equilibria (if any), can
be very inefficient. This implies that all-Vegas networks are vulnerable to selfish
action of end-users posing a serious threat to the possible deployment of all-Vegas
based (such as FAST TCP) in the future Internet.

The rest of the paper is organized as follows. The background on TCP is
provided in Section 2. The TCP Vegas games are described and analyzed in
detail in Section 3. Finally, Section 4 concludes the paper.

2 Background

2.1 TCP Vegas

TCP Vegas was first introduced by Brakmo et al in [16]. Basically, it is a delay-
based congestion control scheme that uses both queueing delay and packet loss
as congestion signal. TCP Vegas tries to control the number of packets buffered
along the path with the targeted number to be between α and β (α ≤ β). Let
w(t) denote the congestion window at time t, RTT denote the round-trip time
and baseRTT is the smallest value of the round-trip time so far (actually, this is
an estimate of the propagation delay). Denote diff = RTT−baseRTT

RTT w, then the
dynamics of the congestion window of TCP Vegas can be expressed as follows:

w(t + 1) =





w(t) + 1 if diff < α,

w(t)− 1 if diff > β,

w(t) otherwise.
(1)

In a TCP Vegas/REM network [15], a slight modification is introduced into
the updating mechanism of the congestion window. Each link l (with capacity
cl) update the link price pl(t) in period t based on the aggregate input rate xl(t)
and the buffer occupancy bl(t) as follows:

pl(t + 1) = [pl(t) + γ(µlbl(t) + xl(t)− cl)]+ (2)

where 0 < γ and 0 < µl < 1 are scaling factors of REM. Each source will
estimate the total price along its path and update its sending rate accordingly.
To feed back the prices to sources, link l marks each arriving packet in period



t, that is not already marked at an upcoming stream, with probability ml(t)
defined as:

ml(t) = 1− ϕ−pl(t)

where ϕ > 0 is a constant. Once a packet is marked, its mark is carried to
the destination and then conveyed back to the source via acknowledgement, like
ECN scheme. The source i estimates the end-to-end marking probability by the
fraction m̂i(t) of its packets marked in period t, and estimates the path price
pi(t) by:

p̂i(t) = − logϕ(1− m̂i(t))

The dynamics of the congestion window of TCP Vegas/REM can be expressed
as follows:

wi(t + 1) =





wi(t) + 1 if − wi(t)
RTTi(t)

< α
p̂i(t)

,

wi(t)− 1 if − wi(t)
RTTi(t)

> α
p̂i(t)

,

wi(t) otherwise.

(3)

2.2 Throughput models of TCP Vegas

Throughout the paper our game-theoretic analysis uses the models that are
previously derived. These are:

Model 1: (Thomas Bonald’s model)
In [17], the throughput of multiple flows sharing a bottleneck link is analyzed (by
using fluid approximation) both for TCP Reno and TCP Vegas case. Assume N
TCP flows sharing a bottleneck link with capacity µ, propagation delay τ and
buffer size B. The parameters of TCP are: α and β. The main results in their
paper that we use in our analysis are the following:

– If Nα < B, there exists a finite time from which no loss occurs. In addition,
the window size stabilizes in finite time. If α 6= β, the congestion windows
converge not to a single point (but a region). This implies unfairness among
flows even in equilibrium. If α = β, then w1 = w2 = ... = wN = µτ

N + α and
the average rate λ1 = λ2 = ... = λN = µ

N . Note that in this case the link is
fully utilized.

– If Nα ≥ B, then TCP Vegas behaves exactly like TCP Reno. Let ω = µτ
B

and γ is the multiplicative decrease of TCP Reno (typically 1
2 ). If ω ≥ γ

1−γ

then λtotal = (1−γ2)(ω+1)2

2(1−γ)(ω2+ω)+1µ < µ. This implies that in this case the link is
not fully utilized.

Model 2: (Steven Low’s model)
Steven Low et al in [10], [11], [12], [15] described an optimization framework
to study the performance of the TCP Vegas in a general network topology and
under different queue management schemes at the routers. We would mention the
result regarding the throughput of TCP Vegas under REM queue management
scheme (TCP Vegas/REM) that we will use in our analysis later in this paper.
It is proved in [11] that the equilibrium rate of TCP Vegas can be calculated as:
λi = αi

p∗ , where p∗ denotes the equilibrium price. Note that this result is true for
a general network topology (not restricted to a single bottleneck link).



3 The TCP Vegas games

In this Section, the games regarding the inherent pricing schemes (for rate al-
location) and parameter setting of TCP Vegas are described and analyzed in
detail. We also investigate the impact of the results on the performance of TCP
Vegas and on the network as a whole.

3.1 Game 1: Rate allocation of TCP Vegas

We consider a network that consists of a set L = {1, 2, ..., L} of links with
capacity cl, l ∈ L. Assume that the network is shared by a set of flows (sources).
The set of flows is denoted by N = {1, 2, ..., N}. The rate of flow i is denoted by
xi, i ∈ N . Flow i uses a subset (Li) of L in its path (Li ⊆ L). Let us define the
routing matrix as follows:

Rli =

{
1 if l ∈ Li,

0 otherwise.

The physical capacity constraints of the flows therefore can be defined as :

Rx ≤ c (4)

where x = (x1, x2, ..., xN ) is the flow rate vector and c = (c1, c2, ..., cL) is the
link capacity vector. In addition, flow rates cannot be negative:

xi ≥ 0, i = 1, 2, ..., N (5)

The set of flow rate vectors Λ that satisfy both conditions 4 and 5 is called a
feasible set.
It should be mentioned that our network, as TCP network in general, assumes
feedback-based flow control. The feedback can be implicit (e.g. queueing delay)
or explicit (by pricing and/or using Explicit Congestion Notification (ECN)).
The sources (end-points) use Vegas-style flow control, as defined in [16], [11]. We
consider the flows as the players of the game. The strategy space for a player is
the range of it sending rate.
Let us define the following generic payoff function for each player

Bi(xi) = αi log(xi)−
∑

l∈Li

∫ xi

0

πl(y)dy (6)

and πl = pl(
∑

l∈Lk
xk) is defined as the function of the total flow rates on link

l. This function is actually the price that is fed back to the player i sending
at rate xi, which is an increasing function. The higher the rate, the higher the
price. Hence, the second term in Equation 6 can be interpreted as the band-
width cost fed back to player i when it attempts to transmit at rate xi. The first
term in Equation 6 reflects the gain of player i when transmitting at rate xi,
[12] (note that this is a concave function of xi). As a result, the payoff Bi(xi)



represents the net benefit of player i when transmitting at rate xi. The price
(cost) can be communicated to the end-user (the player) by the mean of the
total queueing delay of its packets in the path, as in TCP Vegas/Drop-Tail net-
work. The price can also be communicated explicitly to the user by using REM
active queue management scheme (with ECN) and here we have a Vegas/REM
network. In the first case, we would like to mention that we implicitly use the
PASTA property for Poisson arrivals with FIFO scheduling principle to derive
the proportional relationship between the total rate arrive at the link and the
queuing delay. We can also suggest here the Little’s formula for this relation-
ship. This is assumed frequently in the literature with or without any mention.
In any case, if the aggregate arrival flow is not Poisson (e.g. self-similar traffic),
then queue length (queueing delay) is generally larger than the Poisson one.
Furthermore, the expression of queueing delay in our model is assumed to be
additive among links. This is true for a Norton network with Poisson arrivals.
So, strictly speaking, our analysis can be considered as a worst case analysis
for TCP Vegas/Drop-Tail network. For TCP Vegas/REM network, the additive
assumption is justified when the mark rates are small. Indeed, let πl(t) be the
marking probability at link l at time t and the end-to-end marking probability
qi(t) that the end-point i observes (and to which source algorithm reacts). For
small πl(t), qi(t) = 1−∏

l∈Li
(1− πl(t)) ≈

∑
l∈Li

πl(t).
Under the assumptions mentioned above, our problem can be modelled as a

non-cooperative game. The strategy space for a player is its sending rate and is
determined by the capacity of the links. The strategy for player i can be defined
as S(i) = {xi|0 < xi ≤ ci

max}, where ci
max = max{cl|l ∈ Li}. The strategy

space for the game is defined as the Cartesian product S =
⊗N

i=1 S(i), which
is equivalent to the feasible set Λ. Strategy x = (x1, x2, ..., xN ) ∈ Λ is called a
strategy profile. Each player (e.g. player i) chooses the sending rate (xi) in the
feasible set in order to maximize its own payoff function Bi(xi) in a selfish way.
By ”in a selfish way” we mean that the player does not care about other players’
payoff, as far as the rate vector is in the feasible set.

One of the key questions in a non-cooperative flow control game in general,
and our game in particular, is whether the network converges to (or settles at)
an equilibrium point, such that no player can increase its payoff by adjusting
its strategy unilaterally. In the game-theory terminology such a point is called
a Nash equilibrium. The Nash equilibrium in our game also reflects the balance
of the gain and the cost for each player as well as for the network as a whole. A
non-cooperative game may have no Nash equilibrium (in its pure strategy space),
multiple equilibria, or a unique equilibrium. As for the TCP Vegas game, we can
prove the following theorem:

Theorem 1. There exists a unique Nash equilibrium (in its pure strategy space)
for the TCP Vegas game described above.

We follow the proof methodologies provided in [5] as well as in a recent paper [9].

Proof. First, let’s consider the existence of the Nash equilibrium for the TCP
Vegas game. Notice that the feasible set Λ = {x|Rx ≤ c,x ≥ 0} is a nonempty,



convex and compact set. It is nonempty because x = (ε, ε, ..., ε) ∈ Λ, where
0 < ε < cmin

N , cmin = min{cl|l ∈ L}. It is bounded because xi ≤ cmax, i ∈ N ,
where cmax = max{cl|l ∈ L}. Assume that x1,x2 ∈ Λ and 0 < ρ < 1, we have:

ρx1 + (1− ρ)x2 ≤ R(ρx1 + (1− ρ)x2) ≤ c

This result implies the convexity of Λ.
Now let’s consider the payoff functions of the players. Notice that Bi(xi) is

a concave function of xi. Indeed:

B”
i (xi) = −αi

x2
i

−
∑

l∈Li

π
′
l < 0 (7)

From what have been discussed so far, our game has the following properties:

1. The joint strategy space is nonempty, convex and compact.
2. The payoff function of each player is concave in its own strategy space.

According to Theorem 1 in [5], there exists a Nash equilibrium in its pure strategy
space.

For the uniqueness of the Nash equilibrium, let’s consider the (nonnegative)
weighted sum of the payoff functions:

σ(x,w) =
N∑

i=1

wiBi(x), wi ≥ 0 (8)

Denote g(x,w) the pseudo-gradient of σ(x,w), then the Jacobian of g(x,w)
with respect to x can be computed as follows:

G =




B11 B12 . . . B1N

B21 B22 . . . B2N

...
. . . . . .

...
BN1 BN2 . . . BNN




where

Bij =





wi(−αi

x2
i
−∑

l∈Li
π
′
l) < 0 j = i

−wi

∑
l∈L(i,j)

∂πl

∂xj
< 0 j 6= i,L(i,j) 6= ∅

0 j 6= i,L(i,j) ≡ ∅.
where L(i,j) = Li

⋂Lj . The matrix G defined above is thus negative definite. As
a result, according to Theorem 6 in [5], σ(x,w) is diagonally strictly concave.
According to Theorem 2 in [5], the equilibrium point of the TCP Vegas game is
unique.

Remark 1. To reach this equilibrium, [5] shows that each player can change
its own strategy at a rate proportional to the gradient of its payoff function
with respect to its strategy and subject to constraints. This method is in fact
equivalent to the gradient projection algorithms described in [10].



Remark 2. The authors of [10], using optimization framework, also showed that,
under certain assumptions on the step size, these algorithms converge to a sys-
tem wide optimal point (which is also proved to be unique). Furthermore, it is
proved in [11], [12] that the rate control of TCP Vegas/Drop Tail and TCP Ve-
gas/REM is indeed based on these algorithms. This implies that the TCP Vegas
game described above converges to a unique Nash equilibrium that is system wide
optimal.

3.2 Game 2: Parameter Setting of TCP Vegas

In this game, we consider the parameter setting of TCP Vegas. As described
in [16], TCP Vegas tries to maintain the number of backlogged packets in the
network between α and β. We examine here the situation when a selfish (and
greedy) user tries to increase the number of its backlogged packets in the network
in order to grab more bandwidth in the network. If all other players do the same
thing (i.e. they are also selfish and greedy), the total number of packets in
the network would increase without bound. However, the size of the buffers at
routers are bounded and packet loss would occur, reducing the throughput of
the connection. We are interested in a situation (i.e. a parameter setting, if at
all exists) from where no player would deviate.

We consider a simple topology of N TCP Vegas sources sharing a single
bottleneck link with a buffer size of B packets. Source i is associated with a
set (αi, βi). In this paper, we deal with the case when αi = βi. The case when
αi 6= βi is left for future work.

Players: N TCP Vegas flows
Actions: Each player can set its parameter (αi) in order to control the

number of its backlogged packets in the queue of the bottleneck link (with
capacity µ and delay τ). The router is assumed to use Drop-Tail mechanism
(FIFO principle)

Payoff: f(αi) = λi (the average throughput)

If the total number of backlogged packets is smaller than the buffer size at the
bottleneck router (i.e.

∑N
j=1 αj < B) then the payoff function of player i can be

expressed as follows:

f(αi) = λi =
αiPN

j=1 αj

µ

=
µαi∑N
j=1 αj

=
µαi

αi +
∑

j 6=i αj
(9)

From Equation 9 we have:

∂f

∂αi
=

µ
∑

j 6=i αj

(αi +
∑

j 6=i αj)2
> 0, i = 1 . . . N (10)

Since
∑

j 6=i αj is always positive, it follows from Equation 9 that ∂f
∂αi

> 0, ∀i.
This implies that given other players’ strategies, player i will set αi as high as
possible in order to maximize its payoff. Notice that Equation 9 is valid only



if
∑N

j=1 αj < B. Otherwise, TCP Vegas, according to [17], behaves exactly like
TCP Reno. In this case, there are two possibilities [17]:

λReno
i =

{
(1−γ2)(ω+1)2

2(1−γ)(ω2+ω)+1
µ
N < µ

N if ω ≥ γ
1−γ

µ
N otherwise.

(11)

Thus, we have two cases:
Case 1: w < γ

1−γ
It is important to note that in this case, the link is fully utilized both for TCP
Vegas and TCP Reno. Furthermore, in TCP Reno style performance, the band-
width is fairly (equally) shared between flows (because they have the same RTT).
Denote α∗ = (α∗1, α

∗
2, ..., α

∗
N ) be the Nash equilibrium of the game in this case.

Without losing generality, we can assume that α∗1 ≤ α∗2 ≤ . . . ≤ α∗N . Notice that
in Nash equilibrium, we must have α∗1 = α∗2 = ... = α∗N . Otherwise, player 1 has
the incentive to deviate (i.e. to increase its number of backlogged packets - α1)
in order to get higher throughput, because in Reno style performance, it would
get a fairer share of the total bandwidth (i.e. µ

N ). As a result, we have the Nash
equilibria for this game: α∗ = (α∗1, .., α

∗
N ) where α∗i ≥ bB

N c, ∀i. This means
that, in this case, in Nash equilibrium, the parameter α can be arbitrarily large.
Case 2: w ≥ γ

1−γ
In this case, the link is not fully utilized. Following similar reasoning as in Case
1, we have a set of Nash equilibria defined as follows: Ω = {α = (α1, ..αN )|α1 ≤
α2 ≤ .. ≤ αN} with the conditions that

∑N
i=1 αi = B−1 and α1 ≥ (1−γ2)(ω+1)2

2(1−γ)(ω2+ω)+1
B−1

N .
The latter expression simply means that even player 1 (who gets the smallest
bandwidth) would not deviate, so no other player would deviate. If this condition
does not hold, player 1 would deviate to get higher bandwidth share.

Our final comment on this unique Nash equilibrium is that each TCP Vegas
flow (player) maintains the number of its own backlogged packets as many as
possible. As a result, the buffer is nearly full and the queueing delay is unnec-
essarily high. A nearly full buffer may cause many difficulties for TCP Vegas
(e.g. the estimation of baseRTT might be inaccurate if there are already many
packets in the queue when the connection starts)

4 Conclusion

We have demonstrated, by using game-theoretic approach, how TCP Vegas’
inherent pricing schemes as well as the parameter setting impact on its perfor-
mance. Our analysis shows that these inherent pricing schemes result in a rate
control equilibrium state that is a Nash equilibrium in game-theoretic terms
which is also a global optimum of the all-Vegas networks. We also proved that
the parameter setting of TCP Vegas is very vulnerable to selfish actions of the
users. This poses a serious threat to the possible deployment of FAST TCP in
the future Internet.
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