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Abstract We propose in this paper a novel approach to the induction
of the structure of Hidden Markov Models (HMMs). The notion of par-
tially observable Markov models (POMMs) is introduced. POMMSs form
a particular case of HMMs where any state emits a single letter with
probability one, but several states can emit the same letter. It is shown
that any HMM can be represented by an equivalent POMM. The pro-
posed induction algorithm aims at finding a POMM fitting a sample
drawn from an unknown target POMM. The induced model is built to
fit the dynamics of the target machine observed in the sample. A POMM
is seen as a lumped process of a Markov chain and the induced POMM
is constructed to best approximate the stationary distribution and the
mean first passage times (MFPT) observed in the sample. The induc-
tion relies on iterative state splitting from an initial maximum likelihood
model. The transition probabilities of the updated model are found by
solving an optimization problem to minimize the difference between the
observed MFPT and their values computed in the induced model.

Keywords: HMM topology induction, Partially observable Markov model, Mean
first passage time, Lumped Markov process, State splitting algorithm.

1 Introduction

Hidden Markov Models (HMMs) are widely used in many pattern recognition
areas, including applications to speech recognition [15], biological sequence mod-
eling [6], information extraction [7,8] and optical character recognition [11], to
name a few. In most cases, the model structure, also referred to as topology, is
defined according to some prior knowledge of the application domain. Automatic
techniques for inducing the HMM topology are interesting as the structures are
sometimes hard to define a priori or need to be tuned after some task adaptation.
The work described here presents a new approach towards this objective.

Probabilistic automata (PA) form an alternative representation class to model
distributions over strings, for which several induction algorithms have been pro-
posed. PA and HMMs actually form two families of equivalent models, according
to whether or not final probabilities are included. In the former case, the mod-
els generate distributions over words of finite length, while, in the later case,
distributions are defined over complete finite prefix-free sets [5].

The equivalences between PA and HMMs can be used to apply induction
algorithms in either formalism to model the same classes of string distributions.
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Nevertheless, previous works with HMMs mainly concentrated either on hand-
built models (e.g. [7]) or heuristics to refine predefined structures [8]. More prin-
cipled approaches are the Bayesian merging technique due to Stolcke [18] and
the maximum likelihood state-splitting method of Ostendorf and Singer [14].
The former approach however has been applied only to small problems while the
later is specific to the subclass of left-to-right HMMSs modeling speech signals.

In contrast, PA induction techniques are often formulated in theoretical learn-
ing frameworks. These frameworks typically include adapted versions of the PAC
model [16], Identification with probability one [1,2] or Bayesian learning [19].
Other approaches use error-correcting techniques [17] or statistical tests as a
model fit induction bias [10]. All these approaches, while being interesting, are
still somehow limited. From the theoretical viewpoint, PAC learnability is only
feasible for restricted subclasses of PAs (see [5], for a review). The general PA
class is identifiable with probability one [2] but this learning framework is weaker
than the PAC model. In particular, it guarantees asymptotic convergence to a
target model but does not bound the overall computational complexity of the
learning process. From a practical viewpoint, several induction algorithms have
been applied, typically to language modeling tasks [4,3,19,12]. The experiments
reported in these works show that automatically induced PA hardly outperform
well smoothed discrete Markov chains (MC), also known as N-grams in this con-
text. Hence even though HMMs and PA are more powerful than simple Markov
chains, it is still unclear whether these models should be considered when no
strong prior knowledge can help to define their structure.

The present contribution describes a novel approach to the structural induc-
tion of HMMs. The general objective is to induce the structure and to estimate
the parameters of a HMM from a sample assumed to have been drawn from an
unknown target HMM. The goal however is not the identification of the target
model but the induction of a model sharing with the target the main features of
the distribution it generates. We restrict here our attention to features that can
be deduced from the sample. These features are closely related to fundamental
quantities of a Markov process, namely the stationary distribution and mean
first passage times. In other words, the induced model is built to fit the dynam-
ics of the target machine observed in the sample, not necessarily to match its
structure.

We show in section 2 that any HMM can be converted into an equivalent
Partially Observable Markov Model (POMM). Any state of a POMM emits
with probability 1 a single letter, but several states can emit the same letter.
Several properties of standard Markov chains are reviewed in section 3. The
relation between a POMM and a lumped process in a Markov chain is detailed
in section 4. This relation forms the basis of the induction algorithm presented
in section 5.

2 Hidden Markov Models and Partially Observable
Markov Models

We recall in this section the classical definition of a HMM and we show that any
HMM can be represented by an equivalent partially observable model.



Definition 1 (HMM). A discrete Hidden Markov Model (HMM) (with state
emission) is a 5-tuple M = (X, Q, A, B, 1) where X is an alphabet, Q is a set of
states, A : Q@ xQ — [0,1] is a mapping defining the probability of each transition,
B:QxX —[0,1] is a mapping defining the emission probability of each letter on
each state, and ¢ : @ — [0,1] is a mapping defining the initial probability of each
state. The following stochasticity (or properness) constraints must be satisfied:
Vg € Q, Zq’EQ Alg,q')=1;Vq € Q, Zaez B(g,a) =1; quQ q) = 1.

Figure 1 presents a HMM defined as follows: o4 o5
Y ={a,b}, Q@ ={1,2}, (1) = 0.4;¢(2) = 0.6; ' ‘ # ’

A(1,1) = 0.1; A(1,2) = 0.9; A(2,1) = 0.7; A(2,2) = °-1W°-3
0.3; [a0.2] [a0.9]

B(1,a) = 0.2; B(1,b) = 0.8; B(2,a) = 0.9; B(2,b) = oost o7 bom
0.1 Figure 1. HMM example.
Definition 2 (HMM path). Let M = (X, Q, A, B,.) be a HMM. A path in
M is a word defined on Q*. For any path v, v; denotes the i-th state of v, and
|v| denotes the path length. For any word u € X* and any path v € Q*, the
probabilities Py(u,v) and Py (u) are defined as follows:

o) TIZ 1 [B (i, wi) Avi, vig 1) B(vi,w) if L= |u| = |v] > 0,
Py(u,v) =< 1if jul =|v| =0 and
0 otherwise.

Py(u) = P(u,v).

re@*

Py (u,v) is the probability to emit word u while following path v. Pys(u) can be
interpreted as the probability of observing a finite word w as part of a random
walk through the model. For instance, the probability of the word ab in the
HMM of Fig. 1 is given by: Pys(ab) = Pas(ab, 11) + Pys(ab, 12) + Pas(ab, 21) +
Py (ab,22) = 0.0064 4 0.0072 + 0.3024 + 0.0162 = 0.3322.

Definition 3 (POMM).
A Partially Observable Markov Model (POMM) is a HMM M = (¥, Q, A, B, )
with emission probabilities satisfying: Vq € Q,3a € X such that B(q,a) = 1.

In other words, any state in a POMM emits a specific letter with probability 1.
Hence we can consider that POMM states only emit a single letter. This model
is called partially observable since, in general, several distinct states can emit the
same letter. As for a HMM, the observation of a word emitted during a random
walk does not allow to identify the states from which each letter was emitted.
However, the observations define state subsets from which each letter may have
been emitted. Theorem 1 shows that the class of POMMSs is equivalent to the
class of HMMs, as any distribution generated by a HMM can be represented by
a POMM.

Theorem 1 (Equivalence between HMMs and POMMSs). Let M = (X,
Q, A, B, 1) be a HMM, there exists an equivalent POMM M' = (X, Q', A", B',./).



Proof. Let M’ be defined as follows.

- Q/ = Q X Ev

— B'((¢g,a),z) =1 if x = a, and 0 otherwise,

- A'((q,a),(q',b)) = B(g,b)Alq, '),

= /((¢;0)) =X cq(d)B(d,a)A(d, q).
It is easily shown that M’ satisfies the stochasticity constraints. Let u = uq ...y
be a word of X* and let v = ((¢1,u1) ... (g, w)) be a path in M’. We have:

1-1
Py (u,v) = ((q1,u1)) H[B/((QuUi)#i)A/((%uz’% (qit1,ui+1))] B (@1, ), )

i=1
-1
= Z uq")B(q',ur)Ald', q1) H[B(Qi7ui+1)A(Qi;Qi+1)]
a'€Q i=1
= Z Pr(u,q'qr- . qu-1)Alqi—1, a1)

q'EQ

Summing up over all possible paths of length ! = |u| in M’, we obtain:

Py (u) = ZyeQ’l PM'(ua V) = Zylte—l Zq’eQ PM(U’ qul) quQ A(Q\U]la q)
= vpeq Pru(u,v2) = Pr(u)

Hence, M and M’ generate the same distribution. ]

The proof of theorem 1 is adapted from a similar result showing the equiv-
alence between PA without final probabilities and HMMs [5]. An immediate
corollary of this theorem is the equivalence between PA and POMMs. Hence
we call regular string distribution, any distribution generated by these models!.
Figure 2 shows an HMM and its equivalent POMM.

[a1l 0.386 0.234

[bo] #

0.4 ¢ ¢ 0.6

o C@@D@ 02
[@0.2] fa0.9]

b 0.81 0.7 b 0.11

Figure 2. Transformation of a HMM into an equivalent POMM.

It should be stressed that all transition probabilities of the form A’((q,-), (¢, b))
are necessarily equal as the value of A’((q,a), (¢,b)) does not depend on a in a
POMM constructed in this way. A state (g, a) in this model represents the state
q reached during a random walk in the original HMM after having emitted the
letter @ on any state.

! More precisely, these models generate distributions over complete finite prefix-free
sets. A typical case is a distribution defined over X", for some positive integer n.
See [5] for further details.



3 Markov Chains, Stationary Distribution and Mean
First Passage Times

The notion of POMM introduced in section 2 is closely related to a standard
Markov Chain (MC). Indeed, in the particular case where all states emit a dif-
ferent letter, the process of a POMM is fully observable. Moreover the Markov
property is satisfied as, by definition, the probability of any transition only de-
pends on the current state. Some fundamental properties of a Markov chain
are recalled in this section. The links between a POMM and a MC are further
detailed in section 4.

Definition 4 (Discrete Time Markov Chain). A discrete time Markov
Chain (MC) is a stochastic process {Xi} where the random variable X takes
its value at any discrete time t in a countable set Q and such that: P[X;41 =
q| X, Xi—1,. .., Xo] = P[Xer1 = q| Xt]. This condition states that the probability
of the next outcome only depends on the last value of the process. This is known
as the (first-order) Markov property. When the set @ is finite the process forms
a finite state MC.

Definition 5 (Finite State MC representation). A finite state represen-
tation of a MC is a 3-tuple T = (Q, A,.) where Q is a finite set of states,
A=QxQ — [0,1] is a mapping defining the transition probability function and
t: Q — [0,1] is the initial probability of each state. The following stochasticity
constraints must be satisfied: quQ u(q) =1;Vq € Q, Zq’EQ Alg,¢') =1

In this context, the Markov property simply states that the probability of
reaching the next state only depends on the current state. For a finite MC, the
transition probability function can be represented as a |Q|x |Q| transition matrix.
In the sequel, A both denotes this function and its matrix representation, with
Ay = A(g,¢'). Similarly, the function ¢ is associated with a |@Q|—dimensional
initial probability vector, with ¢, = ¢(q). We will use interchangeably MC to
denote a finite Markov chain or its finite state representation. A finite MC can
also be constructed from a HMM by ignoring the emission probabilities and the
alphabet. We call this model the underlying MC of a HMM.

Definition 6 (Underlying MC of a HMM). Given a HMM M = (X, Q, A, B,
t), the underlying Markov chain T is the 3-tuple (@, A, ).

Definition 7 (Random walk string). Given a MC, T = (Q, A, (), a random
walk string s can be defined on Q* as follows. A random walker is positioned on
a state q according to the initial distribution v. The random walker next moves
to some state q¢' according to the probability A(q,q’'). Repeating this operation n
times results in a n-steps random walk. The string s is the sequence of states
visited during this walk.

In the present work, we focus on regular Markov chains. For such chains, there
is a strictly positive probability to be in any state after n steps, no matter the
starting state.



Definition 8 (Regular MC). A MC with transition matriz A is regular if
and only if for some n € N, the power matriz A™ has no zero entries.

In other words, the transition graph of a regular MC is strongly connected?
and all states are aperiodic3. The stationary distribution and mean first passage
times are fundamental quantities characterizing the dynamics of random walks
in a regular MC. These quantities form the basis of the induction algorithm
presented in section 5.2.

Definition 9 (Stationary distribution). Given a regular MC, T = (Q, A, 1),
the stationary distribution is a |Q|—dimensional stochastic vector © such that
TA=m.

This vector is also known as the equilibrium vector or steady-state vector. A
regular MC is started at equilibrium when the initial distribution ¢ is set to the
stationary distribution 7. The ¢-th entry of the vector m can be interpreted as
an expected proportion of the time the steady-state process reaches state gq.

Definition 10 (Mean First Passage Time). Given a regular MC, T =
(@, A, ), the first passage time is a function f = Q X Q@ — N such that f(q,q’)
is the number of steps before reaching state ¢ for the first time, leaving initially

from state q.
fla,q') =inf{t > 1| X; = ¢'and Xo = ¢}

The Mean First Passage Time (MFPT) denotes the expectation of this function.
It can be represented by the MFPT matriz M, with M,y = E[f(g,¢")].

For a regular MC, the MFPT values can be obtained by solving the following
linear system [9]:

L+ Z Aqq”Mq”q’ ,if g # q

Vq,q/EQ,qu = 1 ¢"74 ]
— , otherwise.
Tq

The values M,, are usually called recurrence times®.

4 Relation between Partially Observable Markov Models
and Markov Chains

Given a MC, a partition can be defined on its state set and the resulting process
is said to be lumped.

Definition 11 (Lumped process). Given a regular MC, T = (Q, A, 1), let ¢V
be the state reached at time t during a random walk in T. k = {K1,Ka,..., K}
denotes a partition of the set of states Q. K,, = Q — 29 denotes a function that,
given a state q, returns the block of k, or state subset, containing q. The lumped
process T'//k outcomes K,.(¢"!)) at time t.

? The chain is said to be irreducible.

3 A state ¢ is aperiodic if AE;L) > 0 for all sufficiently large n.

4 An alternative definition, My, = 0, is possible when it is not required to leave the
initial state before reaching the destination state for the first time [13].



Consider for example the regular MC T} illustrated® in Fig. 3. A partition x
is defined on its states set, with k1 = {1,3}, k2 = {2} and k3 = {4}. The ran-
dom walk 312443 in T} corresponds to the following observations in the lumped
process T1 //F&Z KR1K1RoK3K3K1.

Figure 3. A regular Markov chain 71 and the partition x = {{1, 3}, {2}, {4}}.

While the states are fully observable during a random walk in a MC, a lumped
process is associated to random walks where only state subsets are observed. In
this sense, the lumped process makes the MC only partially observable as it is
the case for a POMM. Conversely, a random walk in a POMM can be considered
as a lumped process of its underlying MC with respect to an observable partition
of its state set. Each block of the observable partition corresponds to the state(s)
emitting a specific letter.

Definition 12 (Observable partition). Given a POMM M = (X, Q, A, B, 1),
the observable partition x is defined as follows: ¥q,q' € Q,K.(q) = K.(¢) &
S0 € 3, B(g,a) = B(¢a) = 1

The underlying MC T of a POMM M has the same state set as M. Thus the
observable partition x of M is also defined for the state set of T'. If each block
of this partition is labeled by the associated letter, M and T'//x define the same
string distribution.

It is important to notice that the Markov property is not necessarily satisfied
for a lumped process. For example, the lumped MC in Fig. 3 satisfies P[X;12 =
) | Xt+1 = I{hXt = I’ig] = 0.2 and P[Xt+2 = K2 | Xt+1 = I’il,Xt = Iig] = 04,
which clearly violates the first-order Markov property. In general, the Markov
property is not satisfied when, for a fixed length history, it is impossible to
decide unequivocally which state the process has reached in a given block while
the next step probability differs for several states in this block. This can be
the case no matter the length of the history considered. This is illustrated by
the MC depicted in Fig. 4 and the partition k = {{1,2},{3}}. Even if the
complete history of the lumped process is given, there is no way to know the
state reached in k1. Thus, the probability P[X; = k2 | X¢i—1 = k1, Xt—2,..., X0]
cannot be unequivocally determined and the lumped process is not markovian
for any order. Hence the definition of lumpability.

5 For the sake of clarity, the initial probability of each state is not depicted. Moreover,
as we are mostly interested in MC being in steady-state mode, the initial distribution
is assumed to be equal to the stationary distribution deriving from the transition
matrix (see Def. 9).
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Figure5. The MC T; lumped
Figure 4. A non markovian lumped process. with respect to the partition k' =

{{1,2},{3,4}}.

Definition 13 (Lumpability). A MC T is lumpable with respect to a partition
k if the lumped process T[/k satisfies the first-order Markov property for any
initial distribution.

When a MC T is lumpable with respect to a partition k, the lumped process
T//k defines itself a Markov chain.

Theorem 2 (Necessary and sufficient conditions for lumpability [9]).
A MC' is lumpable with respect to a partition k if and only if for every pair of
blocks k; and k; the probability Aij//k to reach some state of k; is equal from
every state in K;:

Vri, kj € K,Y4,q € ki, Aij//k = Z Agqr = Z Agq

q" €k q”GN,'

The values A;; /k form the transition matrix of the lumped chain. For ex-
ample, the MC Ty given in Fig. 3 is not lumpable with respect to the parti-
tion k = {{1,3},{2},{4}} while it is lumpable with respect to the partition
k' ={{1,3},{2,4}}. The lumped chain T3 J/«’ is illustrated in Fig. 5.

Even though a lumped process is not necessarily markovian, it is useful for
the induction algorithm presented in section 5.2 to define the mean first passage
times between the blocks of a lumped process. To do so, it is convenient to
introduce some notions from absorbing Markov chains. In a MC, a state ¢ is
said to be absorbing if there is a probability 1 to go from ¢ to itself. In other
words, once an absorbing state has been reached in a random walk, the process
will stay on this state forever. A MC for which there is a probability 1 to end
up in an absorbing state is called an absorbing MC. In such a model, the state
set can be divided into the absorbing state set @4 and its complementary set,
the transient state set Qr. The transition submatrix between transient states is
denoted Ar. A related notion is the mean time to absorption.

Definition 14 (Mean Time to Absorption).

Given an absorbing MC, T = ({Qa,Qr}, A, 1), the time to absorption is a
function g = Qr — N such that g(q) is the number of steps before absorption,
leaving initially from a transient state q.

g(q) =inf{t > 1| X; € Qa, X0 =q}



The Mean Time to Absorption (MTA) denotes the expectation of this function.
It can be represented by the vector z computed as z = (I — Ar)~1.1, where 1
denotes a |Qr|—dimensional vector with each component being equal to 1.

The ¢-th entry of z represents the mean time to absorption, leaving initially from
the transient state q.

Definition 15 (MFPT for a lumped process). Given a reqular MC T =
(Q,A,1), K a partition of Q and k;, k; two blocks of k, an absorbing MC TV is
created from T by transforming every state of k; to be absorbing. Furthermore,
let 23 be the MTA vector of T7. The mean first passage time M;;//k from k; to
kj in the lumped process T'//k is defined as follows:

e Zf Ri; = I{)j
M;; [k = .

Z —qzé otherwise

ger;
where mq is the stationary distribution of state ¢ in T and g, =y
stationary distribution of the block k; in the lumped process T J/k.

qen; Tq 18 the

In a lumped process, states subsets are observed instead of the original states
of the Markov chain. A related, but possibly different, process is obtained when
the states of the original MC are merged to form a quotient Markov chain.

Definition 16 (Quotient MC). Given a MC T = (Q, A,.) and a partition
k = {K1,K2,...,kr} on Q, the quotient T/k is a r-states MC with transition
matriz A/k and initial vector I/k defined as follows:

0
Aij/K = Z Z r:.Aqq’a Ii/” = Z L(Q)
qERi q'ER; ‘ g€k

where 7 is the stationary distribution of T and m., =3 . mq.
Note that for any regular MC T, the quotient T/ has always the Markov
property while, as mentioned before, this is not necessarily the case for the
lumped process T/ k. The following theorem specifies under which condition the

distributions generated by T/« and T'//x are identical.

Theorem 3. If a MC T is lumpable with respect to a partition x then T'/k and
T//x generate the same distribution in steady-state.

Proof. When T is lumpable with respect to k, the transition probabilities be-
tween any pair of blocks x;, x; are the same in both models:

Aivj/"i = quni % Zq'EHj Aqq/ = Al]//"{‘ qu'ﬂ % = A?J//’k;



5 A Markovian Approach to the Induction of Regular
Distributions

As explained in section 4, a random walk in a POMM can be seen as a lumped
process of its underlying MC lumped with respect to the observable partition.
We present now an induction algorithm making use of this relation. Given a data
sample, assumed to have been drawn from a target POMM TP, our induction
algorithm estimates a model E P fitting the dynamics of the MC related to T'P.
The estimation relies on the stationary distribution and the mean first passage
times which can be derived from the sample. In the present work, we focus
on distributions that can be represented by POMMs without final probabilities
and with regular underlying MC. Since the target process T'P never stops, the
sample is assumed to have been observed in steady-state. Furthermore, as the
transition graph of T'P is strongly connected, it is not restrictive to assume
that the data is a unique finite string s resulting from a random walk through
TP observed during a finite time®. Under these assumptions, all transitions of
the target POMM and all letters of its alphabet will tend to be observed in the
sample. Such a sample can be called structurally complete. The sample estimates
are detailed in section 5.1 and an algorithm for POMMSs induction is proposed
in section 5.2.

5.1 Sample Estimates

As the target process T'P can be considered as a lumped process, each letter of
the sample s is associated to a unique state subset of the observable partition «.
All estimates introduced here are related to the state subsets of the target lumped
process. First, we introduce the stationary maximum likelihood model. This
model is the starting point of the induction algorithm presented in section 5.2.

Definition 17 (Stationary maximum likelihood MC). Given a string s
on an alphabet X, the stationary mazimum likelihood MC ML = (Q, A, i) is

defined as follows: Q = X; Va,b € Q,Aq = %ft(?f)); Ya € Q,t, = fg;
where count(a,b) is the number of times the letter a is immediately followed by

the letter b in s, count(a) = 3, 5 count(a,b) and @ is the stationary vector
computed from A (see Def. 9).

The ML model is a maximum likelihood estimate of the quotient MC TP/,
where k is the observable partition. Furthermore the stationary distribution of
TP/k fits the letter distribution observed in the sample. The letter distribution
is however not sufficient to reproduce the dynamics of the target machine. For
instance, if the letters of s were alphabetical sorted, the stationary distribution
of the M L model would be unchanged. In order to better fit the target dynamics,
the induced model is further required to comply with the MFPT between the
blocks of T'P//k, that is between the letters observed in the sample.

Definition 18 (MFPT matrix estimate). Given a string s defined on an
alphabet X, M is a | 2| x | X| matriz where My, is the average number of symbols
after an occurrence of a in s to observe the first occurrence of b.

6 The statistics described in section 5.1 could equivalently be computed from repeated
finite samples observed in steady-state.



5.2 Induction Algorithm

Given a target POMM TP and a random walk string s built from TP, the
objective of our induction algorithm is to construct a model fitting the stationary
distribution and the MFPT estimated from the sample. This algorithm starts
from the stationary maximum likelihood model M L, which complies with the
stationary distribution. Iterative state splitting in the current model allows to
increase the fit to the MFPT, while preserving the stationary distribution. The
induction algorithm is sketched hereafter.

Algorithm MARKOVIANSTATESPLIT
Input: A string s resulting from a target POMM TP
A precision parameter €

Output: A POMM EP

EP «— estimateML(s); // Build the ML model (see Def. 17)
M — sampleMFPT(s); // MFPT between the blocks of TP//k (Def. 18)
M//k — blockMFPT(EP); // MFPT between the blocks of EP (Def. 15)

// Iterate till the MFPT of the current model are close enough to those estimated
from s
while ZL?LI(MU — M;;//k)? > e do

q «— selectStateToSplit(EP, M, M//K);

EP — splitState(EP,q, M, M//s); // Update the current model

M//k < blockMFPT(EP); // Recompute MFPT between the blocks of EP

return EP

At each iteration, a state g is selected by the function selectStateToSplit
in an arbitrary order. During the call to splitState, the state ¢ is split into
two new states ¢ and ¢o as depicted in Fig. 6. The input states i1,...,%; and
output states o1,...,0; are those directly connected to ¢ in the current model
in which all transitions probabilities A are known. Input and output states are
not necessarily disjoint.

@Aw\ |
A

ihq

Figure 6. Splitting of state (217

The topology after splitting provides additional degrees of freedom in the
transition probabilities. The new transitions probabilities x,y, z form the vari-
ables of an optimization problem, which can be represented by the matrices
X (kx2),Y (2x1)and Z (2 x 2). The objective function to be minimized is

W(X,Y,Z) = Z'ilzl(Mm — M;j//k)?. In other words, the goal is to find values

for X,Y and Z such that the MFPT of the new model are as close as possible
to those estimated from s. After the splitting of state g, the blockMFPT function



recomputes the MFPT between the blocks of EP. The algorithm is iterated un-
til the squared difference of the MFPT between TP//x and EP fall below the
precision threshold e.

Stochastic constraints have to be satisfied in order to keep a proper POMM.
Moreover we require the stationary distribution to be preserved for any state
¢ #qand mg, =7y, = 772—‘1 All these constraints can easily be formulated on the
problem variables:

V] = 1,...,]@': Tj1 Z O,JJjQ Z 0, Tj1 +SCj2 :Aijq;
Vi=1,...,0: y1; > 0,y2; > 0, y1; + y2; = 2Aq0,;
211, 212, 221, 222 > 0, 211 + 212 + 221 + 222 = 2A44;

z11 + 212 + Z;:l y1; = 1, 221 + 222 + 22:1 y2; = 1.
6 Conclusion and Future Work

We propose in this paper a novel approach to the induction of HMMs. Firstly,
the notion of partially observable Markov models (POMMSs) is introduced. They
form a particular case of HMMs where any state emits a single letter with proba-
bility one, but several states can emit the same letter. It is shown that any HMM
can be represented by an equivalent POMM. Our induction algorithm aims at
finding a POMM fitting a sample drawn from an unknown target POMM. The
induced model is built to fit the dynamics of the target machine observed in the
sample, not necessarily to match its structure. To do so, a POMM is seen as a
lumped process of a Markov chain and the induced POMM is built to fit the
stationary distribution and the mean first passage times (MFPT) observed in
the sample.

Our ongoing work includes several issues. The selectStateToSplit func-
tion defines the order in which states are selected for splitting in our induction
algorithm. Among all candidate states for splitting, the one providing the largest
decrease of the objective function after the split could be considered in the first
place. A simple implementation would compute the values of the objective func-
tion for all candidate states and would then select the best candidate. More
efficient ways for computing this optimal state are under study.

A general solver could be used to solve the optimization problem at each
iteration of the MARKOVIANSTATESPLIT algorithm. An efficient implementation
of this optimization procedure is under development.

A systematic experimental study of the proposed approach is our very next
task. We will focus in particular on practical comparisons with standard prob-
abilistic automata induction algorithms and EM estimation of HMMs using
greedy approaches to refine predefined structures. Other perspectives include
a formal study of the convergence of this approach as a function of the precision
parameter € and extensions to models for which the underlying Markov chain is
no longer assumed to be regular.
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