Counting-Based Look-Ahead Schemes for
Constraint Satisfaction

Kalev Kask, Rina Dechter, and Vibhav Gogate

Donald Bren School of Information and Computer Science
University of California, Irvine, CA 92967
{kkask, dechter, vgogate}@ics.uci.edu

Abstract. The paper presents a new look-ahead scheme for backtrack-
ing search for solving constraint satisfaction problems. This look-ahead
scheme computes a heuristic for value ordering and domain pruning. The
heuristic is based on approximating the number of solutions extending
each partial solution. In particular, we investigate a recent partition-
based approximation of tree-clustering algorithms, Iterative Join-Graph
Propagation (IJGP), which belongs to the class of belief propagation
algorithms that attracted substantial interest due to their success for
probabilistic inference. Our empirical evaluation demonstrates that the
counting-based heuristic approximated by IJGP yields a scalable, focused
search.

1 Introduction

We investigate the power of solution counting as a heuristic for guiding back-
tracking search for finding a single solution of a constraint problem. Specifically,
given a set of instantiated variables (i.e., a partial solution), the task is to com-
pute, for each value a of each uninstantiated variable X, the number of solutions
that agree with the given instantiated variables as well as the candidate assign-
ment X = a. Clearly, if we could solve this task exactly, it would make solving
the CSP task trivial - we can generate a solution in a backtrack free manner by
instantiating variables, one at a time, by choosing a value that has a solution
count greater than 0, with respect to the previously instantiated variables. Since
the counting problem is a #P-complete problem, the complexity of exact algo-
rithms, such as variable elimination algorithms, is too high to be practical and
approximations are necessary. Our approach is to approximate solution counting
and use it as a heuristic function for guiding a (backtracking) search for solving
the CSP problems.

Our approximation idea is motivated by the success of the class of general-
ized belief propagation, such as Join-Graph Propagation (IJGP) [5, 10] in solving
the belief updating problem in Bayesian networks. IJGP(i) is a parameterized
iterative propagation scheme controlled by its i-bound. As i grows the algorithm
is more accurate but also requires more time and space. When i equals the
tree-width of the graph, the algorithm is exact. It was shown that the IJGP(i)
scheme is powerful, and superior (provides a superior time-accuracy tradeoff)

to competing algorithms on many classes of belief networks. It was shown, in
particular, that even the least accurate version of i = 2, is often quite good. We
therefore adapt the IJGP scheme for the task of solution counting (SC) and use
it as a heuristic to guide backtracking search. We compare the resulting back-
tracking algorithm called IJGP-SC against MAC [11], one of the most powerful
lookahead backtracking methods, against Stochastic Local Search (SLS), and
against backtracking algorithms equipped with alternative heuristics computed
by mini-clustering/mini-bucket (a partition-based scheme of tree-decomposition
algorithms). We compare the performance of these algorithms on random CSPs,
graph coloring problems and Quasi-group completion problems.

Our results are very promising. We show that IJGP-SC yields a very focused
search with relatively few deadends, especially when the problems become larger
and harder. We compare the algorithms in terms of scalability - how does the
relative complexity of an algorithm change as the problem size grows and what
is the largest problem size that each of the algorithms can solve in a range of
hardness. Our results show that over the problems tried the lowest bound of
i=2 was by far the most cost-effective (the time overhead for larger i-bounds did
not pay off). We therefore focused much of the subsequent empirical testing on
IJGP(i=2)-SC. Our results on random CSPs show that IJGP-SC is more scalable
than MAC and SLS. Specifically, while MAC/SLS are better at small problem
sizes (N = 100 — 300), IJGP-SC improves as N grows, and when N = 500,
IJGP-SC outperforms other algorithms; at N = 1000 IJGP-SC can solve more
problem instances faster than competing algorithms and by N = 2000 (which is
the largest problem size we tried), none of the competing algorithms can solve
any problems, while IJGP-SC can still solve about 25% of the solvable problems
(given a time-bound of 5 hours). We also compare the performance on hard
3-coloring and Quasi-group completion problems. Our preliminary results show
that MAC is the best algorithm on 3-coloring problems (with NV up to 200) while
IJGP-SC is superior to MAC on Quasi-group completion problems.

We also investigate the impact of the number of iterations, used in IJGP-SC,
on the heuristic quality. It can be shown that when IJGP-SC converges, it per-
forms arc-consistency, yielding pruning of domains of variables similar to MAC.
However, waiting for convergence (relative to zero counts; general convergence
is not guaranteed) may not be cost effective. IJGP-SC with fewer iterations may
produce a value ordering that is sufficiently accurate to result in a few deadends.
We contrast this with MAC which relies heavily on full arc consistency (domain
pruning).

Our results are significant because 1) our base algorithm in IJGP-SC is naive
backtracking that is not enhanced by either backjumping or learning 2) our
implementation can be further optimized to yield significant speed-up and most
significantly, it cannot be matched to the level of hacking invested in MAC, 3)
we believe the strength of MAC (pruning domains by arc-consistency) and the
strength of IJGP in value ordering are complementary and can be combined in
a single algorithm. We plan to investigate the combined approach in the future.

The paper is organized as follows. In Section 2 we provide background in-
formation. In Sections 3 we introduce the solution-count heuristic function. The
corresponding search algorithm and other competing algorithms are presented
in Section 4. In Section 5 we discuss experimental data and finally in Section 6
we provide discussion of related work and concluding remarks.

2 Preliminaries

Definition 1 (constraint satisfaction problem). A Constraint Network (CN)
[4] is defined by a triplet (X, D, C) where X is a set of variables X = {X1, ..., X, },
associated with a set of discrete-valued domains, D = {D,...,D,}, and a set

of constraints C = {C1,...,Cp}. Each constraint C; is a pair (S;, R;), where

R; is a relation R; C Dg, defined on a subset of variables S; C X called the

scope of C;. The relation denotes all compatible tuples of Dg, allowed by the

constraint. The primal graph of a constraint network, called a constraint graph,

has a node for each variable, and an arc between two nodes iff the correspond-

ing variables participate in the same constraint. A solution is an assignment of
values to variables x = (x1,...,xy,), x; € D;, such that all constraint are satis-

fied. The Constraint Satisfaction Problem (CSP) is to determine if a constraint

network has a solution, and if so, to find a solution. A binary CSP is one where

each constraint involves at most two variables. Solution-counting is the task of
counting the number of solutions.

The task of solution counting can be solved when formulating each constraint
by a cost function that assigns 1 for allowed tuples and 0 for unallowed tuples.
The cost of an assignment is the product of all cost functions and the task
is to count the number of assignments with cost 1. This task can be solved
exactly by inference algorithms defined over a tree-decomposition of the problem
specification. Intuitively, a tree-decomposition takes a collection of functions and
partitions them into a tree of clusters. The cluster tree is often called a join-tree
or a junction tree. The clusters in the tree-decomposition have to satisfy the
running-intersection property [4]. The subset of variables in the intersection of
any two adjacent clusters in the tree is called a separator. The tree-width of a
tree-decomposition is the maximum number of variables in a cluster minus 1 and
the separator width is the maximum number of variables in any separator. The
tree-width of a graph is the minimum tree-width over all its tree-decompositions
and is identical to another graph parameter called induced-width [3].

Cluster-tree elimination (CTE) [2] is a message-passing algorithm over the
clusters of a tree-decomposition, each associated with variable and function sub-
sets. CTE computes two messages for each edge (one in each direction), from
each node to its neighbors, in two passes, from the leaves to the root and from
the root to the leaves. The message that cluster u sends to cluster v, for the
solution-counting task is as follows: The cluster multiplies all its own functions,
with all the messages received from its neighbors excluding v and then elimi-
nates, by summation, all variables not in the separator between u and v. The

Fig.1. (a) A graph coloring problem with B=1, C=2; (b) and (c) join-graph decom-
positions of the problem; (b) is also a tree-decomposition.

complexity of CTE is time exponential in the tree-width and space exponential
in the maximum size of the separator width. CTE can output for each value
and each variable the number of solutions extending this variable-value pair. For
more details see [4, 2, 5].

Iterative Join-Graph Propagation (IJGP) [5] can be perceived as an iterative
version of CTE. It applies the same message-passing to join-graphs rather than
join-trees, iteratively. A join-graph is a decomposition of functions into a graph of
clusters (rather than a tree) that satisfies the running intersection property. The
IJGP class of algorithms generalizes loopy belief propagation. These algorithms
are not guaranteed to converge, nor have bounded accuracies, however they
have been demonstrated to be useful approximation methods for various belief
networks, especially for probabilistic decoding [5]. While CTE is exact, and
requires only 2 iterations, IJGP tends to improve its performance with additional
iterations.

The size of clusters in a join-graph can be far smaller than the tree-width
and is only restricted by the function’s scopes. IJGP can be parameterized by i
which controls the cluster size in the join-graph, yielding a class of algorithms
(IJGP (7)) whose complexity is exponential in 4, that allow a trade-off between
accuracy and complexity. As i increases, accuracy generally increases. When 14 is
big enough to allow a tree-structure, IJGP(i) coincides with CTE and becomes
exact.

Ezample 1. Figure 1(a) shows a graph coloring problem with 4 nodes {A, B, C, D},
each with a domain {1,2,3}, such that B = 1 and C' = 2. In Figures 1(b) and
1(c) we have two join-graph decompositions of this problem, of which Figure 1(b)
is also a tree-decomposition. This problem has 2 solutions, {A =2,B=1,C =
2,D =3} and {A =3,B =1,C = 2,D = 3}. Therefore, the (exact) solution
counts are as follows: SC(A=2)=1,5C(A=3)=1, SC(D = 3) =2. In order
to compute the solution count for SC(D = 3) based on the join-graph in Fig-

Algorithm IJGP(7)-SC

Input: A join-graph decomposition < JG,x,v¥,¢ >, JG = (V, E) is a join-graph
for CSP =< X,D,C >. For every node v € V and edge e € E, x(v) is its set of
variables, 1(v) is its set of functions and ¢(e) is a set of edge labels. Each constraint
C(Sk) is represented by a cost function f(Sx) = 1 iff Sy € Ri and 0 otherwise.
Instantiated variables I. Activation schedule d = (u1,v1), ..., (Uz«|E|, V2x|E|)-
Output: A solution count approximation for each singleton assignment X = a.

Denote by h(y.) the message from vertex u to v in JG; cluster(u) = (u) U
{h@w,wl(v,u) € E}; cluster,(u) = cluster(u), excluding message from v to w.
Let h(u)(j) be huw) computed during the j-th iteration of IJGP. 5h(u,u)(j) =

2oy M) (3) = Py (G = 1))/ 1) ()], AG) = 324, ca(Ony, () /2 % | B

1. Process instantiated variables:
Assign relevant instantiated values to all Ry € (u), x(u) := x(u) =1, Vu e V.
2. Repeat iterations of IJGP :
— Along d, for each edge (us,v;) in the ordering,
— compute hy, ;) = o Zelim(ui,vi) HfEcluste'rvi () f, where « is a normaliza-
tion constant.
3. until:
— Max number of iterations is exceeded, or
— Distance A(y) is less than 0.1,
- AG) > AG-1).
4. Compute solution counts:
For every X; € X let u be a vertex in JG such that X; € x(u). Compute
SC(X;:) =« wa)i{xi}(nfedusty(u) f), where « is a normalization constant.

Fig. 2. Algorithm IJGP(:)-SC

ure 1(b), IJGP will compute (using node 2) 3°p ~(Cpc*Cop*Cpp *h(1,2)(B))
where Cpc, Cop, Cpp are functions stored in node 2 of the join-tree and
h(1,2)(B) is a message that node 1 sends to node 2. Note that this is exact value
of SC(D = 3) since Figure 1(b) is a tree-decomposition. In order to compute
the solution count for SC(D = 3) based on the join-graph in Figure 1(c), IJGP
will compute (using node 3) > 5(Cpp * h2,3)(B) * ha3)(D)) where Cpp is a
function stored in node 3 of the join-graph and hs 3y(B), h4,3)(D) are messages
that nodes 2 and 4 send to node 3. Note that this value is an approximation of
the exact value. A formal description of the IJGP-SC algorithm is given next.

3 Approximating SC by 1JGP

Our application of IJGP for solution counting is technically very similar to the
application of IJGP for belief updating in Bayesian networks [5]. We will discuss
some technical points here. As input, constraints are modelled by cost functions

that assign 1 to combinations of values that are allowed, and 0 to nogoods. IJGP-
SC diverges (solution count values computed by IJGP-SC may get arbitrarily
large) and thus the solution count values computed by IJGP would be trivial
upper bounds on the exact values. To avoid double-point precision overflow we
normalize all messages as they are computed. As a result, IJGP(7)-SC will out-
put, for each variable X;, not solution count absolute values, but their ratios.
For example, IJGP(7)-SC(X = a)=0.4 means that in approximately 40% of the
solutions, X = a. When the solution count ratio computed by IJGP(:)-SC is 0,
the absolute value is 0 as well, and therefore the corresponding value a of X can
be pruned. Note, however, that we don’t need to know the solution counts very
precisely because we use the counts only to create a variable and value order-
ing during backtracking search. All we want is that the approximated solution
counts be sufficiently accurate as to yield a good value-ordering heuristic.

IJGP(i)-SC is presented in Figure 2. As input it takes a join-graph and an
activation schedule which specifies the order in which messages are computed.
It executes a number of iterations. At the end of iteration j we compute the
distance A(j) between messages computed during iteration j and the previous
iteration j — 1. We use this distance to decide whether IJGP(4)-SC is converging.
We stop IJGP(i)-SC when either a predefined maximum number of iterations
is exceeded (indicating that IJGP(i)-SC is not converging), the distance A(j) is
not decreasing (IJGP(4)-SC is diverging), or A(j) is less than some predefined
value (0.1) indicating that IJGP(¢)-SC has reached a fixed-point.

It is easy to see that solution count values 0 computed by IJGP()-SC
are correct [6], i.e. whenever IJGP(i)-SC(X = a)=0, the true solution count
SC(X = a)=0 as well. Consequently, when running IJGP(i) until convergence
the algorithm also accomplishes i-consistency.

4 Algorithms

4.1 Backtracking with IJGP-SC

A formal description of a backtracking algorithm using solution counts computed
by IJGP-SC(i) as a heuristic function is given in Figure 3. At each node in the
search space it runs IJGP(7)-SC and prunes domains of future variables whose
approximated solution count is 0. The algorithm selects as next the variable with
the smallest domain, breaking ties in favor of a variable having the largest single
(approximated) solution count. The strength of IJGP(%)-SC however is in guiding
value ordering. The algorithm chooses a value having the largest approximated
solution count (fraction).

We will refer to BB-IJGP-SC as IJGP-SC. In the course of carrying out ex-
periments, we have implemented two versions of BB-IJGP-SC. The first version
(called ITJGP(7)-SC, where i = 2,3, ...), is a simple, general implementation that
can be run on a CSP without restrictions on the constraint scope and can use
any legal join-graph. ¢ denotes the bound on the cluster size used to generate the

Procedure BB-IJGP(:)-SC(G,i,I)
Input: Join-graph G, parameter i,set of instantiated variables 1.
Output: A solution, or proof of inconsistency, or timeout.
1. If I = X, return 1/0 depending on whether I satisfies all constraints.
2. Run IJGP-SC(i); let {scX;} be the set of heuristic values computed by IJGP-
SC(i) for each variable X; € X — I.
3. Prune domains of uninstantiated variables, by removing values z € D(X;) for
which scX;(z) = 0.
4. Backtrack If D(X;) = 0 for some variable X;, return 0.
5. Otherwise let X; be the uninstantiated variable with the smallest domain:
X; = argminx,cx—1|D(Xk)|.
6. Repeat while D(X,) # 0

i. Let x;, be the value of X; with the largest heuristic estimate:

Tk = argmary;ep(x)scX;(x;).

5. Set D(X) = D(X) — zx.

i4i. Compute csp = BB — IJGP — SC(G,4, I U{X; = zi}).

iv. If csp=1, return 1.
7. Return 0.

Fig. 3. Branch-and-Bound with IJGP(¢)-SC.

join-graph (thus ¢ controls the complexity as well as accuracy of IJGP(7)-SC).
Note that processing each node in the join-graph is exponential in i.

We also have a more efficient implementation (called IJGP-SC*) for the spe-
cial case of i = 2. This version assumes binary constraints and uses the problem’s
dual-graph as its join-graph. The reason for developing this more specialized im-
plementation is to be more competitive with MAC which is restricted to binary
constraints, and because IJGP(i=2)-SC (the general version) was superior to
higher values of ¢ time-wise.

4.2 The MAC algorithm

Maintaining arc consistency or the MAC algorithm [11] is one of the best per-
forming algorithms for random binary CSPs that uses arc-consistency look-
ahead. The performance of the basic MAC algorithm can be improved by using
variable and value ordering heuristics during search. In our implementation', we
have used the dom/deg heuristic for variable ordering while the min-conflicts
(MC) heuristic for value ordering. This combination was shown to perform the
best on random binary CSPs [1]. The dom/deg heuristic selects the next variable
to be instantiated as the variable that has the smallest ratio between the size of
the remaining domain and the degree of the variable. The MC heuristic chooses
the value that removes the smallest number of values from the domains of the
future variables.

! The implementation is based on Tudor’s Hulubei’s implementation available at
http: //www.hulubei.net /tudor/csp

4.3 Stochastic Local Search

We also compare against Stochastic Local Search (SLS), which, while incomplete,
has been successfully applied to a wide range of automated reasoning problems.
The SLS algorithm we use is a basic greedy search algorithm that uses a number
of heuristics to improve its performance (see [7] for more details).

4.4 MBTE-SC/MC

On 100 variable random problems, we will compare IJGP(7)-SC against MBTE(7)-
SC and MBTE(%)-MC, using various ¢-bounds. MBTE(7)-SC and MBTE(¢)-MC
are backtracking algorithms that use a heuristic computed by the mini-cluster-
tree elimination algorithm [2]. In case of MBTE(4)-SC, the heuristic is Solution
Counting, whereas in case of MBTE(7)-MC, the heuristic is Min-Conflicts.

5 Experimental Results

We have performed three sets of experiments: (1) Comparison of scalability of
IJGP-SC and MAC, (2) The effect of using different i-bounds on the performance
of IJGP(4)-SC, and (3) The effect of using different number of iterations.

All experiments use a cpu time bound and if a solution is not found within
this time bound, we record a time-out. Note that only those instances that were
solved by at least one algorithm within the time bound are considered as soluble
instances. All experiments were carried out on a Pentium-2400 MHz PC with 2
GB of RAM running version 9.0 of the red-hat Linux operating system.

5.1 Problem Sets and Terminology

Random CSPs Random binary CSPs were generated using the parametric
model (N, K,C,T) called ModelB [12]. In this model, for a given N and K, we
select C' constraints uniformly at random from the available N(N —1)/2 binary
constraints and then for each constraint we select exactly 7' tuples (called as
constraint tightness) as no-goods from the available K? tuples. The number of
variables was varied between 100 and 2000. The domain size K for all instances
was 4 and the constraint tightness T" was also 4. This tightness is the same as in
not — equal constraints.

We will refer to the set of random CSPs having n variables as the n-variable-
set. For each n-variable-set, we tried to systematically (experimentally) locate
the phase transition region by varying the number of constraints. However, the
phase transition region could not be located for problems sets having more than
500 variables, due to the presence of large number of instances on which the
algorithms (including MAC and SLS) did not terminate (in almost 3 days of cpu
time). So for such problems, we chose to extrapolate the location of the phase
transition region based on the statistics on smaller number of variables. We test
the performance of our algorithms in the phase-transition region because the
hardest csp instances appear there [12].

Random 3-coloring problems We generated random 3-coloring problems us-
ing Joseph Culberson’s flat graph coloring generator. This generator generates
graph coloring problems which are guaranteed to be 3-colorable. We experi-
mented with 3-coloring problems having 100 and 200 vertices with 0 flatness.
For these problems, we used a specialized graph coloring solver? to locate the
settings at which hard problems occur with a high probability.

Balanced Quasi-group completion problems with holes We also gener-
ated random balanced Quasi-group completion problems with holes (balanced
QWH) using the generator developed by Henry Kautz et al. [8]. Note that
the problems generated by this generator are guaranteed to be consistent. We
mapped these problems into a binary csp as follows: (1) The variables in the csp
are the holes in a balanced QWH problem (2) The domain of each variable is the
initial number of colors minus the colors already assigned to the row and column
of the hole (3) The binary constraints in our csp formulation are the not — equal
constraints between two variables (or holes) that lie in the same column or row.
We experimented with balanced QWH problems of order 18 and 20 respectively.
For these problems, we used the results provided in [8] to locate the settings at
which hard problems appear with a high probability.

The tables used in this section use the following terminology. The columns T
and B give the time in seconds and number of backtracks respectively. Column
TB gives the time-bound used while the column #Solved gives the number of
instances solved by the algorithm in the given time-bound. Column V gives the
number of variables and C gives the number of constraints. Note that an asterisk
(%) indicates that the median time was same as the time-bound used.

5.2 Scalability of IJGP-SC vs. MAC

First we compare IJGP-SC* against MAC in terms of scalability. In Table 1 we
have results on random CSPs. For each N, we generated 200 instances at the
50% solubility point. Each row reports the statistics taken over soluble instances.

We observe from Table 1 that IJGP-SC* is superior to MAC in terms of
scalability. We see that MAC is better than IJGP-SC* time-wise in the range
100 — 300. However, as the number of variables increases above 400, MAC is
inferior to IJGP-SC*. In particular, when N > 500, IJGP-SC* can solve many
more problems than MAC. Also, IJGP-SC* is by far superior to MAC in terms
of number of backtracks. A more detailed comparison between MAC and IJGP-
SC* in terms of time and number of backtracks on individual instances in the
500-variable-set is shown in the two scatter plots of Figure 4.

Note that the results are likely based on a subset of the soluble instances that
constitute easy instances at the 50% solubility point, because when N > 1000
we keep the time bound constant at 5 hours. However, the main point is that:
given a time-bound IJGP-SC* solves more problems and faster than MAC as
the problem size increases.

2 solver and generator are available at http://www.cs.ualberta.ca/ joe/Coloring/

Table 1. Performance of MAC and IJGP-SC* on random problems

IJGP-SC* MAC
Statistics| V | C T B |#Solved| T B #Solved| TB
Average | 100 | 430 | 2.35 | 119.76 0.32 | 62.26
Median | 100 | 430 | 0.63 0 117 0.2 46 117 |15 min
Average | 200 | 850 |104.25|3014.59 1.55 | 950.5
Median | 200 | 850 | 3.496 42 102 0.715 461 102 lhr
Average | 300 {1280 188.4 | 7882.2 27.54 | 12409.4
Median | 300 |1280| 74.5 352 98 9.1 4428 102 2 hr
Average | 400 {1710 218.6 | 2363.7 231.2 | 87456.7
Median | 400 |1710| 113.4 | 360.5 91 143.8 | 57549 86 3 hr
Average | 500 [2150| 621.7 | 704.2 1065.2|178921.2
Median | 500 |2150|431.62| 389 72 653.2 | 122309 58 4hr
Average | 700 [2970(1073.2| 141.2 * *
Median | 700 |2970| 732.5 89 67 * * 3 5hr
Average |1000(4250(1148.2| 87.4 * *
Median (1000|4250|1073.6] 83 41 * * 2 5hr
Average |1200(5100(1297.2| 98.1 * *
Median (1200|5100 881.2 71 23 * * 4 5hr
Average |1500(6370| 712.8 | 3.4 * *
Median (1500|6370 634.6 0 16 * * 0 5hr
Average |1700{7250(1756.2| 145.2 * *
Median (1700|7250|1212.4] 78 15 * * 0 5hr
Average [2000|8500(788.2 | 1.6 * *
Median [2000|8500(765.4 0 28 * * 0 5hr

Table 2. Performance of IJGP-SC* and MAC on 3-coloring problems

IJGP-SC* MAC
Statistics| V | C T B |#Solved| T | B |#Solved| TB
Average |100(239| 1.38 | 279 0.18] 40
Median |100{239| 0.74 | 129 100 |0.1{32| 100 |15min.
Average |200(479(267.14(37763 0.75|876
Median |200(479(125.34(24273| 92 |0.54(354| 100 1lhr.

In order to test the performance of IJGP(2)-SC and MAC in the undercon-
strained region, we ran experiments on the 1000-variable-set. The number of
constraints was varied between 4000 and 4100. The scatter plots in Figure 5
show the results on individual instances in the 1000-variable-set with a time-out
of 5 hrs. Once again we observe that MAC is superior both time-wise and in
number of backtracks.

For the Quasi-group completion problems with holes (balanced QWH), we see
that (Table 3) IJGP-SC* is superior to MAC both in terms of time and number
of backtracks. The statistics on each row in Table 3 is based on 100 instances.

Table 3. Performance of IJGP-SC* and MAC on balanced QWH problems

IJGP-SC* MAC
Statistics|Order|Holes| T B |#Solved| T B #Solved| TB
Average | 18 | 150 |463.06 [17437.8 954.74|1254880
Median | 18 | 150 | 10.78 | 726 100 |218.64| 269919 91 1800s
Average | 18 | 158 |178.22 | 6453 714.56| 975632
Median | 18 | 158 | 13.21 934 100 |219.45| 248212 94 |1800s
Average | 20 | 176 |1214.5 [11712.1 * *
Median | 20 | 176 | 319.1 | 3326 81 * * 22 1hr.
Average | 20 | 187 |1176.49(9773.49 * *
Median | 20 | 187 |159.33| 768 78 * * 19 lhr.
Scatter plot: Time Scatter Plot: Backtracks
<500,4,2150.4> L <s0421504>
Qo O '
<Et 100 = ™
IJGP(2)-SC IJGP(2)-SC

Fig. 4. IJGP-SC* vs. MAC for soluble 500 variable problems with K=/, T=4, C=2150.

600000

1000 variable random csps with K=4, T=4

1000 variable random csps with K=4, T=4

500000

400000

300000

200000

100000

#Backtracks performed by MAC

Instance

000 T
Instance x

xomcmeon x X
3500 -
3000

somcamox x
2500
2000

1500

1000

Time in seconds by MAC

500 o
%

100000 200000 300000 400000 50001
#Backtracks performed by IJGP(2)-SC

00 600000

o 500 1000 1500 2000 2500 3000 3500 4000
Time in seconds by IIGP(2)-SC

Fig. 5. IJGP(2)-SC vs. MAC for soluble 1000 variable problems with K=4, T=4.

We also observe that IJGP-SC* solves
specified time-bound.

more problems than MAC within the

On the other hand, our preliminary results on 3-coloring problems (see Ta-
ble 2), show a contrasting picture in which MAC is superior both in terms of
cpu-time and number of backtracks. We currently don’t have a good explanation

for this phenomenon. We will address this question when we compare the effect
of using different number of iterations on the performance of IJGP-SC*.

5.3 Effect of using different number of iterations

Table 4. The effect of number of iterations on IJGP-SC* on random csp instances

MAC IJGP-SC* IJGP-SC* 1IJGP-SC*

10 iterations [100 iterations|500 iterations
Statistics| V| E | T B T B T B T B TB

Average |100|430(0.32|62.26| 2.35 | 119.76 | 5.88 | 3.23 | 26.3 | 2.5 |15min.
Median 100|430/ 0.2 | 46 | 0.63 0 5.91 0 28.21 0
Average |200|850(1.55|950.5(104.25|3014.59(39.91| 28.69 |131.34| 16.35 | 1hr.
Median (200|850|0.72| 461 | 3.5 42 126.43 0 128.59| O

In order to determine the effect of iterations, we report results on (1) hard
100 and 200 vertex flat 3-coloring instances, (2) 100 and 200 variable random
CSPs and (3) balanced Quasi-group completion problems with holes (balanced
QWH) of order 18 and 20. The results are summarized in Tables 4 , 5 and 6.
The statistics on each row in these tables is based on 100 random instances.

We can see that as we increase the number of iterations, the number of back-
tracks decreases. This is to be expected because as the number of iterations is
increased the pruning power of IJGP-SC* increases (it becomes closer to full arc-
consistency). We believe however that the decrease in backtracks is primarily due
to a better value ordering heuristic. Our claim can be supported by comparing
the performance of IJGP-SC* with MAC.

Dechter and Mateescu ([6]) proved that the pruning caused by IJGP-SC* is
equivalent to arc-consistency when the algorithm is run until convergence. Thus,
if we ignore the effect of value-ordering heuristic, MAC should prune better
than IJGP-SC*. On the other hand, Tables 4 , 5 and 6 show that the number
of backtracks performed by IJGP-SC* with 500 iterations is better than MAC.
This suggests that the SC based value ordering heuristic used in IJGP-SC* is
more powerful than MAC’s min-conflict value-ordering heuristic.

Note that the time taken by IJGP-SC* is dependent on two factors (1) the
number of backtracks made and (2) the number of iterations. The tables indicate
the trade-off between the two. We see (Tables 4 and 5) that as we increase the
number of iterations, the median number of backtracks required by IJGP-SC*
for 10, 100 and 500 iterations is almost equal. On the other hand, from Table 6
we can see that IJGP-SC* requires significantly more iterations for 3-coloring
problems than random CSPs and balanced QWH problems to obtain comparable
level of accuracy (backtracks). This explains the poor performance of IJGP-SC*
as compared to MAC for 3-coloring problems.

Table 5. The effect of number of iterations on IJGP-SC* for balanced QWH

MAC IJGP-SC* IJGP-SC* IJGP-SC*
10-iterations | 100-iterations | 500-iterations
Statistics|Order|Holes| T B T B T B T B TB

Average | 18 | 150 |954.74|1254880| 463.06 [17437.8| 432.4 | 1400 | 1189.2 |724.91|1800s
Median | 18 | 150 |218.64| 269919 | 10.78 | 726 |170.53| 622 | 688.92 | 345

Average | 18 | 158 |714.56| 975632 | 178.22 | 6453 |213.56 | 744.3 | 533.4 | 387 |[1800s
Median | 18 | 158 [219.45| 248212 | 13.21 934 | 145.67| 507 |412.56 | 218

Average | 20 | 176 * * 1214.5 (11712.1]2080.43|2168.8| 2908.4 | 542.3 |1 hr.

Median | 20 | 176 * * 319.1 | 3326 | 2706 | 1176 | 1845.2 | 471

Average | 20 | 187 * * 1176.49|9773.49|1682.48(1454.8|2118.38|311.21| 1 hr.
* *

Median | 20 | 187 159.33 | 768 [1058.73| 198 | 1998 47

Table 6. The effect of number of iterations on IJGP-SC* for 3-coloring problems

MAC | IJGP-SC* IJGP-SC* IJGP-SC*

10 iterations|100 iterations|500 iterations
Statistics| V| E | T | B T B T B T B TB

Average |100/239]0.18| 40 | 1.38 | 279 |2.21 47 110.41 7 15 min.
Median [100(239| 0.1 | 32| 0.74 | 129 | 1.39 31 7.13 0
Average |200|479(0.75|876|267.14|37763| 27.9 | 141 |53.72] 39 lhr.
Median [200(479|0.54|354(125.34(24273(23.99| 108 [39.85| 13

5.4 Effect of using different i-bounds

To determine the effect of varying the i-bound, we experimented with N = 100
random problems and generated 200 instances each with 420, 430, 440 and 450
constraints. We have decomposed our results into two subsets, the first con-
sisting of only the soluble instances while the other consisting of only insoluble
instances (Table 7). It is evident that algorithms with i-bound 2 dominate their
counterparts with higher /-bounds in terms of cpu time. In general, for a given i-
bound, IJGP(i)-SC was better than MBTE(¢)-SC which was in turn better than
MBTE(?)-MC in terms of cpu time and the number of backtracks. As expected
the number of backtracks decreases as i-bound increases.

5.5 Performance of SLS

We ran SLS on random problems from N = 100(Table 7) until N = 1000.
We saw that SLS was competitive with MAC and IJGP-SC at problem sizes
N = 100-500. However at N = 1000 SLS failed to solve any problems. We admit
that our implementation of SLS may not be competitive with the best local
search algorithms.

Table 7. Median Time and Backtracks required by various algorithms on the 100-
variable-set, i=i-bound used. The quantity in the bracket indicates the number of
instances on which the results are based on. We have used use IJGP(4)-SC, the non-
optimized version.

1JGP(i)-SC MBTE(i)-SC MBTE(i)-MC
C i=2 [i=3 [i=4 [i=2 [i=3 [i=4 [i=2 [i=3 [i=4 |[SLS|MAC
Time for soluble instances
420.0(163)|1.2 1.9 3.9 4.1 5.6 9.9 4.7 4.5 5.9 0.2 0.2
430.0(109)(1.3 2.1 4.2 14.4 |15.8 |16.1 [13.0 |7.1 15.8 0.2 |0.2
440.0(85) |1.4 2.1 7.0 29.0 (30.2 (20.9 (9.9 20.4 (20.7 (0.3 (0.4
450.0(43) |14 2.2 11.2 9.3 38.9 |287.2 [134.9 |57.8 [89.5 (0.7 |0.6
Backtracks for soluble instances
420.0(163)|0.0 0.0 0.0 111.0 |103.0 |115.0 [83.0 [29.0 (10.0 44.0
430.0(109)|2.0 3.0 2.0 261.0 [267.0 [155.0 |243.0 [62.0 |92.0 40.0
440.0(85) |2.0 39.0 |132.0 [485.5 |331.0 |334.5 [415.0 |48.5 [140.0 73.0
450.0(43) |0.0 0.0 69.0 [178.0 |400.0 |1550.0{1673.0|565.0 [531.0 58.0
Time for insoluble instances
420.0(37) |76.6 [139.9 |168.7 [392.6 |327.9 |398.2 [398.4 |223.2 (276.4 0.4
430.0(91) |44.0 |62.7 |107.9 |276.6 [231.7 [306.7 |148.0 |134.1 |171.1 0.7
440.0(115)|26.2 |43.4 |80.1 |211.5 |232.6 |311.8 [164.1 |141.4 [161.3 0.4
450.0(157)|30.2 [38.2 |90.4 [230.6 |231.6 |327.3 [132.0 |124.4 |156.5 0.4
Backtracks for insoluble instances

420.0(37) |1501.0{1718.5|1415.0|4870.0/2870.0({2211.0(4463.5|2577.0{1764.0 92.5
430.0(91) |944.0 |762.5 |792.5 |2818.5/1829.5(1415.0({2038.0{1599.0{1350.0 61.0
440.0(115)|565.0 {549.0 {617.0 |2332.0|1861.0|{1549.0/2068.0{1460.0{1048.0 67.0
450.0(157)|573.0 [420.0 |481.0 |2090.0/1622.0{1429.0({1756.0{1131.0{918.0 52.0

6 Related Work and Conclusions

The paper presents a new look-ahead scheme based on the Iterative Join-Graph
Propagation (IJGP) approximation of the solution counting task. We compare
a simple backtracking algorithm using the IJGP-SC heuristic against MAC and
SLS on random CSPs, graph coloring problems and Quasi-group completion
problems. We show that the counting heuristic produces a highly focused search
that has as much as orders of magnitude fewer backtracks than MAC. In our
experiments we use IJGP-SC mostly as a value ordering heuristic, while the
strength of MAC lies in domain pruning.

Horsch and Havens [9] have studied the task of computing solution probabil-
ities. Their algorithm, called Probabilistic Arc Consistency (pAC), is a general-
ization of arc consistency and approximates solution counts for each singleton
assignment. We believe our approach of employing IJGP for computing solution
counts is much more general, allowing a tradeoff between accuracy and complex-
ity. Our experimental work is far more extensive; [9] experiments with problems
up to 70 variables and finds that while pAC greatly reduces the number of back-
tracks competing algorithms are often still superior time-wise; we solve problems

with up to 2000 variables, and show that often, especially for large problems,
IJGP-SC is superior to some of the best competing algorithms.

The main result of the paper is in demonstrating the power of counting ap-
proximation by IJGP as a value-ordering heuristic. Specifically, we showed that
backtracking with IJGP-SC is superior to MAC in terms of scalability on ran-
dom CSPs and Quasi-group completion problems, while (based on preliminary
results) on graph coloring MAC is superior to IJGP-SC. On random CSPs, MAC
is superior to IJGP-SC when the problem size is small. However, as the problem
size grows to N = 500, IJGP-SC is better than MAC in terms of CPU time. As
N grows further, IJGP-SC can solve more problems and in less CPU time.

Acknowledgments

This work was supported in part by the NSF grant I1S-0086529 and the MURI
ONR award N00014-00-1-0617.

References

[1] Christian Bessiere and Jean-Charles Regin. MAC and combined heuristics: Two
reasons to forsake FC (and CBJ?) on hard problems. In CP’96, 1996.

[2] R. Dechter, K. Kask, and J. Larrosa. A general scheme for multiple lower-bound
computation in constraint optimization. CP-2001, 2001.

[3] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intel-
ligence, pages 353-366, 1989.

[4] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[5] Rina Dechter, Kalev Kask, and Robert Mateescu. Iterative join graph propaga-
tion. In UAI ’02, pages 128-136. Morgan Kaufmann, August 2002.

[6] Rina Dechter and Robert Mateescu. A simple insight into iterative belief propa-
gation’s success. UAI-2003, 2003.

[7] K. Kask and R. Dechter. Gsat and local consistency. In IJCAI-95, 1995.

[8] Henry A. Kautz, Yongshao Ruan, Dimitris Achlioptas, Carla P. Gomes, Bart Sel-
man, and Mark E. Stickel. Balance and filtering in structured satisfiable problems.
In IJCAI pages 351-358, 2001.

[9] Horsch Michael and Havens Bill. Probabilistic arc consistency: A connection
between constraint reasoning and probabilistic reasoning. In UAI-2000, pages
282-290, 2000.

[10] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[11] Daniel Sabin and Eugene C. Freuder. Understanding and improving the MAC
algorithm. In CP (1997), pages 167-181, 1997.

[12] Barbara Smith. The phase transition in constraint satisfaction problems: A CLoser
look at the mushy region. In Proceedings ECAI’94, 1994.

