
Enrico Motta Nigel Shadbolt
Arthur Stutt Nick Gibbins (Eds.)

Engineering Knowledge
in the Age
of the Semantic Web

14th International Conference, EKAW 2004
Whittlebury Hall, UK, October 5-8, 2004
Proceedings

1 3

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Enrico Motta
Arthur Stutt
The Open University, Knowledge Media Institute
Walton Hall, Milton Keynes, MK7 6AA, UK
E-mail: {e.motta, a.stutt}@open.ac.uk

Nigel Shadbolt
Nick Gibbins
University of Southampton, School of Electronics and Computer Science
Highfield, Southampton, SO17 1BJ, UK
E-mail: {nrs, nmg}@ecs.soton.ac.uk

Library of Congress Control Number: 2004112955

CR Subject Classification (1998): I.2, H.4, H.3, J.1, C.2

ISSN 0302-9743
ISBN 3-540-23340-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

c© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11329886 06/3142 5 4 3 2 1 0

Table of Contents

Ontologies: Mappings and Translation

The Theory of Top-Level Ontological Mappings and Its Application to Clinical
Trial Protocols

Barbara Heller, Heinrich Herre, Kristin Lippoldt ...……………………………...1

Generating and Integrating Evidence for Ontology Mappings
Ludger van Elst, Malte Kiesel…………………………………………………..15

Ontology Translation Approaches for Interoperability: A Case Study with
Protégé-2000 and WebODE

Oscar Corcho, Asunción Gómez-Pérez ...…………………………………………….30

Ontologies: Problems and Applications

On the Foundations of UML as an Ontology Representation Language
Giancarlo Guizzardi, Gerd Wagner, Heinrich Herre …..………...………………...47

OWL Pizzas: Practical Experience of Teaching OWL-DL: Common Errors and
Common Patterns

Alan Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger
Knublauch, Robert Stevens, Hai Wang, Chris Wroe ……..…………………………63

Using a Novel ORM-Based Ontology Modelling Method to Build an
Experimental Innovation Router

Peter Spyns, Sven Van Acker, Marleen Wynants, Mustafa Jarrar,
Andriy Lisovoy …..…………………………………………………………...…………..82

Ontology-Based Functional-Knowledge Modelling Methodology and Its
Deployment

Yoshinobu Kitamura, Riichiro Mizoguchi ..………………………………………......99

Ontologies: Trust and E-learning

Accuracy of Metrics for Inferring Trust and Reputation in Semantic Web-Based
Social Networks

Jennifer Golbeck, James Hendler ..…………………………………………………..116

XIV Table of Contents

Semantic Webs for Learning: A Vision and Its Realization
Arthur Stutt, Enrico Motta …….....…………………………………………………...132

Ontology Maintenance

Enhancing Ontological Knowledge Through Ontology Population and Enrichment
Alexandros G. Valarakos, Georgios Paliouras, Vangelis Karkaletsis,
George Vouros ..………………………………………………………………………..144

Refactoring Methods for Knowledge Bases
Joachim Baumeister, Frank Puppe, Dietmar Seipel ...157

Applications to Medicine

Managing Patient Record Instances Using DL-Enabled Formal Concept Analysis
Bo Hu, Srinandan Dasmahapatra, David Dupplaw, Paul Lewis,
Nigel Shadbolt ….……………………………………………………………………....172

Medical Ontology and Virtual Staff for a Health Network
Rose Dieng-Kuntz, David Minier, Frédéric Corby, Marek Ruzicka,
Olivier Corby, Laurent Alamarguy, Phuc-Hiep Luong ……...…………………....187

Portals

A Semantic Portal for the International Affairs Sector
J. Contreras, V. R. Benjamins, M. Blázquez, S. Losada, R. Salla, J. Sevilla,
D. Navarro, J. Casillas, A. Mompó, D. Patón, O. Corcho, P. Tena,
I. Martos ..203

OntoWeaver-S: Supporting the Design of Knowledge Portals
Yuangui Lei, Enrico Motta, John Domingue …………..…………………………...216

Knowledge Acquisition

Graph-Based Acquisition of Expressive Knowledge
Vinay Chaudhri, Kenneth Murray, John Pacheco, Peter Clark, Bruce Porter,
Pat Hayes ………………………………………………………………………………..231

Incremental Knowledge Acquisition for Improving Probabilistic Search
Algorithms

J.P. Bekmann, Achim Hoffmann ..248

Parallel Knowledge Base Development by Subject Matter Experts
Gheorghe Tecuci, Mihai Boicu, Dorin Marcu, Bogdan Stanescu,
Cristina Boicu, Marcel Barbulescu…………………………………………..265

Table of Contents XV

Designing a Procedure for the Acquisition of Probability Constraints for Bayesian
Networks

Eveline M. Helsper, Linda C. van der Gaag, Floris Groenendaal ...…………...280

Invented Predicates to Reduce Knowledge Acquisition
Hendra Suryanto, Paul Compton ……..…..…………………………………………293

Web Services and Problem Solving Methods

Extending Semantic-Based Matchmaking via Concept Abduction and Contraction
Tommaso Di Noia, Eugenio Di Sciascio, Francesco M. Donini ……….………..307

Configuration of Web Services as Parametric Design
Annette ten Teije, Frank van Harmelen, Bob Wielinga321

Knowledge Modelling for Deductive Web Mining
Vojtěch Svátek, Martin Labský, Miroslav Vacura ……..………………………......337

On the Knowledge Level of an On-line Shop Assistant
Nenad Stojanovic, Rudi Studer ……….………………………………………………354

A Customer Notification Agent for Financial Overdrawn Using Semantic
Web Services

José Manuel López-Cobo, Silvestre Losada, Oscar Corcho, Richard Benjamins,
Marcos Niño …...………………………………………………………………………..371

Aggregating Web Services with Active Invocation and Ensembles of String
Distance Metrics

Eddie Johnston, Nicholas Kushmerick …...……………………………………..…..386

Search, Browsing and Knowledge Acquisition

KATS: A Knowledge Acquisition Tool Based on Electronic Document Processing
Martin Molina, Gemma Blasco ……...…..…………………………………………...403

SERSE: Searching for Digital Content in Esperonto
Valentina Tamma, Ian Blacoe, Ben Lithgow Smith, Michael Wooldridge ……...419

A Topic-Based Browser for Large Online Resources
Heiner Stuckenschmidt, Anita de Waard, Ravinder Bhogal, Christiaan Fluit,
Arjohn Kampman, Jan van Buel, Erik van Mulligen, Jeen Broekstra,
Ian Crowlesmith, Frank van Harmelen, Tony Scerri ...……………………………433

Knowledge Formulation for AI Planning
T. L. McCluskey, R. M. Simpson ……...……………………………………………..449

XVI Table of Contents

Short Papers

ConEditor: Tool to Input and Maintain Constraints
Suraj Ajit, Derek Sleeman, David W. Fowler, David Knott …….....……………..466

Adaptive Link Services for the Semantic Web
Thanyalak Maneewatthana, Gary Wills, Wendy Hall ...……………………..……469

Using Case-Based Reasoning to Support Operational Knowledge Management
Giulio Valente, Alessandro Rigallo …..………………………………………..……471

A Hybrid Algorithm for Alignment of Concept Hierarchies
Ryutaro Ichise, Masahiro Hamasaki, Hideaki Takeda …….……………………...474

Cultural Heritage Information on the Semantic Web
Efthimios C. Mavrikas, Nicolas Nicoloyannis, Evangelia Kavakli …….………..477

Stepper: Annotation and Interactive Stepwise Transformation for
Knowledge-Rich Documents

Knowledge Management and Interactive Learning
Nieves Pedreira, Julián Dorado, Juan Rabuñal, Alejandro Pazos,
Andrés Silva ...…………………………………………………………………..481

Ontology-Based Semantic Annotations for Biochip Domain
Khaled Khelif, Rose Dieng-Kuntz ………….………………………………………...483

Toward a Library of Problem-Solving Methods on the Internet
Alvaro E. Arenas, Brian M. Matthews ……..……...………………………………...485

Supporting Collaboration Through Semantic-Based Workflow and Constraint
Solving

Yun-Heh Chen-Burger, Kit-Ying Hui, Alun D. Preece, Peter M. D. Gray,
Austin Tate ..……….…………………...……………………………………………….487

Towards a Knowledge-Aware Office Environment
Leslie Carr, Timothy Miles-Board, Gary Wills, Arouna Woukeu,
Wendy Hall …………..…………………..……………………………………………..489

Computing Similarity Between XML Documents for XML Mining
Jung-Won Lee, Seung-Soo Park ...……..…………………………………………….492

A CBR Driven Genetic Algorithm for Microcalcification Cluster Detection
Bin Yao, Jianmin Jiang, Yonghong Peng …….……………………………………..494

Marek Růžička, Vojtěch Svátek …….………………………………………………...479

Table of Contents XVII

Ontology Enrichment Evaluation
Andreas Faatz, Ralf Steinmetz ..……………………………………...……………….497

KAFTIE: A New KA Framework for Building Sophisticated Information
Extraction Systems

Son Bao Pham, Achim Hoffmann ..………………………………………...…………499

From Text to Ontology: The Modelling of Economics Events
Alberto Méndez-Torreblanca, Aurelio López- López ……..……………………….502

Discovering Conceptual Web-Knowledge in Web Documents
Seung Yeol Yoo, Achim Hoffmann ..……………………………………...…………..504

Knowledge Mediation: A Procedure for the Cooperative Construction of
Domain Ontologies

Felix-Robinson Aschoff, Franz Schmalhofer, Ludger van Elst ..…………………506

A Framework to Improve Semantic Web Services Discovery and Integration
in an E-Gov Knowledge Network

Denilson Sell, Liliana Cabral, Alexandre Gonçalves, Enrico Motta,
Roberto Pacheco …...…………………………………………………………………..509

Knowledge Organisation and Information Retrieval with Galois Lattices
Laszlo Szathmary, Amedeo Napoli…………………………………………….511

Acquisition of Causal and Temporal Knowledge in Medical Domains
A Web-Based Approach

J. Palma, M. Campos, J.M. Juarez, A. Morales ...………………………..………..513

Author Index ……………………………………………..………………….……515

E. Motta et al. (Eds.): EKAW 2004, LNAI 3257, pp. 371–385, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Customer Notification Agent for Financial
Overdrawn Using Semantic Web Services

José Manuel López-Cobo, Silvestre Losada, Oscar Corcho,
Richard Benjamins, and Marcos Niño

Intelligent Software Components, S.A. (iSOCO),
C/ Francisca Delgado, 11 – 2. 28108 Alcobendas,

Madrid, Spain
{ozelin,slosada,ocorcho,rbenjamins,marcosn}@isoco.com

Abstract. In this paper, we present a Notification Agent designed and
implemented using Semantic Web Services. The Notification Agent manages
alerts when critical financial situations arise discovering and selecting mul-
tichannel notification services. This agent applies open research results on the
Semantic Web Services technologies including on-the-fly composition based on
a finite state machine and automatic discovery of semantic services. Financial
Domain ontologies, based on IFX financial standard, have been constructed and
extended for building agent systems using OWL and OWL-S standard (as well
as other approaches like DL or f-Logic). This agent is going to be offered
through integrated Online Aggregation systems in commercial financial
organizations.

Keywords: Semantic Web Services, Ontologies, Composition, Intelligent
Agent

1 Introduction

The objective of the distributed system described in this paper (the Customer Notifica-
tion Agent) is to provide added value to customers of financial services. This added
value consists in a fully customizable and configurable set of aggregations and estima-
tion functionalities on account balance evolution, as well as SMS and email alerts
(among others), which will allow customers to have more efficient information about
his financial position.

This system reuses existing technology for aggregation available at our company
(iSOCO GETsee ®), and migrates it to Semantic Web Services technology. The inte-
grated use of Semantic Web technologies and Web Services allows us to describe and
reason with pieces of code understandable for machines, discharging the sometimes
tedious task of checking the online accounts to a software system. This system is able
to engage with other commercial solutions for aggregation and to detect at run-time
and raise alerts if some conditions are detected (for example, a possible overdrawn of
a customer saving account, due to the future payment of an invoice).

372 J.M. López-Cobo et al.

We have developed different ontologies to express the needed knowledge for this
application. These ontologies are divided into three groups: general ontologies, which
represent common sense knowledge reusable across domains; domain ontologies,
which represent reusable knowledge in a specific domain; and application-dependent
ontologies, which represent the application-dependent knowledge needed.

We have defined three high-level services for performing the task of the Customer
Notification Agent. The GETseeSWS Service accesses the online accounts of the cus-
tomer and the invoices associated with them, and calculates the balance for these ac-
counts. The NotificationService notifies customers with different types of messages
(discharging in 3rd party providers the execution of the actual notification) and finally,
the EstimationService estimates, using different kinds of arithmetical functions, the
expectable amount of an invoice for preventing an overdrawn situation.

One of the main innovations of our systems is the proposal of a finite state diagram
to represent the composition of atomic processes into composite ones using conditions
as a way to choose between different choices. Such an approach allows at run-time the
discovery and invocation of services which comply with the conditions defined for the
transition from one state to another. This allows describing a composite process at
design-time by defining its behavior and leaving the selection of the specific service to
the execution time. This is an innovation with respect to other approaches where the
selection of the specific services is done also during the design time.

The paper is organized as follows. Section 2 describes a sample scenario where the
Notification Agent can be used, showing the main actors and agents involved in the
overall process and the steps usually followed by them. Section 3 describes the on-
tologies that we have developed, either from scratch or by reusing other ontologies or
vocabularies already available elsewhere. Section 4 describes the Semantic Web ser-
vices created for the system, which have been implemented using OWL-S, DL and f-
Logic. Section 5 describes one of the main contributions of this paper, namely the
proposal for service composition using finite state diagrams. Finally, section 6 pro-
vides some conclusions of our work and future lines of research.

2 Scenario Description

Let us suppose that we are working on the scenario presented in figure 1. In this sce-
nario we have a customer with several banking accounts where he/she has different
amounts of money. This customer has also contracts with some consumer goods com-
panies such as a telephone company, and gas and electricity providers, among others.

Everyday, the Customer Notification Agent will detect whether any of the cus-
tomer accounts is going to be in an overdrawn situation. Bank accounts may have
different invoices associated from different consumer good companies. If the amount
of the invoice is bigger than the amount of money of the account, there could be an
overdrawn situation. To help the customer, the system calculates an estimation of the
amount of every invoice expected for that account before its value date and notifies
the customer if the balance of the saving account is less than the expected invoice
amount. The system will choose any of the notification channels available for the
customer and will notify him/her about the overdraw possibility.

A Customer Notification Agent for Financial Overdrawn 373

As a specific example, let us suppose that our customer has 100 euros in one of his
bank accounts, which have two invoice payments associated to it: electricity and gas.
These invoices will be charged in two consecutive dates (April 3rd and 4th, 2004), with
amounts equal to 60 and 50 euros each. Consequently, the costumer may have an
overdrawn in case that he/she does not transfer money into this account. Bank trans-
fers usually take two or three days to be actually done, so the bank transfer of 10 euros
should be done before the end of March. This is a very simple example of the results
expected from the Notification Agent.

Fig. 1. Sample scenario diagram for the Notification Agent

In this scenario, the following actors are involved: the customer, the banks, and the
consumer goods companies. And the following agents are involved: customer notifica-
tion agent (CNA), Sentinel and some estimation services. Finally, the iSOCO GET-
see® application is at the core of this scenario, in charge of the aggregation of data
from bank accounts and consumer goods companies.

The following steps will be normally done:

Step 1: Everyday, the Customer Notification Agent dynamically configures and in-
vokes the Sentinel Service. This agent has the entire customer’s information needed
for invoking the composed service (online username, password and other data). The
update frequency of this agent can be customized.

Step 2: The Sentinel Service uses iSOCO GETsee® for collecting information from
the customer’s accounts.

374 J.M. López-Cobo et al.

Step 3: iSOCO GETsee® collects the amount balance of all the customer's accounts
(of banks B1, B2, …, Bn). In one (or more) of this accounts some consumer goods
companies (E1, E2, …, En) can charge invoices. The invoices have their notification
and value dates. The frequency of those invoices is always the same (weekly, monthly,
bimonthly, annually).

Step 4: For each invoice of consumer goods companies (E1, E2, …, En) associated
with the account, the Estimation Service estimates the probable amount at the end of
the period, Ae (estimated amount) in terms of heuristics or mathematical models. Ae
has a relationship with a consumer good company (Ee) and an account of a bank
(ABe). If the Ae is less than the established threshold for the account, then an alert has
to be raised.

Step 5: The Notification Service looks in a (de)centralized registry different ways to
communicate with the user. It can find different services involving many different
devices (phone calls using VoIP, SMS, electronic mail, telegram) and personal data
(phone number, cell phone number, e-mail, postal address). The services discovered
must have the ability to perform the action defined in the Notification Service.

Step 6: The invocation engine sorts in terms of cost, time to deliver, etc., the different
possibilities and chooses the first service in this particular ranking. Some data media-
tion could be needed if terms of the ontology used differ from the one used by the
Notification Service. If the service chosen has an irrecoverable mismatching of proc-
ess or data, or some communication error occurs in the invocation, the service has to
be able to choose another service and invoke it.

Step 7: The service chosen is invoked and the user is notified.

In summary, the objective of the Notification Agent is to provide added value to
the user including a fully customizable and configurable set of aggregations and esti-
mation functionalities on balance evolution as well as SMS and email alerts, allowing
the customer to have more efficient information about his financial position in the
incoming time period.

Several estimation functionalities allow calculating balance evolution on different
accounts according to expected invoices and payments. The foreseen value of account
balances will allow firing alert rules defined by the user and managed by the Notifica-
tion Agent application. Those alerts could let him anticipate any trouble that could
occur in his accounts or avoid missing any business opportunity.

3 Ontology Structure for the CNA

In this section we describe briefly the ontologies that model the domain presented in
our scenario, and which will be used by the Semantic Web services developed for it
and described in section 4. These ontologies have been implemented in OWL [3]
using the Protégé-2000 ontology tool [5], with the OWL-plug-in [6]. A graphical
outline of the main relationships between these ontologies is presented in figure 2.

A Customer Notification Agent for Financial Overdrawn 375

According to the classifications of Van Heijst and colleagues [1] and of Mizoguchi
and colleagues [2], we can distinguish the following types of ontologies:

• General ontologies, which represent common sense knowledge reusable across
domains. In this group we can include our ontologies about users and notifications,
which include basic concepts related to persons and their contact information, and
our ontology about estimation parameters, which is based on statistical concepts.

• Domain ontologies, which represent reusable knowledge in a specific domain. In
this group we can include our ontologies about financial products and financial ser-
vices.

• Application ontologies, which represent the application-dependent knowledge
needed. In this group we can include our ontologies about saving accounts and in-
voice payments, and our ontology about overdrawn situations. The reason why we
classify them under this group does not mean that they might not be reusable in
other ontology-based applications; instead it means that we have not designed them
taking into account such objective.

We will first describe the general ontologies. The ontologies about users and noti-
fications include basic concepts related to persons (users of information systems),
such as name, surname, birth date, etc, and related to their contact information , such
as email addresses, postal addresses, phone and fax numbers, etc. The same message
can be sent in many different types of notifications, using the same or different physi-
cal devices. For instance, if you want to communicate with someone sending him a fax
and an e- mail, the receiver will have two different communications, one in the facsim-
ile device and the other in his e-mail inbox.

With regard to the ontology about estimation parameter, it describes the basic ar-
ithmetical functions that can be used, among others, to estimate the amount of the
spending of an invoice (or whatever other numerical concept which has an historical
evolution). This ontology considers parameters related to linear estimation factors,
statistical information, heuristics, etc.

Regarding the domain ontologies defined, we have two different ones, as shown in
figure 2: financial services and financial products. These ontologies are based on the
IFX financial standard [12], so that they will be easier to reuse by other ontology-
based applications.

The ontology about financial products contains the different types of products pro-
vided by a bank (loans, investment accounts, saving accounts, investment funds, etc.).
In all of them the bank and the customer sign a contract where the bank stores or lend
money from or to the customer. The most important characteristic to define a financial
product is the interestRate, which can be positive or negative. When the interest rate is
positive, the bank gives some money to the customer for having his or her money, and
when this rate is negative, the customer pays some extra money for the money lent by
the bank. Each financial product has their own specific attributes, and is related to the
corresponding user(s) of the ontology about users. Each product can be owned by
many holders and vice versa.

376 J.M. López-Cobo et al.

Fig. 2. Ontologies developed for the Customer Notification Agent for Financial Overdrawn

The ontology about financial services represents those services that banks can pro-
vide to their customers and which are not financial products. These financial services
provide added value to the relationship between a bank and their customers. They
include loyalty cards, paying invoices by direct debit, Internet connection advantages,
information provision about stock markets, etc.

The application-dependent ontologies describe more specific concepts and rela-
tionships related to our system. One of these ontologies is the one related to invoice
payment, which represents the service that the bank offers to their customers, allowing
to charge directly to a saving account of the customer the payment of many different
things (taxes, shopping, subscriptions, consumer goods companies consumes like gas,
water or phone). The ontology related to saving accounts includes concepts related to
the types of saving accounts that can be contracted with the banks with which we are
working.

Finally, the last application-dependent ontology extends the general ontology
about estimation parameters, focusing on the specific case of overdrawn situations like
the ones presented in the previous section.

4 Discovery of Notification Semantic Web Services

The following top-level services are available, as shown in figure 3: GETsee Service,
Notification Service and Estimation Service.

Besides, the figure shows how the GETsee Service is decomposed into five atomic
services (openSession, getAccounts, getInvoices, getBalance, closeSession). These
five services are annotated using the same ontology as the GETsee service (although

A Customer Notification Agent for Financial Overdrawn 377

this is not mandatory in our approach). Those atomic services invoke other services,
which are annotated according to other ontologies. In these cases, data mediation is
needed for the exchange of messages, although this is out of the scope of this paper.
At last, the Notification Service looks for a service able to notify something to a per-
son and finds at least two services (notification by SMS and notification by e-mail),
which might be annotated according to other two more ontologies.

Fig. 3. A diagram of the Semantic Web services used for our notification scenario

As commented in the previous section, the Semantic Web services used in our sce-
nario have been annotated with OWL-S, DL and f-Logic [4, 10]. OWL-S uses the
class Service as a complete description of the content and behavior of a service. It has
three differentiated parts. First of all, the Service Profile explains “what the service
does”. The Process Model describes “how the service works” and finally the Service
Grounding maps the content and format of the messages needed to interact with the
service. It provides a mapping from the semantic form of the messages exchanged as
defined in the Process Model, to the syntactic form as defined in the WSDL input and
output specifications.

For a further understanding about how is supposed to work the Discovery of Noti-
fication Services [17], we put the description (using DL) of two services (defined by
their capabilities) and a Request from a User and depict how they will be matched.
Some domain-level facts:

Notification Action
EmailNotification Notification

 =1 from

378 J.M. López-Cobo et al.

Capabilities and a Request:
CapA
EmailNotification from.User to.User to.User
usedProvider.{ProviderA} sendingTime.Timestamp content.String
acknowledgement.=F cost. =5

CapB
SMSNotification from.User to.CellphoneUser to.CellphoneUser

 usedProvider.{ProviderB} sendingTime.(Timestamp

currentTime+1week) content.String cost. =3
Req
ElectronicNotification from.{Userx} to.{UserY} to.{Userz}
=2to usedProvider.Provider sendTime 200406250900 con-
tent.String acknowledgment =T cost 5

With respect to the ontology schema introduced above the DL-based discovery
component will match requests and capabilities using DL inferences. The basic idea of
the DL-based discovery matching is to check whether the conjunction of a request and
a capability is satisfiable, i.e. there can at least be one instance which they have in
common. If Request CapabilityX holds true there is no such
common instance and the request cannot be fulfilled by this capability.

Other useful approach would be use f-Logic and a reasoner for describe capabili-
ties and goals [8] and make queries for matchmake capabilities and goals. For the goal
we model the postcondition (the state of the information space that is desired). We
express this by a fact in f-logic (here we use the flora2 syntax, [16]).

myGoal:goal[
 postCondition->myNotification].
myNotification:notification[
 ntf_userToBeNotified -> johndoe,
 ntf_date -> d040606:date[dayOfMonth->5,monthOfYear->5,year->2004],
 paymentMethod -> creditCard,
 cost -> 0.2,
 ntf_body -> "Your Account Z will be in minus in 2 weeks",
 ntf_from -> sentinel].
johndoe:user[
 nif -> 123,
 name -> "John Doe",
 password -> "p",
 login -> "l",
 firstPreference -> jdMobile,
 contacts ->>
 {jdEmaill:eml_account[eml_account->"jon@doe.com"],
 jdMobile:phone[phn_number->"0123456", phn_type->mobile],
 jdHome:phone[phn_number->"6543210", phn_type->home]}].
sentinel:user[
 name -> "Sentinel System",
 contacts ->> {jdEmaill:eml_account[

eml_account->"sentinel@isoco.com"]}].

The capability postcondition describes the state of the information space the ser-
vice has after its execution. Here we use some prolog build in predicate e.g. ‘//’ which
is an integer division, but that might also be replaced by more declarative predicate
names like “integerDivision(X,Y,Z)”.

smsProvider[postcondition] :-
 _AnyNotification:notificationSMS[
 phn_number -> _X:phone[phn_type->mobile],

A Customer Notification Agent for Financial Overdrawn 379

 ntf_receiptAcknowledgement -> false,
 ntf_time -> Time:dateAndTime,
 content -> AnyMessage:message,
 payment -> Payment],
 is_charlist(
 AnyMessage.msg_body, AnyMessageLength)@prolog(),
 AnyMessageLength < 800,
 Tokens is '//'(AnyMessageLength,160)@prolog()+1,
 Cost is Tokens * 0.05,
 Payment.cost >= Cost,
 (Payment.paymentMode = creditCard; Payment.paymentMode = account),
 secondsBetween(currentDate,Time,X), X < 5*60.

In the F-Logic approach for discovery we are checking if the capability entails the
goal (capability goal). Current limitations with respect to available reasoners led to
the current modeling, where we have the goal-postcondition as a fact (which may not
be fully specified) and the capability-postcondition as a rule.

We would like to extend this approach on the one hand to overcome the limitations
due to the modelling of the goal as fact (i.e. that makes it hard to express ranges and
constraints) and on the other hand to extend it to other matching semantics (e.g. if the
intersection is satisfiable like in the DL approach).

5 Composition Using Finite State Diagram

The functionality of the non-atomic processes could be decomposed in a structured (or
not) set of atomic processes for performing the same task. This composition (or de-
composition, viewed from the opposite side) can be specified by using control con-
structs such as Sequence and If-then-else. Such decomposition normally shows,
among other things, how the various inputs of the process are accepted by particular
subprocesses, and how its various outputs are returned by particular subprocesses.

A CompositeProcess must have a composedOf property by which is indicated the
control structure of the composite, using a ControlConstruct

<rdf:Property rdf:ID="composedOf">
<rdfs:domain rdf:resource="#CompositeProcess"/>
<rdfs:range rdf:resource="#ControlConstruct"/>

</rdf:Property>
<owl:Class rdf:ID="ControlConstruct"/>

Each control construct, in turn, is associated with an additional property called
components to indicate the ordering and conditional execution of the sub processes (or
control constructs) from which it is composed. For instance, the control construct,
Sequence, has a components property that ranges over a ProcessComponentList (a list
whose items are restricted to be ProcessComponents, which are either processes or
control constructs).

This property allows managing the control flow of the execution of a Composite-
Process but, in counterpart, binds the ontologies used in the services to contain infor-
mation about the data and control flow, and that is not always desirable, [13,14].

For that reason, in our system we have developed a mechanism to describe finite
state machines (finite state diagrams). The situation calculus introduces first-order
terms called situations, [15]. The intuition behind the situation calculus is that the

380 J.M. López-Cobo et al.

world persists in one state until an action is performed that changes it to a new state.
Time is discrete, one action occurs at a time, time durations do not matter, and actions
are irreducible entities. Actions are conceptualized as objects in the universe of dis-
course, as are states of the world. Hence, states and actions are reified. All changes to
the world are the result of actions, which correspond to our atomic processes. The
situation that holds on entry to an action is different to that which holds on exit. The
exit situation is said to be the successor of the entry situation. Sequences of actions
combine to form histories that describe composite situations – in essence the state that
holds at the end of the sequence. Given this interpretation we can clarify the meaning
of preconditions. A precondition is a condition that must be true of the situation on
entry to an atomic process. However, sometimes these preconditions cannot be com-
puted in terms of the input that is in terms of the domain ontology. That kind of pre-
conditions are also called assumptions.

So, speaking in terms of Semantic Web Services, each state can be seen as a situa-
tion, stable, after or before any action. The set of preconditions that must be true in
this state are part of the preconditions of the atomic processes that make change that
state. Following in this interpretation, transitions in the state diagram represent each
atomic process needed for fulfill part of the goal, as is presented in figure 4.

At this very moment there are several efforts to describe preconditions, postcondi-
tions, effects and assumptions in the research area, but few consensus has been
reached to determine a final good candidate (SWRL, F-Logic, OWL, DRS). In order
to describe our current needs we define a naïve solution to model conditions. Of
course, making use of the reuse, we can import references to other conditions ex-
pressed in other ontologies.

Fig. 4. Finite state diagram ontology

A Customer Notification Agent for Financial Overdrawn 381

The class Condition represents conditions, that is, statements which can be true or
false in a particular state of the world (depicted in the state diagram). These conditions
could be expressed in the same way (in fact, they are exactly the same) that we use to
describe conditions in Semantic Web Services. Conditions of a State are modeled as
instances of this class (or subclasses defined by an Ontology designer). This class is
defined as subclass of […] Process.owl#Condition and […] Process.owl#Effect de-
fined in the OWL-S Process Ontology for model conditions and effects. Using this
technique, expressing conditions in the state diagram in the same way as in the Ser-
vices will favor any attempt to matchmake Services with Transitions.

<owl:Class rdf:ID="condition">
 <rdfs:subClassOf rdf:resource="Process.owl#Condition"/>
 <rdfs:subClassOf rdf:resource="Process.owl#Effect"/>
</owl:Class>

5.1 State

The class State models a state inside a state diagram. A state is represented as a node
of the Graph which models a state machine. Each node is labeled with conditions,
using the relationship state_conditions. Besides, each node is identified with a unique
id, the slot state_id. A state in a Service Composition represents an intermediary step
in the execution of two services.

The states (when we are talking of a concrete State Diagram) are represented as in-
stances:

<state rdf:ID="estimated">
 <state_conditions rdf:resource="#logged_in"/>
</state>

5.2 Input and Output

The classes Input and Output defines the desired input and output of each transition.
The specific inputs and outputs are modeled as subclasses of these classes. This is
because the messages exchanged by the services (or viewed from the State Diagram
point of view, the inputs needed for performing an action and the outputs derived from
this actions) are, at last, classes or parts of some domain ontology. For a successful
matchmaking it could be desirable Data Mediation for helping the Discovery Service
to find services with similar inputs and outputs. The specific subclasses of Input and
Output can be described in the same Ontology or they could inherit from other On-
tologies (multiple inheritance) allowing to express the input and output of a Transac-
tion in terms of the inputs and outputs of Services.

5.3 Transition

The class Transition models actions in a State Diagram. These actions are responsible
for building a conversation in terms of the domain knowledge. From a stable situation
(a state) and in presence of some conditions (which are true), some action is per-
formed and some transition from the previous state to his successor is made. In a state
diagram this transition is represented using an arrow from the starting state to the

382 J.M. López-Cobo et al.

ending state. In a Composite Service framework, a Transition models the execution of
an operation (in terms of Semantic Web Services this could be done by an Atomic
Process or by another Composite Process).

The class Transition has the following attributes and relationships:

• State_start, State_end: They are the starting and ending state of the transition. They
are instances of the class State. Each state is labeled with conditions which serve to
refer to the preconditions and effect of the transition.

• Transition_input, Transition_output: Defines, in the domain ontology, the desired
input and output for the transition. They references to subclasses of the class Input
or Output (described before) or they could be a simple data type. This restriction
makes mandatory the description of this ontology in OWL-full because OWL-DL
doesn’t allow this kind of description.

There are two special states labeled in a special way to denote what is the starting
state and the ending state. Doing this, we always know what the first subgoal which
can be achieved is and what is the final subgoal. With this information, some reason-
ing could be done forward or backward. To be able to transit from one state to an-
other, The Discovery Service has to be able to find some Semantic Web Service with
the same set of preconditions, effects, inputs and outputs which has the instance of
Transition representing the transition between the states in the following terms:

• Preconditions: These conditions label the starting state.
• Effects: They are the conditions present on the ending state but missing in the start-

ing state.
• Inputs: Define which part of the domain ontology need the service to be executed.

Some data mediation could be needed if there are 3rd party services using other on-
tology.

• Outputs: Define which part of the domain ontology is the result of the execution of
the service. Some data mediation could be needed if there are 3rd party services us-
ing other ontology.

For obtaining a more precise understanding of the relationship between the State
Diagram and the Services (for the sake of matchmaking), see the figure 5.

This is the state diagram which models the functionality of Sentinel. It could be
easily translated to the State Diagram Ontology, previously described. With this on-
tology and the description of the Service, an agent could accomplish the task de-
scribed with the state machine. The agent will need to make some decision about what
transition to take (i.e. what service has to execute) and some reasoner (with storage
functionalities) will be needed to perform the control flow. Two instances of transi-
tions can be seen below.

<transition rdf:ID="KB_044630_Individual_84">
<state_end rdf:resource="#Logged"/>
<state_start>

<stateStart rdf:ID="initState"/>
</state_start>
<transition_id>GETseeSWSlogin</transition_id>
<transition_input rdf:resource="#input_user"/>
<transition_output rdf:resource="XMLSchema#boolean"/>

A Customer Notification Agent for Financial Overdrawn 383

</transition>

<transition rdf:ID="KB_044630_Individual_92">
<transition_input rdf:resource="#input_output_savingAccounts"/>
<transition_input rdf:resource="#input_user"/>
<transition_id>GETseeSWSgetinvoices</transition_id>
<transition_output rdf:resource="#output_InvoicesPayments"/>
<state_start rdf:resource="#AccountsLoaded"/>
<state_end rdf:resource="#InvoicesLoaded"/>

</transition>

Fig. 5. Relationships between the state diagram and the Sentinel service

6 Conclusions

We have described the Customer Notification Agent which makes use of an aggrega-
tion system, developed by iSOCO, called GETsee. ISOCO GETsee® application is
able to aggregate information coming from different sources. It can be financial in-
formation (saving accounts, credit cards, investment funds, etc.), different invoices
from consumer goods companies, loyalty cards, insurance companies or e-mail ac-
counts from different Web Portals.

384 J.M. López-Cobo et al.

The Customer Notification Agent focuses on the dynamic configuration of a sys-
tem that generates notifications and suggestions for transactions to the customer re-
lated to conciliation between financial accounts and pending invoices.

Integration of applications is one of the most ambitious goals of the Semantic Web
Services. The existence of different agents or legacy applications must not interfere in
the shared use of information. Exploiting the advantages of semantic interoperability
and loose-coupled services will allow us to interconnect different applications and
integrate data and information through messages. So, the system to be built leans upon
an existing iSOCO’s commercial application and others agents or services built ad
hoc.

For adding semantics to the system, we have defined, or reused, different ontolo-
gies to express the needed knowledge. Besides, we have defined three services for
perform the task of the Customer Notification Agent. The GETseeSWS Service access
the online accounts of the customer, the invoices associated with them and calculates
the balance for these accounts. The Notification Service notifies the user any message
and finally, the Estimation Service estimates, using some arithmetical functions, the
expectable amount of an invoice for preventing an overdrawn situation.

A Finite state diagram has been used for representing the composition of Atomic
Processes, allowing in run-time the discovering and invocation of services which
comply with the conditions defined for transition from a state to another. This allows
us to describe a Composite Process in design-time, defining its behaviour and leaving
the selection of the particular service to the execution time.

Some open research issues have been explored in this work as the composition on-
the-fly and the discovery of Services using different approaches. These approaches
will contribute to the testing of the contents of WSMO [8] and the SWWS-CA [18].
The projects SWWS and DIP, supporting this work, are devoted to the contribution
and dissemination of WSMO.

Acknowledgements

This work is supported by the IST project SWWS (IST-2001-37134) and the IST
project DIP(FP6 – 507483). We would like to thank Jesús Contreras, Richard Benja-
mins, Pablo Gómez, Andrés Cirugeda and Ignacio González for their contributions.

References

1. van HeijstG, Schreiber ATh, Wielinga BJ (1997). Using explicit ontologies in KBS devel-
opment .International Journal of Human-Computer Studies 45:183-192

2. Mizoguchi R, Vanwelkenhuysen J, Ikeda M (1995). Task Ontology for reuse of problem
solving knowledge. In: Mars N (ed) Towards Very Large Knowledge Bases: Knowledge
Building and Knowledge Sharing (KBKS’95). University of Twente, Schede, The Nether-
lands. IOS Press, Amsterdam, The Netherlands.

3. OWL. Web Ontology Language. http://www.w3.org/TR/2004/REC-owl- features-
20040210/

4. OWL-S. OWL for Services. http://www.daml.org/services/owl-s/1.0/

A Customer Notification Agent for Financial Overdrawn 385

5. Protégé 2000. Stanford Medical Informatics. http://protege.stanford.edu/
6. OWL Plugin: A Semantic Web Ontology Editor for Protégé. http://protege.stanford.edu/

plugins/owl/
7. ezOWL Plugin for Protégé 2000. http://iweb.etri.re.kr/ezowl/plugin.html
8. WSMO. Web Service Modeling Framework. http://www.nextwebgeneration.org/projects/wsmo/
9. SWRL: A Semantic Web Rule Language Combining OWL and RuleML http://www.

daml.org/2003/11/swrl/
10. Michael Kifer, Georg Lausen, James Wu , Logical Foundations of Object Oriented and

Frame Based Languages. Journal of ACM 1995, vol. 42, p. 741-843
11. DRS: A Set of Conventions for Representing Logical Languages in RDF. Drew McDer-

mott, January 2004. http://www.daml.org/services/owl-s/1.0/DRSguide.pdf
12. IFX. Interactive Financial eXchange. http://www.ifxforum.org
13. D. Berardi, F. De Rosa, L. De Santis, and M. Mecella. Finite state automata as conceptual

model for e-services. In Proc. of the IDPT 2003 Conference, 2003. To appear.
14. S. Narayanan and S. McIlraith. Simulation, Verification and Automated Composition of

Web Services. In Proc. of WWW 2002.
15. H. Levesque, F. Pirri, R. Reiter. Foundations of the Situation Calculus. Linköping Elec-

tronic Articles in Computer and Information Science, Vol 3, nr 18.
http://www.ep.liu.se/ea/cis/1998/018. December 1998

16. FLORA-2: An Object-Oriented Knowledge Base Language. http://flora.sourceforge.net
17. S. Grimm, H. Lausen. Discussion document SWWS Service Description / Discovery. May

2004
18. C. Priest. SWWS-CA A Conceptual Architecture for Semantic Web Services. May 2004

	NotificationAgent.pdf
	Introduction
	Scenario Description
	Ontology Structure for the CNA
	Discovery of Notification Semantic Web Services
	Composition Using Finite State Diagram
	State
	Input and Output
	Transition

	Conclusions
	Acknowledgements
	References

