Learning Stochastic Finite Automata*

Colin de la Higuera! and Jose Oncina?

L EURISE, Université de Saint-Etienne, 23 rue du Docteur Paul Michelon,
42023 Saint-Etienne, France
cdlh@univ-st-etienne.fr,

2 Departamento de Lenguajes y Sistemas Informaticos,
Universidad de Alicante, Alicante, Spain
oncina@dlsi.ua.es

Abstract. Stochastic deterministic finite automata have been intro-
duced and are used in a variety of settings. We report here a number of
results concerning the learnability of these finite state machines. In the
setting of identification in the limit with probability one, we prove that
stochastic deterministic finite automata cannot be identified from only
a polynomial quantity of data. If concerned with approximation results,
they become PAcC-learnable if the Lo, norm is used. We also investigate
queries that are sufficient for the class to be learnable.

1 Introduction

Probabilistic finite state automata [Paz71] have been introduced to describe dis-
tributions over strings. They have been successfully used in several fields, includ-
ing pattern recognition [LVAT94], computational biology [LPN99] or linguistics
[Moh97].

Learning stochastic finite state automata has been an important issue in
grammatical inference [KMR 94|, with several algorithms already developed and
used [CO94b,RST95].Even though the subject has received increasing attention
over the past years a systematic study of the different paradigms of learning in
this context, with the land stone results, was still missing. It is the ambition of
this paper to contribute to this issue.

In section 2 we give the main notations used in this paper: These concern
stochastic finite automata and distances. We then visit the different learning
paradigms. A first result (section 3) concerns identification in the limit with
probability one: We argue that if the definition only requires that the algorithm
runs in polynomial update time then even a simple enumerative algorithm is suf-
ficient. On the other hand, if we want identification to be achieved in polynomial
time, this is impossible due to the fact that probabilities need to be encoded in
some binary scheme.

* This work was supported in part by the IST Programme of the European Commu-
nity, under the PAscAL Network of Excellence, IST-2002-506778. This publication
only reflects the authors’ views.

We then explore the approximation setting (section 4) and recall that if the
distance is computed following the L., norm, then even a simple algorithm that
just returns the learning sample is going to PAc-learn automata or any other
recursively enumerable family of distributions. Another sort of results (section
5) concerns learning deterministic stochastic finite automata with queries: We
introduce various new types of queries and examine learning results with these
queries. We conclude in section 6.

2 Notations and definitions

Let X be a finite alphabet and X* the (infinite) set of all strings that can be
built from Y. A will denote the empty string.

A language is a subset of X*. By convention, symbols from X will be denoted
by letters from the beginning of the alphabet (a,b,c,...) and strings from X*
will be denoted by the end of alphabet letters (...,z,y, z). The size of a string
x € X* is written |z|. Given a string x, Pref(z) = {u : uv = 2} and Suf(z) =
{v: uwv = x}. Pref and Suf are extended to sets as Pref(X) = U, x Pref(z) and
Suf(X) = Ugex Suf(x).

Let = denote an equivalence relation on a set X, then by [x] we are going to
denote the class of equivalence of the element x, that is [z] = {y € X : y = z}.
A stochastic language L is a probability distribution over X*. The probability of
a string € X under the distribution L is denoted as pr (). If the distribution
is modelled by some syntactic machine A, the probability of x according to the
probability distribution defined by A is denoted p4(x).

We denote by log the base 2 logarithm.

From formal language theory [Har78] we introduce deterministic finite au-
tomata (DFA):

Definition 1. A Deterministic Finite Automaton (DFA) A is a tuple (Q, X, 9,
qo, F), where: Q is a finite set of states; qo is the initial state; X is the alphabet;
6:Q x X — @Q is a transition function; F' C Q is the set of final states.

We extend in the usual way [Har78] the transition function to a function
6:Qx 1" —Q:6(q,A) =q,0(¢,aw) = 6(6(q, a), w).
We now adapt this definition to the stochastic setting:

Definition 2. A Stochastic Deterministic Finite Automaton (SDFA) A is a tu-
ple (Q,qo, X, 6,), where Q, X, §,qo are as in DFA and 7 is a function with two
profiles: m: Q x X — Q7 (transition probabilities) and 7 : Q — QT (final-state
probabilities).

Function 7 is recursively extended to 7 : Q x £* — QT such that 7(g, \) = 1
and 7(q, ax) = 7(q,a)m(0(q, a),x).

The probability of a string z starting from the state ¢ is defined as p(q,) =
(g, z)w(6(q,x)). The probability of a string z is p(z) = p(qo, z). Let X be a set
of strings, p(X) = > c x p(7).

We are going to say that a probability distribution L is a Stochastic Deter-
ministic Regular Language (SDRL) if it is produced by a SDFA.

As the stochastic languages define probability distributions over X*, it is
required that 0 < p(z) < 1V and p(X*) =1 (consistence condition).

Usually > .»7(q,a) +7(q) = 1,Yg € Q is also required. This condition
is not strictly necessary, as the SDFA ({qo, 41}, q0,{a},{0(q0,a) = q1,0(q1,a) =
q},{m(qo,a) = 27, 7(q1,a) = 0.5/27,7(q0) = 0.5, 7(q1) = 0}) is consistent and
does not fulfil the condition. In theorem 5 we describe a method to transform a
SDFA that does not fulfil the condition into one that does.

For combinatorial purposes such as needing to compute the complexity of
an algorithm, the size of a SDFA must be polynomially linked with the number
of bits needed to encode it in a reasonable way. This only makes sense if the
probabilities themselves can be encoded; Therefore rational probabilities will be
used. In the case of SDFA the number n of states, the size |X| of the alphabet
and the number of bits needed to encode the probabilities are needed. We denote
by ||A|| the size of a SDFA A.

When concerned with measuring how close one distribution can be from an-
other, or from a sample, it will be of interest to compare these through distances:

0,(D,D') = ¢ S Ipo(w) — por(w)"

weX*
dso (D, D') = max |pp(w) — ppr(w)|

This last distance allows favourable convergence bounds, through the use of
the following lemma due to Angluin [Ang88]:

Lemma 1. Let D be any distribution on X*, leta > 1 and let I(n) = 4/ %ﬁ;").
Then,

a

— with probability at least 1 — n™?,
— with probability 1 and for all but a finite number of values of n,

doe (D, D(n)) < I(n)

where D(n) is the empirical distribution built from a sample of size n.

3 About polynomial identification in the limit with
probability one

Even if grammatical inference is usually considered to be dealing with learn-
ing languages, it is clearer to define things in terms of learning grammars or
automata. In this paper, we are concerned with automata, and therefore all
definitions shall be given in this setting.

We consider a class of languages £ and a class R of representations for
these languages. We are going to denote by r& (L) (and simplify to (L) in non

ambiguous contexts) the smallest representation in R of a language L and by
lr=(L)|| its size. L(r) denotes the language represented by the description r.

In order to learn we are going to suppose that the data to identify a stochastic
language is obtained following the probability distribution and that successive
draws are independent. The probability of a sequence of draws is the product of
the probabilities of each draw.

Definition 3 (Identification in the limit with probability 1). A class of
stochastic languages L is learnable! with probability 1 in terms of a representation
class R if there exists an algorithm ¢(-) that given any language L in L, for any
increasing sequence (s,) drawn according to L, ¢(s) returns some representation
r. Moreover, with probability 1, for all but a finite number of values of n, ¢(s)
returns v such that L(r) = L.

The previous definition has led to the implicit definition of polynomial iden-
tification that has been mainly used in the literature [CO94b]. It basically states
that identification has to be obtained by using an algorithm that has polyno-
mial runtime. This does not mean that a polynomial number of examples may
be sufficient, as discussed in [dIHO03]. We will refer to this definition as weak
polynomial identification:

Definition 4 (Weak polynomial identification in the limit with proba-
bility 1). A class of stochastic languages L is weak polynomially learnable with
probability 1 in terms of a representation class R if there is an algorithm ¢(-) and
a polynomial p for which for any language L in L, and any increasing sequence
(s$n) of strings drawn according to L:

1. ¢(+) identifies L in the limit with probability 1;
2. ¢(-) works in time in p(||{sn)])-

Under this criterion it has been established that algorithm ALERGIA [CO94b]
could learn SDFA, but also that stochastic deterministic linear grammars [dIHO03]
could be identified.

Nevertheless this definition has a serious flaw:

Theorem 1. Let L be a class of recursivelly enumerable languages that admits a
representation class R for which distance do, is computable. L when represented
by R can be weakly polynomially learned with probability 1.

Proof. We follow in this proof arguments from [Pit89] and [Ang88] and use
a simple enumerative algorithm that would find the first language consistent
(in the sense of lemma 1) in the enumeration identifies in the limit. To make
the algorithm fit with the complexity constraints, we just make the algorithm
compute the time it is entitled to from the current examples. The algorithm then
computes as far as it can go with that time and returns whatever solution it has
reached at that point. There is a point where the algorithm will converge. a

1 We will write learnable for identifiable in the limit.

Corollary 1. SDRL when represented by SDFA can be weakly polynomially iden-
tified in the limit with probability 1.

An alternative definition which would bound the overall time is as follows:

Definition 5 (Strong polynomial identification in the limit with prob-
ability 1). A class of stochastic languages L 1is strongly polynomially learnable
with probability 1 in terms of a representation class R if there is an algorithm
¢(+) and two polynomials p and q for which for any language L in L and any
0 > 0, and any increasing sequence (s,) of strings drawn according to L:

1. ¢(+) identifies L in the limit with probability 1;

2. ¢(-) works in time in p(||[(sn)|, %) ;

3. Ifn>q(||r(L)|], §), ¢(-) computes with probability at least 1 —§ a represen-
tation h such that L(h) = L.

The above definition takes into account three aspects: As before, the al-
gorithm is required to identify in the limit and to work in polynomial time;
Furthermore, with high probability, identification is expected from a polynomial
number of examples only.

Because probabilities can be encoded in very different ways it may seem
that results will depend on the way they are encoded. Nevertheless a reason-
able encoding of the probabilities means that the size of the encodings will be
logarithmic in the number of different probabilities that need encoding.

We prove here that even in the case where we have only to choose one prob-
ability out of n, identification requires a number of strings that is too high. To
do so we do not make any assumption on the way the learning algorithm is to
use the information it receives. To do so we consider n languages Li, Lo, .., Ly,
such that they just have 2 strings that are different, x and y: namely py, (x) = p;
and pr, (y) = 1 — p;. We have also Vi, j < n,p; # p;.

Proposition 1. Let £ be a class of languages that contains {L1, Lo, .., L,} as
above, let R be any representation class for L, let ¢(-) be any learning algorithm
for the class L in terms of the representation class R and m be an integer. Then

there is an L; in L such that for any sequence s of size at most m, pr,(p(s) =
Lz) < (m+12)(m+2).
- n

Proof. Let us suppose (for contradiction) that there exists such an algorithm
o).

Consider the sets S; of all possible sequences of length m over strings {z, y}.
With each sequence s we associate value v(s) = |s|,, the number of times string
x appears in the sequence. The set of sequences of S; with value v(s) = i will
be denoted S;

Lemma 2. Let m > 0, there is a language L in L such that for each j : 0 <

j<mandeachi:0<i<j

|{SES§:¢(S)=L}| _ {s:d(s) =L A|s|=7Av(s) =i} < (m+1)(m+2)
1551 {s:[s| =JjAv(s) =i} B 2n

As the sequences s of each S; have all the same probability, using lemma 2

for such a language L the sum of all probabilities of sequences drawn according
(m+1)(m+2) O

to L is less than 5
n

Proof (of lemma 2). Suppose this is not true. Then for each of the n languages

L in L there are i,j : 0 < i < j < m with more than w sequences
for which ¢(s) = L. But such associations can only be produced less than
w -n times. Hence this cannot be true for each language L. ad

If now we restrict ourselves to reasonable representations we have:

Corollary 2. Let L be a class of languages that contains {L1, La, .., L,} as
above, let R be any representation class for L such that ||r(L;)|] < p(logn)
for some polynomial p(-), let ¢(-) be any learning algorithm for the class L in
terms of the representation class R and let q(-) be a polynomial. Then there is
an L; and a constant k such that for any sequence of size at most q(||r(L;)l]),

pr.(6(s) = L;) < s,

Proof. As ||r(L;)|| < p(logn) and ¢(-) is a polynomial it is enough to show the
existence of L; for all sequences of length at most m < log” n for any fixed k. O

As this applies to regular languages when represented by SDFA as a corollary we
have:

Theorem 2. The class of SDRL is not strongly polynomially learnable with
probability 1 by means of SDFA.

4 Polynomial approximation of languages

To be able to identify both the structure and the individual probabilities have
to be exactly identified. This may legitimately prove to be a too hard task.
An alternative is then to adapt Valiant’s PAcC-learning model [Val84] to the
stochastic setting. We base ourselves here on the definitions from [RST95]:

Definition 6 (e-good hypothesis). Let A be the target SDFA and B be a
hypothesis SDFA. We say that B is an e-good hypothesis with respect to A for
e>0ifd(L(A),L(B)) <e.

A learning algorithm is now asked to learn a grammar given a confidence
parameter ¢ and an approximation parameter €. The algorithm can also be given
an upper bound on the size of the target grammar and has access to a learning
sample.

Definition 7 (Polynomial Pac-learnable). A class of stochastic languages
L is polynomially PAc-learnable in terms of a representation class R (using
distance d) if there exists an algorithm ¢(-) and a polynomial p() such that for
any language L in L if ¢ is given a learning sample s of size p(||r(L)||) it returns
a representation r such that L(r) is an e-good hypothesis with respect to L with
probability at least 1-6 in time polynomial in *, %, |X|, ||r(L)| and the length of
the longest example in s.

This definition depends strongly on the distance measure that is chosen:

Proposition 2. SDRL when represented by SDFA is polynomially PAC-learnable
using distance deo.

Proof. This is a consequence of lemma 1. Let us consider a simple algorithm
that we will call RETURNPTA which given a learning sample constructs a SDFA
that represents exactly the empirical distribution given by the sample. Obvi-
ously RETURNPTA is no good at identifying SDFA. Nevertheless RETURNPTA
will polynomially PAC-learn SDFA as with high probability the distance accord-
ing to norm L., between the empirical distribution and the target distribution
converges very fast. ad

On the other hand, it can easily be shown that the above result is no longer
true when the distance is taken according to another norm. For instance for the
norms L; and Lo, a language which shares the mass of probabilities in a uniform
way over an exponential number of strings will not be closely approximated by
the empirical distribution drawn from only a polynomial number of strings.

5 Polynomial learning with queries

Queries have been used in order to provide an alternative learning setting, a
more favourable one, but also one that can be better controlled. Typical queries
include equivalence and membership queries [Ang87] and extended membership
queries [BV96]. An extended membership query is built from a string z. The
oracle has to return the probability of . An equivalence query is built from a
represetation r. The oracle has to return “yes” if L(r) is the target language or a
counterexample if not. Angluin [Ang87] gives the following definition of learning
with queries:

Definition 8. A class of grammars is learnable with queries of type T if

1. It works in polynomial update time (in the size of the target and of the longest
counter-example);
2. The number of queries always is polynomial (in the size of the target).

5.1 Extended membership queries

It is easy to show that SDRL (represented by SDFA) are learnable from extended
membership queries only if regular languages (represented by DFA) are learnable
from membership queries, which is known not to be the case [Ang81].

Theorem 3. The class of SDRL when represented by SDFA is not learnable from
extended membership queries only.

Proof. If not DFA would be identifiable from membership queries. We construct
from a completed DFA A = (Q,X,0,q0,F) a SDFA B = (Q', X',d',q), ™) as
follows:

- Q' =QU{qy}k X' =2U{+ -} ¢ =q;

- VgeQ, (q,+) =gy, 8'(q,—) = qr; Vg € Q,Va € X, §'(q,a) = 6(q, a);

- VgeQ,Vae X, m(q) =0,7(qr) =1,7(q,a) = ﬁ,ﬂ(qf,a) =0

~Vg€Q.qeF=rn(q+)=13.7(¢,~)=0g¢ F=n(g,+)=0,7(q,~) = 3
The above construction is made from a completed DFA, i.e. a DFA to which
eventually an extra non final state has been added and is reached by all ab-
sent transitions. This ensures that through the construction we have w € L4 &
pp(w+) = M and w € Lg < pp(w—) = M An extended mem-
bership query therefore gives us the same information on the underlying SDFA
as a membership query would. a

The reasons explaining the above result are that some transition, or some
state in the automaton can be barely reachable. Lock automata, introduced by
Angluin [Ang81] in the DFA setting, are hard to learn. In these automata one
long string is going to be the lock to the automaton, and only by guessing this
string is learning possible.

5.2 Extended membership queries and equivalence queries
To avoid the problem due to lock automata there are usually three possibilities:

— Accept to make a small (¢) error and therefore to learn in a PAC setting;

— Give the algorithm a specific learning set (called a teaching set or complete
set) of strings indicating that certain strings will have to be specifically
checked;

— Introduce equivalence queries.

Carrasco and Oncina [CO99] showed that given a SDRL L, the minimal SDFA
A such that L(A) = L fulfils that

plzv) p(yv)

= Yo e X*
p(xX*) p(yX)

0(qo,) = 0(qo,y) <=

Then, if two strings (x, y) reach two non equivalent states, there are two

. p(zu) p(yu)
strings (u,v) such that @) 7 plyo)

. Then, the following definition makes sense:

Definition 9. A set of examples I is complete if every probability in the au-
tomaton is exercised and if all pairs of states can be separated:

1. Yq,q¢' € Q,Va € X : §(¢q,a) =¢',Fuav € T : §(qo,u) = q.

2.¥q,¢' € Q,q # ¢, Jru,zv,yu,yv € I :

S0,) = 0.0(a0,) = o', BEe) B

Theorem 4. The class of SDRL when represented by SDFA is learnable from
extended membership queries and a complete set.

Proof. The algorithm is based on the construction of a 2 entries table (T") indexed
respectively by the prefixes and the suffixes of the learning set I. Each cell of the
table is filled by making an extended membership query, with the probability of
the concatenation of its indexes. That is, T'(z,y) = pr(xy).

Let us define the following equivalence relation:

r=y < Ja>0:Vwe Suf(l) T(z,w) = aT(y,w)

From the table, the structure of an automaton A is built: @ = {[z] : = €
Pref(I)}, o = [A], 6([z], a) = [za].

By construction of the complete set, all the states of the target automaton
can be reached by a prefix of a string in I, and for all pairs of non equivalent
states in the target automaton we know that there exists a pair of strings that
makes the equivalence false. Obviously, if two states are equivalent in the target
automaton, they are also equivalent in the hypothesis automaton.

Then we have the structure of the hypothesis automaton. Now the remaining
problem is how to assign the probabilities of the hypothesis automaton. We are
going to follow some ideas from [CPT71].

On the following, subscript 7" will denote items related to the target autona-
ton, while subscript A will denote items related to the hipothesis automaton.

Let w; be a string such that §(qo,w;) = ¢; (we force wy =) and let v; be
such that pr(w;v;) # 0.

We are going to assign

pr(w;av;)

= where ¢; = 6(¢;, a
pr(w;v;) 3 =960 0)

malqi) = pr(wi); 7alga)

This automaton does not fulfil the condition 74(qi) + > ,cx ma(gi,a) = 1
but we are going to show that pa(w) = pr(w) Vw.
As pr(w;v;) = mr(qo, ws)pr(gi, vi), and let ¢; = 6(¢;, w), we can write

Tr(qo, W; Tr(qo, W;
ralgna) = TLOW)) g w) = TR0)
7TT(QO7wj 7TT(QOJUj

Let now ¢; = §(qo, w). Then pa(w) = 7a(qo, w)ma(q;)

_ 7mr(qo,A)

= mﬂT(QO,w)PT(wi) = mr(qo, A)7r(q0, w)mr(gi) = pr(w)

O

Theorem 5. There is an algorithm that given any SDFA A constructs a SDFA
B such that L(A) = L(B) and 7p(q:) + Y ,cx ™B(q:,a) = 1 Yg; € Qp.

Proof. From SDFA A define a row vector F', a column vector S, and a matrix
M, for each a € X as:

W(Qz‘a G,) if q; = 5(QZ7 (Z)

S=(1,0,...,0); Fy=7malq); (Ma)i;= :
0 otherwise

Then, the probability of a string a; ...a, can be computed as p(a;j...a,) =
SMq, ... My, F. Let Mg, . q, = Ma, ... M,, and let M =5 . M,.

Let us define the automaton B with the same structure that A but with the
function 7 defined as follows:

pA(wi)
pa(w; X*)

pa(w;aX*)
; ™B\¢i, Q) = ——F o5
B(q) pA(U)ZZ*)

where w; are arbitrary strings such that 6(qo,w;) = ¢;. Note that p(wX*) =
SMy Y ito M'F = SM,,(I — M)~'F where [is the unity matrix.

It is easy to verify that B fulfils the normalisation condition. It remains to be
shown that Vz,pa(z) = pg(x). First note that, Vz,y : 6(qo,) = d(q0,y) = @,

m5(qi) =

plzav) m(qo,z)p(gi;av) _ m(qo,y)p(gi,av) _ p(yav)

plav) w(qo,x)p(gi,v) w(qo,y)p(giv) — plyv)

then Ap(aX®) _ plyaZ™) p() _ _p)
p(zX™) p(yX*) p(zX=) = p(yX*)”
Let us now consider a string a; ... an,, let we call ¢; = §(qo, a1 - .. a;), then

and similarly

ps(ar a):pA(womE*)pA(wlazE*) PA(Wn-1an ") pa(wn)
o pa(woX*) pa(wrX*) 7 palwp_12*) pa(w,X*)
pa(a1X*) pa(arasX*) pa(ar...an—10,2*) palai...ay)

pa(X*) palarX*) 7 palar...an_1X*) palay...apX*

) =palay...a,)

O

It is reasonable to use equivalence queries instead of a complete set, as in
both cases the construction of the SDFA from the table can be done in the same
way. We thereby claim that:

Theorem 6. The class of SDRL when represented by SDFA is polynomially learn-
able from extended membership queries and equivalence queries.

5.3 Extended prefix language queries

An extended prefix language query is made by submitting to the oracle a string
w. The oracle then returns the probability p(wX™*). It can be noticed that an
extended membership query can easily be simulated through |X| extended prefix
language queries.

Theorem 7. The class of SDRL when represented by SDFA is not polynomially
learnable from extended prefix language queries.

Proof. Let w € X™ and consider the following language L,,: Vo € X" & = w =
p(z) = 0,z # w = p(x) = %, p(wa) = 2% This language is recognised by
a SDFA with at most 2n + 2 states. Call L,, the set of all languages L,, with
w € X". Now let the oracle answer to each extended prefix language query “z”
with the quantity ﬁ if || <mn, 0 if not. Then it is straightforward that in the

worse case at least 2" queries are needed. a

Since extended membership queries can be simulated by extended prefix lan-
guage queries, it follows that:

Theorem 8. The class of SDRL when represented by SDFA is polynomially
learnable from extended prefix language queries and equivalence queries.

6 Open questions and conclusions

From this point, a number of alternative routes are open. We mention two prob-
lems and research directions that deserve in our view to be investigated, and
conclude.

— Extended membership queries were introduced in [BV96]: The learning al-
gorithm may ask for the value p(x) on strings x of its choice.

We refine the concept to the case where the answer to the query can be
an approximate answer: A specific sampling query is made by submitting a
pattern: The oracle draws a string matching pattern sampled according to
the distribution D. Specific sampling queries are intended to fit the idea that
the user can ask for examples matching some pattern he is interested in.
For example specific sampling aX*b requires an example starting with a and
ending with b, sampled following the distribution induced by D.

We conjecture that these queries should be able to help us learn the class of
SDFA.

— In the previous sections we have shown that both identification and PAc-
learning are hard because of the infinite number of probability values that can
be reached. So, we suggest to limit the set of probabilities of the automaton.
The idea here is to learn SDFA but where the probabilities are predefined,
i.e. come from a fixed set. We would typically consider K — SDFA built from
a set Px = {% : 0 < i < K} of predefined probabilities, and taking all
transition probabilities from Px .

We believe that that the identification of the probabilities becomes easier
in this setting, and that the class of K — SDFA can now be learnable. We
conjecture the class to be PAc-learnable using distances d; and ds.

We have proved that when considering identification the problem of learning
SDFA was in most cases intractable.

We have suggested 2 options in order to obtain new positive results: The
first consisted in allowing the sampling to be directed. We believe that positive
PAc-learning results are possible in this case.

A second, and possibly more practical approach, is to severely reduce the
class of stochastic languages under consideration, not by taking a smaller support
class, but by simplifying the expression of the probabilities. This is a a way of
adding bias to the problem and might allow SDFA to be better fitted for language
modeling tasks.

Acknowledgement: The authors thank Franck Thollard for pointing out to
them the result from section 4.

References

[Ang81]
[Ang87]
[Ang88]

[BV6]

[CO9%4a]

[CO94b)

[CO99]

[CPT71]

[dIHOO03]

[Har78]

D. Angluin. A note on the number of queries needed to identify regular
languages. Information and Control, 51:76-87, 1981.

D. Angluin. Queries and concept learning. Machine Learning Journal,
2:319-342, 1987.

D. Angluin. Identifying languages from stochastic examples. Technical
Report YALEU/DCS/RR-614, Yale University, March 1988.

F. Bergadano and S. Varricchio. Learning behaviors of automata from
multiplicity and equivalence queries. SIAM Journal of Computation,
25(6):1268-1280, 1996.

R. C. Carrasco and J. Oncina, editors. Grammatical Inference and Appli-
cations, Proceedings of ICGI ’94, number 862 in LNAI, Berlin, Heidelberg,
1994. Springer-Verlag.

R. C. Carrasco and J. Oncina. Learning stochastic regular grammars by
means of a state merging method. In ICGI’94 [CO94a], pages 139-150.

R. C. Carrasco and J. Oncina. Learning deterministic regular grammars
from stochastic samples in polynomial time. RAIRO (Theoretical Infor-
matics and Applications), 33(1):1-20, 1999.

J. W. Carlyle and A. Paz. Realizations by stochastic finite automata. Jour-
nal of Computation and System Sciences, (5):26—40, 1971.

C. de la Higuera and J. Oncina. Identification with probability one of
stochastic deterministic linear languages. In Proceedings of ALT 2003,
LNCS, pages 134-148, Berlin, Heidelberg, 2003. Springer-Verlag.

M. H. Harrison. Introduction to Formal Language Theory. Addison-Wesley
Publishing Company, Inc., Reading, MA, 1978.

[KMR'94] M. J. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. E. Schapire, and

[LPN9Y]
[LVA*94]
[Moh97]
[Paz71]
[Pit89)]

[RSTY5]

[Valg4]

L. Sellie. On the learnability of discrete distributions. In Proc. of the 25th
Annual ACM Symposium on Theory of Computing, pages 273-282, 1994.
R. B. Lyngsg, C. N. S. Pedersen, and H. Nielsen. Metrics and similarity
measures for hidden Markov models. In Proceedings of ISMB’99, pages
178-186, 1999.

S. Lucas, E. Vidal, A. Amari, S. Hanlon, and J. C. Amengual. A comparison
of syntactic and statistical techniques for off-line OCR. In Carrasco and
Oncina [CO94a], pages 168-179.

M. Mohri. Finite-state transducers in language and speech processing. Com-
putational Linguistics, 23(3):269-311, 1997.

A. Paz. Introduction to probabilistic automata. Academic Press, NY, 1971.
L. Pitt. Inductive inference, DFA’s, and computational complexity. In Ana-
logical and Inductive Inference, number 397 in LNAI, pages 18-44. Springer-
Verlag, Berlin, Heidelberg, 1989.

D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic
probabilistic finite automata. In Proceedings of COLT 1995, pages 31-40,
1995.

L. G. Valiant. A theory of the learnable. Communications of the Association
for Computing Machinery, 27(11):1134-1142, 1984.

