
Typing of Graph Transformation Units
Renate Klempien-Hinrichs

Hans-Jörg Kreowski
Sabine Kuske

University of Bremen, Department of Computer Science
P.O.Box 33 04 40, 28334 Bremen, Germany

{rena,kreo,kuske}@informatik.uni-bremen.de

Published in:
H. Ehrig, G. Engels, F. Parisi-Presicce, G. Rozenberg, editors,
Proc. 2nd Intl. Conference on Graph Transformations
(ICGT 2004), volume 3256 of Lecture Notes in Computer Science,
pages 112-127. Springer, 2004.

To be used only in the
SegraVis School 2006!

Typing of Graph Transformation Units�

Renate Klempien-Hinrichs, Hans-Jörg Kreowski, and Sabine Kuske

University of Bremen, Department of Computer Science
P.O.Box 33 04 40, 28334 Bremen, Germany

{rena,kreo,kuske}@informatik.uni-bremen.de

Abstract. The concept of graph transformation units in its original
sense is a structuring principle for graph transformation systems which
allows the interleaving of rule applications with calls of imported units
in a controlled way. The semantics of a graph transformation unit is a
binary relation on an underlying type of graphs. In order to get a flex-
ible typing mechanism for transformation units and a high degree of
parallelism this paper introduces typed graph transformation units that
transform k-tuples of typed input graphs into l-tuples of typed output
graphs in a controlled and structured way. The transformation of the
typed graph tuples is performed with actions that apply graph transfor-
mation rules and imported typed units simultaneously to the graphs of
a tuple. The transformation process is controlled with control conditions
and with graph tuple class expressions. The new concept of typed graph
transformation units is illustrated with examples from the area of string
parsing with finite automata.

1 Introduction

The area of graph transformation brings together the concepts of rules and
graphs with various methods from the theory of formal languages and from the
theory of concurrency, and with a spectrum of applications, see the three volumes
of the Handbook of Graph Grammars and Computing by Graph Transforma-
tion as an overview [15, 5, 7]. The key of rule-based graph transformation is the
derivation of graphs from graphs by applications of rules. In this way, a set of
rules specifies a binary relation of graphs with the first component as input and
the second one as output. If graph names the class of graphs G, the type of such
a specified relation is graph → graph where each graph is a potential input and
output. To get a more flexible typing, one can employ graph schemata or graph
class expressions X that specify subclasses G(X) of the given class of graphs.
This allows one typings of the form I → T restricting the derivations to those
that start in initial graphs from G(I) and end in terminal graphs from G(T).
Alternatively, one may require that all graphs involved in derivations stem from
� Research partially supported by the EC Research Training Network SegraVis (Syn-

tactic and Semantic Integration of Visual Modeling Techniques) and the Collabora-
tive Research Centre 637 (Autonomous Cooperating Logistic Processes: A Paradigm
Shift and Its Limitations) funded by the German Research Foundation (DFG).

H. Ehrig et al. (Eds.): ICGT 2004, LNCS 3256, pp. 112–127, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Typing of Graph Transformation Units 113

G(X) for some expression X (cf. the use of graph schemata in PROGRES [17]).
Another form of typing in the area of graph transformation can be found in
the notion of pair grammars and triple grammars where a pair resp. a triple of
graphs is derived in parallel by applying rules in all components simultaneously
(see, e.g., [14, 16]).

In this paper, we propose a new, more general typing concept for graph
transformation that offers the parallel processing of arbitrary tuples of graphs.
Moreover, some components can be selected as input components and others as
output components such that relations of the type I1×· · ·×Ik → T1×· · ·×Tl can
be specified. The new typing concept is integrated into the structuring concept
of graph transformation units (see, e.g., [1, 11, 12]).

The concept of graph transformation units in its original sense is a structuring
principle for graph transformation systems which allows the interleaving of rule
applications with calls of imported units in a controlled way. The semantics of a
graph transformation unit is a binary relation on an underlying type of graphs
that transforms initial graphs into terminal ones. In order to get a flexible typing
mechanism for transformation units and a high degree of parallelism this paper
introduces typed graph transformation units that transform k-tuples of typed
input graphs into l-tuples of typed output graphs in a controlled and structured
way. The transformation of the typed graph tuples is performed with actions
that apply graph transformation rules and imported typed units simultaneously
to the graphs of a tuple. The transformation process is controlled with control
conditions and with graph tuple class expressions. The new concept of typed
graph transformation units is illustrated with examples from the area of string
parsing with finite automata.

2 Typed Graph Transformation

Graph transformation in general transforms graphs into graphs by applying
rules, i.e. in every transformation step a single graph is transformed with a
graph transformation rule. In typed graph transformation this operation is ex-
tended to tuples of graphs. This means that in every transformation step a tuple
of graphs is transformed with a tuple of rules. The graphs, the rules, and the
ways the rules have to be applied are taken from a so-called base type which
consists of a tuple of rule bases. A rule base is composed of graphs, rules, and a
rule application operator.

2.1 Rule Bases

A rule base B = (G,R, =⇒) consists of a type of graphs G, a type of rules R,
and a rule application operator =⇒. In the following the components G, R, and
=⇒ of a rule base B are also denoted by GB , RB, and =⇒B, respectively.

Examples for graph types are labelled directed graphs, graphs with a struc-
tured labelling (e.g. typed graphs in the sense of [3]), hypergraphs, trees, forests,
finite automata, Petri nets, etc. The choice of graphs depends on the kind of
applications one has in mind and is a matter of taste.

114 Renate Klempien-Hinrichs, Hans-Jörg Kreowski, and Sabine Kuske

In this paper, we explicitly consider directed, edge-labelled graphs with indi-
vidual, possibly multiple edges. A graph is a construct G = (V, E, s, t, l) where
V is a set of vertices, E is a set of edges, s, t : E → V are two mappings assigning
to each edge e ∈ E a source s(e) and a target t(e), and l : E → Σ is a mapping
labelling each edge in a given label alphabet Σ.

For instance the graph

begin a a b a end

consists of seven nodes and six directed edges. It is a string graph which repre-
sents the string aaba. The beginning of the string is indicated with the begin-edge
pointing to the source of the leftmost a-edge. Analogously, there is an end -edge
originating from the end of the string, i.e. from the target of the rightmost a-edge.

Another instance of a graph is the following deterministic finite state graph
where the edges labelled with a and b represent transitions, and the sources and
targets of the transitions represent states. The start state is indicated with a
start -edge and every final state with a final-edge. Moreover there is an edge
labelled with current pointing to the current state of the deterministic finite
state graph.

start
a

a

a

b

b b

final

final

current

To be able to transform the graphs in G, rules are applied to the graphs
yielding graphs again. Hence, each rule r ∈ R defines a binary relation =⇒

r
⊆

G × G on graphs. If G=⇒
r

H , one says that G directly derives H by applying
r. There are many possibilities to choose rules and their applications. Types
of rules may vary from the more restrictive ones, like edge replacement [4] or
node replacement [8], to the more general ones, like double-pushout rules [2],
single-pushout rules [6], or PROGRES rules [17].

In this paper, we concentrate on a simplified notion of double-pushout rules,
i.e. every rule is a triple r = (L, K, R) where L and R are graphs (the left -
and right-hand side of r, respectively) and K is a set of nodes shared by L
and R. In a graphical representation of r, L and R are drawn as usual, with
numbers uniquely identifying the nodes in K. Its application means to replace
an occurrence of L with R such that the common part K is kept. In particular,
we will use rules that add or delete a node together with an edge and/or that
redirect an edge.

A rule r = (L, K, R) can be applied to some graph G directly deriving the
graph H if H can be constructed up to isomorphism (i.e. up to the renaming of
nodes and edges) in the following way.

Typing of Graph Transformation Units 115

1. Find an isomorphic copy of L in G, i.e. a subgraph that coincides with L up
to the naming of nodes and edges.

2. Remove all nodes and edges of this copy except the nodes corresponding to
K, provided that the remainder is a graph (which holds if the removal of a
node is accompanied by the removal of all its incident edges).

3. Add R by merging K with its corresponding copy.

For abbreviating sets of rules, we use also variables instead of concrete labels.
For every instantiation of a variable with a label we get a rule as described above.
For example, the following rule read(x) has as left-hand side a graph consisting
of an x-edge and a begin-edge. The right-hand side consists of the target of a
new begin-edge pointing from the source of the old begin-edge to the target of
the x-edge. The common part of the rule read(x) consists of the source of the
begin-edge and the target of the x-edge.

read(x) :
1 2

begin x
::=

1 2

begin

If the variable x is instantiated with a, the resulting rule read(a) can be
applied to the above string graph. Its application deletes the begin-edge and the
leftmost a-edge together with its source. It adds a new begin-edge pointing from
the source of the old begin-edge to the target of the a-edge. The resulting string
graph represents the string aba.

The following rule go(x) redirects a current-labelled edge from the source of
some x-labelled edge to the target of this edge.

go(x) : 1 2

3

x

current
1 2

3

x

current::=

If x is instantiated with a, its application to the above deterministic finite
state graph results in the same deterministic finite state graph except that the
current state is changed to the start state.

2.2 Graph Tuple Transformation

As the iterated application of rules transforms graphs into graphs yielding an
input-output relation, the natural type declaration of a graph transformation
in a rule base B = (G,R, =⇒) is B : G → G. But in many applications one
would like to have a typing that allows one to consider several inputs and maybe
even several outputs, or at least an output of a type different from all inputs.
Moreover, one may want to be able to transform subtypes of the types of input
and output graphs. In order to reach such an extra flexibility in the typing of
graph transformations we introduce in this section the transformation of tuples
of typed graphs, which is the most basic operation of the typed graph transfor-
mation units presented in Section 4.

116 Renate Klempien-Hinrichs, Hans-Jörg Kreowski, and Sabine Kuske

Graph tuple transformation over a base type is an extension of ordinary
rule application in the sense that graphs of different types can be transformed
in parallel. For example to check whether some string can be recognized by a
deterministic finite automaton, one can transform three graphs in parallel: The
first graph is a string graph representing the string to be recognized, the second
graph is a deterministic finite state graph the current state of which is the start
state, and the third graph represents the boolean value false. To recognize the
string one applies a sequence of typed rule applications which consume the string
graph while the corresponding transitions of the deterministic finite state graph
are traversed. If after reading the whole string the current state is a final state,
the third graph is transformed into a graph representing true. This example will
be explicitly modelled in Section 4.

In graph tuple transformation, tuples of rules are applied to tuples of graphs.
A tuple of rules may also contain the symbol − in some components where no
change is desired. The graphs and the rules are taken from a base type, which
is a tuple of rule bases BT = (B1, . . . , Bn). Let (G1, . . . , Gn) and (H1, . . . , Hn)
be graph tuples over BT , i.e. Gi, Hi ∈ GBi for i = 1, . . . , n. Let a = (a1, . . . , an)
with ai ∈ RBi or ai = − for i = 1, . . . , n. Then (G1, . . . , Gn)−→

a
(H1, . . . , Hn) if

for i = 1, . . . , n, Gi =⇒
ai

Hi if ai ∈ RBi and Gi = Hi if ai = −. In the following

we call a a basic action of BT .1 For a set ACT of basic actions of BT , −→
ACT

denotes the union
⋃

a∈ACT −→
a

, and ∗−→
ACT

its reflexive and transitive closure.

For example, let I be some finite alphabet and let Bbasic
string = (string, {read(x) |

x ∈ I}, =⇒) and Bbasic
dfsg = (dfsg , {go(x) | x ∈ I}, =⇒) be two rule bases such that

string consists of all string graphs over I and dfsg consists of all deterministic
finite state graphs over I. Let G1 be the string graph representing aaba and let G2

be the above deterministic finite state graph. Then (G1, G2)−→
a

(H1, H2) for the

basic action a = (read(a), go(a)) of base type (Bbasic
string , Bbasic

dfsg) if H1 represents
aba and H2 is obtained from G2 by redirecting the current-edge to the start
state.

Let ACT be the set of all basic actions of BT = (B1, . . . , Bn). Then obviously
the following holds: (G1, . . . , Gn) ∗−→

ACT
(H1, . . . , Hn) if and only if Gi

∗=⇒
RBi

Hi for

i = 1, . . . , n. This means that the transformation of graph tuples via a sequence
of basic actions is equivalent to the transformation of tuples of typed graphs
where every component is transformed independently with a sequence of direct
derivations of the corresponding type.

In [9] the transformation of tuples of typed graphs is generalized in the sense
that the transformations are performed by a product of transformation units
instead of tuples of rules. In every transformation step of a product of transfor-
mation units tu1, . . . , tun, one can apply rules as well as imported transformation
units of tui to the ith graph in the current graph tuple (i = 1, . . . , n). Hence, in

1 More sophisticated actions with more expressive power will be introduced further
on.

Typing of Graph Transformation Units 117

every transformation step the graphs of the current graph tuple are transformed
in parallel. Such a transformation step in a product unit is called an action. The
nondeterminism of actions is restricted by the control conditions and the graph
class expressions of the units tu1, . . . , tun. Moreover one can specify control con-
ditions on the level of actions. In order to get a flexible kind of typing, i.e. to
declare a sequence of input components and a sequence of output components in-
dependently, the embedding and projection of graph products is introduced. For
the same reasons, similar operations will be introduced for typed transformation
units in this paper. The most striking difference of the product of transformation
units in [9] and the typed graph transformation units presented here is the im-
port component. Typed units can import other typed units whereas a product of
transformation units is composed of transformation units in the original sense,
i.e. it does not use other typed units.

3 Restricting the Nondeterminism

Application of rule tuples is highly nondeterministic in general. For many appli-
cations of graph transformation it is meaningful to restrict the number of possible
ways to proceed with a transformation process. Hence, in order to employ typed
transformation units meaningfully, they are equipped with graph tuple class ex-
pressions and control conditions to restrict the number of possible sequences of
transformation steps.

3.1 Graph Tuple Class Expressions

The aim of graph tuple class expressions is to restrict the class of graph tuples
to which certain transformation steps may be applied, or to filter out a subclass
of all the graph tuples that can be obtained from a transformation process.
Typically, a graph tuple class expression may be some logic formula describing
a tuple of graph properties like connectivity, or acyclicity, or the occurrence or
absence of certain labels. In this sense, every graph tuple class expression e over
a base type BT = (B1, . . . , Bn) specifies a set SEM (e) ⊆ GB1 × · · · × GBn of
graph tuples in BT .

In many cases such a graph tuple class expression will be a tuple e =
(e1, . . . , en) where the ith item ei restricts the graph class GBi of the rule base
Bi, i.e. SEM Bi(ei) ⊆ GBi for i = 1, . . . , n. Consequently, the semantics of e is
SEM B1(e1)× · · · × SEM Bn(en). Hence, each item ei is a graph class expression
as defined for transformation units without explicit typing.

The graph tuple class expressions used in this paper are also tuples of graph
class expressions. A simple example of a graph class expression is all which
specifies for any rule base B the graph type of B, i.e. SEM B(all) = GB . Conse-
quently, the graph tuple class expression (e1, . . . , en) with ei = all for i = 1, . . . , n
does not restrict the graph types of the rule bases, i.e. SEM ((e1, . . . , en)) =
GB1 × · · ·×GBn . Another example of a graph class expression over a rule base B
is a set of graphs in GB . The semantics of a set e ⊆ GB is e itself. In particular
we will use the set initialized consisting of all deterministic finite state graphs
the current state of which is the start state.

118 Renate Klempien-Hinrichs, Hans-Jörg Kreowski, and Sabine Kuske

3.2 Control Conditions

A control condition is an expression that determines, for example, the order
in which transformation steps may be applied to graph tuples. Semantically, it
relates tuples of start graphs with tuples of graphs that result from an admitted
transformation process. In this sense, every control condition C over a base
type BT specifies a binary relation SEM (C) on the set of graph tuples in BT .
More precisely, for a base type BT = (B1, . . . , Bn) SEM (C) is a subset of
(GB1 × · · · × GBn)2.

As control condition we use in particular actions, sequential composition,
union, and iteration of control conditions, as well as the expression as-long-as-
possible (abbreviated with the symbol !). An action prescribes which rules or
imported typed units should be applied to a graph tuple, i.e. an action is a control
condition that allows one to synchronize different transformation steps. The
basic actions of the previous section are examples of actions. Roughly speaking,
an action over a base type BT = (B1, . . . , Bn) is a tuple act = (a1, . . . , an)
that specifies an n, n-relation SEM (act) ⊆ (GB1 × · · · × GBn)2. Actions will be
explained in detail in Section 4.

In particular, an action act is a control condition that specifies the relation
SEM (act). For control conditions C, C1, and C2 the expression C1; C2 spec-
ifies the sequential composition of both sematic relations, C1|C2 specifies the
union, and C∗ specifies the reflexive and transitive closure, i.e. SEM (C1; C2) =
SEM (C1) ◦ SEM (C2), SEM (C1|C2) = SEM (C1) ∪ SEM (C2), and SEM (C∗) =
SEM (C)∗. Moreover, for a control condition C the expression C! requires to ap-
ply C as long as possible, i.e. SEM (C) consists of all pairs (G, H) ∈ SEM (C)∗

such that there is no H ′ with (H, H ′) ∈ SEM (C). In the following the control
condition C1| · · · |Cn will also be denoted by {C1, . . . , Cn}.

For example, let C1, C2, and C3 be control conditions that specify n, n-
relations on graphs of different types. Then the expression C1!; C∗

2 ; (C3|C1) pre-
scribes to apply first C1 as long as possible, then C2 arbitrarily often, and finally
C3 or C1 exactly once.

4 Typed Graph Transformation Units

Typed transformation units provide a means to structure the transformation
process from a sequence of typed input graphs to a sequence of typed output
graphs. More precisely, a typed graph transformation unit transforms k-tuples of
graphs into l-tuples of graphs such that the graphs in the k-tuples as well as the
graphs in the l-tuples may be of different types. Hence, a typed transformation
unit specifies a k, l-relation on typed graphs. Internally a typed transformation
unit transforms n-tuples of typed graphs into n-tuples of typed graphs, i.e. it
specifies internally an n, n-relation on typed graphs. The transformation of the
n-tuples is performed according to a base type which is specified in the decla-
ration part of the unit. The k, l-relation is obtained from the n, n-relation by
embedding k input graphs into n initial graphs and by projecting n terminal
graphs onto l output graphs. The embedding and the projection are also given
in the declaration part of a typed unit.

Typing of Graph Transformation Units 119

4.1 Syntax of Typed Graph Transformation Units

Base types, graph tuple class expressions, and control conditions form the in-
gredients of typed graph transformation units. Moreover, the structuring of the
transformation process is achieved by an import component, i.e. every typed
unit may import a set of other typed units. The transformations offered by an
imported typed unit can be used in the transformation process of the importing
typed unit.

The basic operation of a typed transformation unit is the application of an
action, which is a transformation step from one graph tuple into another where
every component of the tuple is modified either by means of a rule application, or
is set to some output graph of some imported typed unit, or remains unchanged.
Since action application is nondeterministic in general, a transformation unit
contains a control condition that may regulate the graph tuple transformation
process. Moreover, a typed unit contains an initial graph tuple class expression
and a terminal graph tuple class expression. The former specifies all possible
graph tuples a transformation may start with and the latter specifies all graph
tuples a transformation may end with. Hence, every transformation of an n-
tuple of typed graphs with action sequences has to take into account the control
condition of the typed unit as well as the initial and terminal graph tuple class
expressions.

A tuple of sets of typed rules, a set of imported typed units, a control con-
dition, an initial graph tuple class expression, and a terminal graph tuple class
expression form the body of a typed transformation unit. All components in the
body must be consistent with the base type of the unit.

Formally, let BT = (B1, . . . , Bn) be a base type. A typed graph transforma-
tion unit tgtu with base type BT is a pair (decl , body) where decl is the declaration
part of tgtu and body is the body of tgtu. The declaration part is of the form
in → out on BT where in : [k] → [n] and out : [l] → [n] are mappings with
k, l ∈ N.2 The body of tgtu is a system body = (I, U, R, C, T) where I and T
are graph tuple class expressions over BT , U is a set of imported typed graph
transformation units, R is a tuple of rule sets (R1, . . . , Rn) such that Ri ⊆ RBi

for i = 1, . . . , n, and C is a control condition over BT . The numbers k and l
of tgtu are also denoted by ktgtu and ltgtu . Moreover, the ith input type GBin(i)

of tgtu is also denoted by intypetgtu(i) for i = 1, . . . , k and the jth output type
GBout(j) by outtypetgtu(j) for j = 1, . . . , l.

To simplify technicalities, we assume in this first approach that the import
structure is acyclic (for a study of cyclic imports of transformation units with a
single input and output type see [13]). Initially, one builds typed units of level
0 with empty import. Then typed units of level 1 are those that import only
typed units of level 0, and typed units of level n + 1 import only typed units of
level 0 to level n, but at least one from level n.

2 For a natural number n ∈ N, [n] denotes the set {1, . . . , n}.

120 Renate Klempien-Hinrichs, Hans-Jörg Kreowski, and Sabine Kuske

4.2 Examples for Typed Graph Transformation Units

Example 1. The base type of the following example of a typed transformation
unit is the tuple (Bstring , Bdfsg , Bbool). The rule base Bstring is (string, {read(x) |
x ∈ I} ∪ {is-empty}, =⇒), where the rule is-empty checks whether the graph to
which it is applied represents the empty string. It has equal left- and right-hand
sides consisting of a node to which a begin- and from which an end -edge are
pointing.

is-empty :
1 2 3

begin end
::=

1 2 3

begin end

The rule base Bdfsg is (dfsg , {go(x) | x ∈ I} ∪ {is-final}, =⇒). The rule
is-final checks whether the current state of a deterministic finite state graph is
a final state, resetting it to the start state in that case, and can be depicted as
follows.

is-final : 1
2 3

4

5

start final

current
1

2 3
4

5

start final

current::=

The rule base Bbool contains the graph type bool which consists of the two
graphs TRUE and FALSE , where TRUE represents the value true and FALSE
the value false. Both graphs consist of a single node with a loop that is labelled
true and false, respectively:

TRUE = true FALSE = false

The rule type of Bbool consists of the four rules

set -to-true :
1

false ::=
1

true is-true :
1

true ::=
1

true

set -to-false :
1

true ::=
1

false is-false :
1

false ::=
1

false

where set -to-true changes a false-loop into a true-loop, set -to-false does the
same the other way round, is-true checks whether a graph of type bool is equal
to TRUE , and is-false checks the same for FALSE .

Now we can define the typed unit recognize shown in Figure 1. It has as
input graphs a string graph and a deterministic finite state graph and as output
graph a boolean value. The mapping in of the declaration part of recognize
is defined by in : [2] → [3] with in(1) = 1 and in(2) = 2. We use the more
intuitive tuple notation (string, dfsg ,−) for this. The mapping out is denoted by
(−,−, bool) which means that out : [1] → [3] is defined by out(1) = 3. Hence,
intyperecognize(1) = string, intyperecognize(2) = dfsg , and outtyperecognize(1) =
bool .

The initial graph tuple class expression is (string , initialized ,FALSE), i.e. it
admits all tuples (G1, G2, G3) ∈ string×dfsg×bool where the current-edge of G2

Typing of Graph Transformation Units 121

recognize
decl: (string , dfsg ,−) → (−,−, bool) on (Bstring , Bdfsg , Bbool)
initial: (string , initialized ,FALSE)
rules: (RBstring ,RBdfsg , {set-to-true})
cond: a1!; a2! where

a1 = {(read(x), go(x),−) | x ∈ I} and
a2 = (is-empty , is-final , set-to-true)

terminal: (string , dfsg , bool)

Fig. 1. A typed unit with empty import.

points to the start state and G3 is equal to FALSE . The rules are restricted to
the tuple (RBstring ,RBdfsg

, {set -to-true}), i.e. just one rule from Bbool is admitted.
The control condition requires to apply first the action a1 as long as possible
and then the action a2 as long as possible, where a1 applies read(x) to the first
component of the current graph tuple and go(x) to the second component (for
any x ∈ I). The action a2 sets the third component to TRUE if the current
string is empty, the current state of the state graph is a final state, and the
third component is equal to FALSE . Note that a2 can be applied at most once
because of set -to-true, and only in the case where a1 cannot be applied anymore
because of is-empty. The terminal graph tuple class expression does not restrict
the graph types of the base type, i.e. it is equal to (string , dfsg , bool). The unit
recognize does not import other typed units.

Example 2. The unit recognize-intersection shown in Figure 2 is an example of a
typed unit with a non-empty import component. It has as input graphs a string
graph and two deterministic finite state graphs. The output graph represents
again a boolean value. The base type of recognize-intersection is the six-tuple
(Bstring , Bdfsg , Bdfsg , Bbool , Bbool , Bbool). The mapping in of the declaration part
requires to take a string graph from the first rule base of the base type, one
deterministic finite state graph from the second and one from the third rule base
as input graphs. The mapping out requires to take a graph from the last rule
base as output graph.

recognize-intersection
decl: (string , dfsg , dfsg ,−,−,−) → (−,−,−,−,−, bool) on

(Bstring , Bdfsg , Bdfsg , Bbool , Bbool , Bbool)
initial: (string , dfsg , dfsg , bool , bool , FALSE)
uses: recognize
rules: (∅, ∅, ∅, {is-true}, {is-true}, {set-to-true})
cond: a1; a2! where

a1 = (−,−,−, recognize(1, 2), recognize(1, 3),−) and
a2 = (−,−,−, is-true , is-true , set-to-true)

terminal: (string , dfsg , dfsg , bool , bool , bool)

Fig. 2. A typed unit with imported units combined in an action.

122 Renate Klempien-Hinrichs, Hans-Jörg Kreowski, and Sabine Kuske

The unit recognize-intersection imports the above unit recognize and has as
local rules is-true and set -to-true where is-true can be applied to the fourth
and the fifth component of the current graph tuples and set -to-true to the sixth
component. The control condition requires the following.

1. Apply recognize to the first and the second component and write the result
into the fourth component and

2. apply recognize to the first and the third component and write the result
into the fifth component.

3. If then possible apply the rule is-true to the fourth and the fifth component
and the rule set -to-true to the sixth component.

This means that in the first point recognize is applied to the input string graph
and the first one of the input deterministic finite state graphs. In the second point
recognize must be applied to the input string graph and to the second determin-
istic finite state graph. These two transformations can be performed in parallel
within one and the same action denoted by the tuple (−,−,−, recognize(1, 2),
recognize(1, 3),−). (The precise semantics of this action will be given in the next
subsection where actions and their semantics are introduced formally.) The rule
application performed in the third point corresponds to applying the basic ac-
tion (−,−,−, is-true, is-true, set -to-true) as long as possible. Since the initial
graph tuple class expression requires that the sixth graph represent false, this
means at most one application due to set -to-true. The terminal graph tuple class
expression admits all graph tuples of the base type.

Example 3. Let I be the alphabet consisting of the symbols a, b, let L, La, Lb be
regular languages, and let subst : I → P(I∗) be a substitution with subst(a) = La

and subst(b) = Lb. The aim of the following example is to model the recognition
of the substitution language subst(L) = {subst(w) | w ∈ L} based on a descrip-
tion of L, La, Lb by deterministic finite automata. (The model can of course be
extended to arbitrarily large alphabets.)

First, consider the typed unit reduce shown in Figure 3. It takes a string
graph and a deterministic finite state graph as input, requiring through the
initial component that the state graph be in its start state. It then reduces the
string graph by arbitrarily often applying actions of the form (read(x), go(x)),
i.e. by consuming an arbitrarily large prefix of the string and changing states

reduce
decl: (string , dfsg) → (string ,−) on (Bstring , Bdfsg)
initial: (string , initialized)
rules: (RBstring ,RBdfsg)
cond: a1

∗; a2 where
a1 = {(read(x), go(x)) | x ∈ I} and
a2 = (−, is-final)

terminal: (string , dfsg)

Fig. 3. A typed unit that returns a modified input graph as output.

Typing of Graph Transformation Units 123

accordingly in the state graph, and returns the residue of the string graph as
output, but only if the consumed prefix is recognized by the state graph, i.e.
only if the action (−, is-final) is applied exactly once.

recognize-substitution
decl: (string , dfsg , dfsg , dfsg ,−) → (−,−,−,−, bool) on

(Bstring , Bdfsg , Bdfsg , Bdfsg , Bbool)
initial: (string , initialized , initialized , initialized ,FALSE)
uses: reduce
rules: ({is-empty},RBdfsg , ∅, ∅, {set-to-true})
cond: (a1|a2)

∗; a3 where
a1 = {(reduce(1, 3), go(a),−,−,−),
a2 = {(reduce(1, 4), go(b),−,−,−), and
a3 = (is-empty , is-final ,−,−, set-to-true)

terminal: (string , dfsg , dfsg , bool , bool , bool)

Fig. 4. A typed unit with imported units combined in an action.

The typed unit recognize-substitution shown in Figure 4 makes use of reduce
in order to decide whether an input string graph is in the substitution lan-
guage given as further input by three deterministic finite state graphs A, Aa, Ab

that define L, La, Lb, in that order. Initially, the state graphs must once again
be in their respective start states and the value in the output component is
false . The idea is to guess, symbol by symbol, a string w ∈ L such that the
input string is in subst(w). If the next symbol is guessed to be a, the action
(reduce(1, 3), go(a),−,−,−) is applied that runs Aa to delete a prefix belong-
ing to La from the input string (reduce(1, 3)) and simultaneously executes the
next state transition for a in A (go(a)). The action (reduce(1, 4), go(b),−,−,−)
works analogously for the symbol b. Thus, recognize-substitution is an example
of a typed unit that combines an imported unit (reduce) and a rule (go(x)) in an
action. Finally, a mandatory application of the action (is-empty , is-final ,−,−,
set -to-true) produces the output value true, but only if the input string is com-
pletely consumed and A is in some final state.

It may be noted that even though the finite state graphs are deterministic,
there are two sources of nondeterminism in this model: The symbols of the
supposed string w ∈ L must be guessed as well as a prefix of the input string
for each such symbol. Consequently, the model admits only tuples with output
TRUE in its semantics.

4.3 Semantics of Typed Graph Transformation Units

Typed transformation units transform initial graph tuples to terminal graph
tuples by applying a sequence of actions so that the control condition is satisfied.
Moreover, the mappings in and out of the declaration part prescribe for every
such transformation the input and output graph tuples of the unit. Hence, the

124 Renate Klempien-Hinrichs, Hans-Jörg Kreowski, and Sabine Kuske

semantics of a typed transformation unit can be defined as a k, l-relation between
input and output graphs.

Let tgtu = (in → out on BT , (I, U, R, C, T)) be a typed transformation unit
with BT = (B1, . . . , Bn), in : [k] → [n], out : [l] → [n], and R = (R1, . . . , Rn).
If U = ∅, tgtu transforms internally a tuple G ∈ GB1 × · · · × GBn into a tuple
H ∈ GB1 × · · · × GBn if and only if

1. G is an initial graph tuple and H is a terminal graph tuple, i.e. (G, H) ∈
SEM (I) × SEM (T);

2. H is obtained from G via a sequence of basic actions over (R1, . . . , Rn), i.e.
G

∗−→
ACT (tgtu)

H where ACT (tgtu) is the set of all basic actions a = (a1, . . . , an)

of BT such that for j = 1, . . . , n, ai ∈ Ri if ai �= − , and
3. the pair (G, H) is allowed by the control condition, i.e. (G, H) ∈ SEM (C).

If the transformation unit tgtu has a non-empty import, the imported units can
also be applied in a transformation from G to H . This requires that we extend
the notion of basic actions so that calls of imported typed units are allowed,
leading to the notion of (general) actions.

Formally, an action of tgtu is a tuple a = (a1, . . . , an) such that for i =
1, . . . , n we have ai ∈ Ri, or ai = −, or ai is of the form (u, input, output) where
u ∈ U , input : [ku] → [n] with GBinput(j) ⊆ intypeu(j) for j = 1, . . . , ku, and
output ∈ [lu] with outtypeu(output) ⊆ GBi . In the latter case, we denote ai by
u(input(1), . . . , input(ku))(output), and shorter by u(input(1), . . . , input(ku)) if
u has a unique output, i.e. lu = 1 = output.

The application of an action a = (a1, . . . , an) to a current graph tuple of n
typed graphs works as follows: As for typed rule application, if ai is a rule of Ri, it
is applied to the ith graph. If ai is equal to −, the ith graph remains unchanged.
The new aspect is the third case where ai is of the form (u, input, output). In
this case, the mapping input : [ku] → [n] determines which graphs of the current
tuple of typed graphs should be chosen as input for the imported unit u. The
output output ∈ [lu] specifies which component of the computed output graph
tuple of u should be assigned to the ith component of the graph tuple obtained
from applying the typed unit u to the input graphs selected by input.

For example the action (−, −, −, recognize(1, 2), recognize(1, 3), −) of the
typed unit recognize-intersection has as semantics every pair ((G1, . . . , G6),
(H1, . . . , H6)) such that Gi = Hi for i ∈ {1, 2, 3, 6}, H4 is the output of recognize
applied to (G1, G2), and H5 is the output of recognize applied to (G1, G3).

Formally, assume that every imported typed unit u of tgtu defines a semantic
relation

SEM (u) ⊆ (intypeu(1)× · · · × intypeu(ku))× (outtypeu(1)× · · · × outtypeu(lu)).

Then every pair ((G1, . . . , Gn), (H1, . . . , Hn)) of graph tuples over BT is in the
semantics of an action a = (a1, . . . , an) of tgtu if for i = 1, . . . , n:

– Gi =⇒
ai

Hi if ai ∈ Ri,

– Gi = Hi if ai = −, and

Typing of Graph Transformation Units 125

– Hi = H ′
output if ai = (u, input, output) and ((Ginput(1), . . . , Ginput(ku)),

(H ′
1, . . . , H

′
lu

)) ∈ SEM (u).

The set of all actions of tgtu is denoted by ACT (tgtu) and the semantics of an
action a ∈ ACT (tgtu) by SEM (a).

Now we can define the semantics of tgtu as follows. Every pair ((G1, . . . , Gk),
(H1, . . . , Hl)) is in SEM (tgtu) if there is a pair (Ḡ, H̄) with Ḡ = (Ḡ1, . . . , Ḡn),
H̄ = (H̄1, . . . , H̄n) such that the following holds.

– (G1, . . . , Gk) = (Ḡin(1), . . . , Ḡin(k)),
– (H1, . . . , Hl) = (H̄out(1), . . . , H̄out(l)),
– (Ḡ, H̄) ∈ (SEM (I) × SEM (T)) ∩ SEM (C),
– (Ḡ, H̄) ∈ (

⋃
a∈ACT (tgtu) SEM (a))∗.

For example, the semantics of the typed unit recognize consists of all pairs
of the form ((G1, G2), (H)) where G1 is a string graph, G2 is a deterministic
finite state graph with its start state as current state, and H = TRUE if G1

is recognized by G2; otherwise H = FALSE . The semantics of the typed unit
recognize-intersection consists of every pair ((G1, G2, G3), (H)) where G1 is a
string graph, G2 and G3 are deterministic finite state graphs with their respec-
tive start state as current state, and H = TRUE if G1 is recognized by G2 and
G3; otherwise H = FALSE . The semantics of the typed unit reduce contains
all pairs ((G1, G2), (G3)) where G1 and G3 are string graphs and G2 is a de-
terministic finite state graph with its start state as current state such that G3

represents some suffix of the string represented by G1 and G2 recognizes the cor-
responding “prefix” of G1. The semantics of recognize-substitution contains all
pairs ((G1, G2, G3, G4), (TRUE)) where G1 represents a string in the substitu-
tion language subst(L), G2 recognizes the language L, and G3 and G4 recognize
the languages subst(a) and subst(b), respectively.

5 Conclusion

In this paper, we have introduced the new concept of typed graph transformation
units, which is helpful to specify structured and parallel graph transformations
with a flexible typing. To this aim a typed transformation unit contains an import
component which consists of a set of other typed transformation units. The
semantic relations offered by the imported typed units are used by the importing
unit. The nondeterminism inherent to rule-based graph transformation can be
reduced with control conditions and graph tuple class expressions.

Typed transformation units are a generalization of transformation units [10]
in the following aspects. (1) Whereas a transformation unit specifies a binary re-
lation on a single graph type, a typed transformation unit specifies a k, l-relation
of graphs of different types. (2) The transformation process in transformation
units is basically sequential whereas in typed transformation units typed graphs
are transformed simultaneously. Moreover, as described in Section 2.2 typed
transformation units generalize the concept of product units [9] that also spec-
ify k, l-relations of typed graphs. With product units, however, the possibilities

126 Renate Klempien-Hinrichs, Hans-Jörg Kreowski, and Sabine Kuske

of structuring (and modelling) are more restrictive in the sense that only rules
and transformation units can be applied to graph tuples but no imported typed
transformation unit.

Further investigation of typed transformation units may concern the following
aspects. (1) We used graph-transformational versions of the truth values, but one
may like to combine graph types directly with arbitrary abstract data types,
i.e. without previously modelling the abstract data types as graphs. (2) In the
presented definition, we consider acyclic import structures. Their generalization
to networks of typed transformation units with an arbitrary import structure is
an interesting task. (3) In the presented approach the graphs of the tuples do
not share common parts. Hence, one could consider graph tuple transformation
where some relations (like morphisms) can be explicitly specified between the
different graphs of a tuple. (4) Apart from generalizing the concept of typed
transformation units, a comparison with similar concepts such as pair grammars
[14] and triple grammars [16] is needed. (5) Finally, case studies of typed units
should also be worked out that allow to get experience with the usefulness of the
concept for the modelling of (data-processing) systems and systems from other
application areas.

Acknowledgement

We are grateful to the referees for their valuable remarks.

References

1. Marc Andries, Gregor Engels, Annegret Habel, Berthold Hoffmann, Hans-Jörg Kre-
owski, Sabine Kuske, Detlef Plump, Andy Schürr, and Gabriele Taentzer. Graph
transformation for specification and programming. Science of Computer Program-
ming, 34(1):1–54, 1999.

2. Andrea Corradini, Hartmut Ehrig, Reiko Heckel, Michael Löwe, Ugo Montanari,
and Francesca Rossi. Algebraic approaches to graph transformation part I: Basic
concepts and double pushout approach. In Rozenberg [15], pages 163–245.

3. Andrea Corradini, Ugo Montanari, and Francesca Rossi. Graph processes. Funda-
menta Informaticae, 26(3,4):241–265, 1996.

4. Frank Drewes, Annegret Habel, and Hans-Jörg Kreowski. Hyperedge replacement
graph grammars. In Rozenberg [15], pages 95–162.

5. Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, ed-
itors. Handbook of Graph Grammars and Computing by Graph Transformation,
Vol. 2: Applications, Languages and Tools. World Scientific, Singapore, 1999.

6. Hartmut Ehrig, Reiko Heckel, Martin Korff, Michael Löwe, Leila Ribeiro, Annika
Wagner, and Andrea Corradini. Algebraic approaches to graph transformation
II: Single pushout approach and comparison with double pushout approach. In
Rozenberg [15], pages 247–312.

7. Hartmut Ehrig, Hans-Jörg Kreowski, Ugo Montanari, and Grzegorz Rozenberg,
editors. Handbook of Graph Grammars and Computing by Graph Transformation,
Vol. 3: Concurrency, Parallelism, and Distribution. World Scientific, Singapore,
1999.

Typing of Graph Transformation Units 127

8. Joost Engelfriet and Grzegorz Rozenberg. Node replacement graph grammars. In
Rozenberg [15], pages 1–94.

9. Renate Klempien-Hinrichs, Hans-Jörg Kreowski, and Sabine Kuske. Rule-based
transformation of graphs and the product type. In Patrick van Bommel, editor,
Handbook on Transformation of Knowledge, Information, and Data. To appear.

10. Hans-Jörg Kreowski and Sabine Kuske. On the interleaving semantics of transfor-
mation units — a step into GRACE. In Janice E. Cuny, Hartmut Ehrig, Gregor
Engels, and Grzegorz Rozenberg, editors, Proc. Graph Grammars and Their Ap-
plication to Computer Science, volume 1073 of Lecture Notes in Computer Science,
pages 89–108, 1996.

11. Hans-Jörg Kreowski and Sabine Kuske. Graph transformation units and modules.
In Ehrig, Engels, Kreowski, and Rozenberg [5], pages 607–638.

12. Hans-Jörg Kreowski and Sabine Kuske. Graph transformation units with inter-
leaving semantics. Formal Aspects of Computing, 11(6):690–723, 1999.

13. Hans-Jörg Kreowski, Sabine Kuske, and Andy Schürr. Nested graph transforma-
tion units. International Journal on Software Engineering and Knowledge Engi-
neering, 7(4):479–502, 1997.

14. Terrence W. Pratt. Pair grammars, graph languages and string-to-graph transla-
tions. Journal of Computer and System Sciences, 5:560–595, 1971.

15. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 1: Foundations. World Scientific, Singapore, 1997.

16. Andy Schürr. Specification of graph translators with triple graph grammars. In
G. Tinnhofer, editor, Proc. WG’94 20th Int. Worhshop on Graph-Theoretic Con-
cepts in Computer Science, volume 903 of Lecture Notes in Computer Science,
pages 151–163, 1994.

17. Andy Schürr. Programmed graph replacement systems. In Rozenberg [15], pages
479–546.

	Typing of Graph Transformation Units�
	1 Introduction
	2 Typed Graph Transformation
	2.1 Rule Bases
	2.2 Graph Tuple Transformation

	3 Restricting the Nondeterminism
	3.1 Graph Tuple Class Expressions
	3.2 Control Conditions

	4 Typed Graph Transformation Units
	4.1 Syntax of Typed Graph Transformation Units
	4.2 Examples for Typed Graph Transformation Units
	4.3 Semantics of Typed Graph Transformation Units

	5 Conclusion
	References

