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Abstract. Model checking is increasingly popular for hardware and,
more recently, software verification. In this paper we describe two dif-
ferent approaches to extend the benefits of model checking to systems
whose behavior is specified by graph transformation systems. One ap-
proach is to encode the graphs into the fixed state vectors and the trans-
formation rules into guarded commands that modify these state vectors
appropriately to enjoy all the benefits of the years of experience incorpo-
rated in existing model checking tools. The other approach is to simulate
the graph production rules directly and build the state space directly
from the resultant graphs and derivations. This avoids the preprocessing
phase, and makes additional abstraction techniques available to handle
symmetries and dynamic allocation.

In this paper we compare these approaches on the basis of three case
studies elaborated in both of them, and we evaluate the results. Our
conclusion is that the first approach outperforms the second if the
dynamic and/or symmetric nature of the problem under analysis is
limited, while the second shows its superiority for inherently dynamic
and symmetric problems.

Keywords: logic properties of graphs and transformations, analysis of
transformation systems, semantics of visual techniques, model checking

1 Introduction

Graph transformation [6, 18] represents a rich line of research in computer sci-
ence. Recently, a wide range of applications have been found especially in the
theoretical foundations of diagrammatic specification formalisms such as UML.
The main advantage of using graph transformation lies in the fact that not only
the (static) program state of these UML-related models can be stored as graphs,
but it is quite obvious and natural to define the evolution of these models by
transformations on those graphs.
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However, software engineers may implant bugs into the system under design
even if they use such a high-level and executable specification methodology as
graph transformation. In this respect, one has to verify automatically and with
mathematical preciseness that the system model fulfills all its requirements.

Model checking is one of the few verification techniques that, in some areas of
computer science, have shown their benefits in practice and have been adopted
by industry. However, the successes are mainly limited to hardware verification.
It has been long recognized that software has features that make the problem
inherently harder. Primary among those features is the dynamic nature of soft-
ware, which typically relies heavily upon the dynamic allocation and deallocation
of portions of memory to data structures (the heap) and control flow (the stack).

We argue in the paper that the strengths of graph transformation are pre-
cisely there where the weaknesses of current model checking approaches lie:
namely, in the description of the dynamic nature of software. We have therefore
sought to combine the two, by using graph transformations for the specifica-
tion, and model checking for the verification of systems. This paper describes
and compares two, quite different approaches towards this goal, namely, Check-
VML [20,24] and GROOVE [13,16].

The reason we have chosen these approaches that tackle the model checking
problem for graph transformations for a comparison is twofold: a) they represent
the two obvious main roads (i.e. to compile graphs into an off-the-shelf tool or
to write a state space generator for graphs) b) currently, they have the most
extensive tool support.

Related work on model checking graph transformations. The theoretical basics
of verifying graph transformation systems by model checking have been studied
thoroughly by Heckel et al. in [9] (and subsequent papers). The authors propose
that graphs can be interpreted as states and rule applications as transitions in
a transition system, which idea is used in both approaches in the paper.

A theoretical framework by Baldan et al. [2] aims at analyzing a special
class of hypergraph rewriting systems by a static analysis technique based on
approximative foldings and unfoldings of a special class of Petri nets. Recently,
this work has been extended in [1] to provide a precise (McMillan-style) un-
folding strategy. This is essentially different from both approaches discussed in
the current paper in that symmetric situations are only identified on a single
path (thus they are might be investigated several times on different paths). But
detecting that a certain situation has already been examined on a single path
can be much cheaper in general compared to total isomorphism checks (as done
in GROOVE).

Dotti et al. [5] use object-based graph grammars for modeling object-oriented
systems and define a translation into SPIN to carry out model checking. The
main difference (in contrast to CheckVML) is that the authors allow a restricted
structure for graph transformation rules that is tailored to model message calls
in object-oriented systems. Therefore, Check VML is more general from a pure
graph transformation perspective (i.e. any kind of rules are allowed) However,
the framework of [5] relies on higher-level SPIN/Promela constructs (processes
and channels), which might result better run-time performance.
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Structure of the paper. The rest of the paper is structured as follows. Section 2 in-
troduces the basic concepts of graph transformation systems and model checking
on a motivating example. Section 3 and 4 provides an overview of the Check-
VML and the GROOVE approach, respectively. We present the results of three
case studies in Sec. 5. Finally, Section 6 concludes the paper.

2 Model Checking Graph Transformation Systems

2.1 A Motivating Example: The Concurrent Append Problem

As a motivating running example for the paper, we consider the “Concurrent
Append” problem for the Java program listed in Fig. 1, which implements an
append method on a list of cells. Given an integer value x as parameter, the
program appends a new tail cell to the list if x is not contained in any of the
existing cells. An example correctness criterion is that the list of cells must not
contain the same value more than once. However, we allow that different threads
may access the list concurrently by calling the append method, which might
result in undesired race conditions without certain assumptions on atomicity in
case of the Java program below.

next control
(\  this class Cell {
Cell Append (?ell next;
int val;
val | return 1 Gatler void append(int x) {
X - if (x == this.val)
Int Void return;

else if (this.next == null) {
this.next = new Cell();
this.next.val = x;

} else
this.next.append (x) ;

}
Fig. 1. A Java program and its metamodel/type graph.

In the paper, we model this problem by using typed graphs [3] (or metamodels
in UML terms) for describing the static structure. For instance, the metamodel
in Fig. 1 expresses that a node of type Int may be connected to a node of type Cell
via an edge of type val (that straightforwardly correspond to the Java attribute
val). Furthermore, a next edge is leading from a cell point to the next cell in the
list (if there is any). Each invocation of the append method is denoted by an
Append node where we register the this pointer (which points to a cell), the caller
invocation (which is another Append node), and the return value (of type Void) by
edges of corresponding types. Finally, the program counter in each invocation of
the append method is denoted by a control loop (self-edge).
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All valid instance graphs (or models in UML terms) that represent specific
invocations of the append method should comply to this metamodel in a type
conforming way for both nodes and edges.

2.2  An Informal Introduction to Graph Transformation

The dynamic behavior of the recursive append method is captured by graph
transformation rules. Graph transformation provides a visual, rule and pattern-
based manipulation of graph models with solid mathematical foundations [6,18].

A graph transformation rule r consists of a left-hand side (LHS) and a right-
hand side (RHS) graph and, potentially, some negative application conditions
(NAC) which are traditionally denoted by (red) crosses. Informally, the execution
of a rule on a given host graph G (i) finds a matching of the LHS in G, (ii) checks
whether the matching can be extended to the matching of NAC (in which case
the original matching of the LHS is invalid), (iii) removes all the graph elements
from G which has an image in the LHS but not in the RHS, and (iv) creates new
graph elements and embeds them into G to provide an image for rule elements
that appear only in the RHS but not in the LHS. In other terms, the LHS and
NAC graphs denote the precondition while the RHS denotes the postcondition
for rule application.

In the paper, we use the rule notation of GROOVE (that is very similar to
the notation used in the Fujaba [12]), which abbreviates the different LHS, RHS
and NAC rule graphs into a single graph with the following conventions:

— Reader nodes and edges (i.e. elements that are part of LHS and RHS) are
shown in solid thin (black) lines

— Eraser elements (that are part of the LHS but not the RHS) are depicted in
dashed (blue) lines.

— Creator elements (that are part of the RHS but not the LHS) are depicted
in solid thick (green) lines.

— Embargo elements (from the NAC) are shown in dotted (red) lines.

A sample graph transformation rule stating how to append a new element to
the end of the cell list is depicted in Fig. 2 in both the traditional and the
GROOVE notation!. The dynamic behavior of this highly recursive append
problem is defined by four graph transformation rules (see Figs. 2 and 3).

Append a New Cell. Rule Append is responsible for appending a new cell
to the list if the control reaches the last cell (see the negative condition
inhibiting the existence of a next edge pointing to a Cell) and the value
stored at this last cell is not equal to the method parameter. Furthermore,
the append method returns one level up in the recursive call hierarchy as
simulated by removing the bottom-most Append node and adding a return
edge.

! Note that node identities are not allowed in the GROOVE tool, we only use them
for presentation reasons.
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Append 2% Cell } [LHS*RHS (reader) |
ot ILHS, not RHS (‘eraser’) |
Cell B
= .ihis_' __\.ra'i‘ val | RHS, not LH! reator”)
‘Append |4~ -- —. Append \- -"l Int || INAC (“embargo”)
i contror |
"LHS (with NAC) RHS
[Void | [ cen 5[ Cenl |
return al
:AppendH :Append i :Int | [ :Cell | :Int
:caller k/)c Atrol

Fig. 2. The Append graph transformation rule in different notations.

Go to Next Cell. Rule Next checks whether the method parameter is not
equal to the value stored at the current cell and makes a recursive call then
for checking the next cell by generating a new Append node and passing the
control to it.

Value Found in List. Rule Found checks if the method parameter is equal to
the value stored at the current cell and, if so, returns the control to its caller
append invocation node p in such a case.

Next .
= Cell 220 Cell |

*, creturn
A Y
\\
3"...":.4..-_- e, S
:Append < - - :Append |v, |[ :Append |+ -1 :Append |
-caller "Z:: = ; caller

Found E -control | Return

Fig. 3. Additional graph transformation rules for the concurrent append problem.
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Return Result. Finally, rule Return simply removes an append invocation node
(from the stack of recursive calls) if it has already calculated the result.

2.3 The Model Checking Problem
of Graph Transformation Systems

The model checking problem is to automatically decide whether a certain correct-
ness property holds in a given system by systematically traversing all enabled
transitions in all states (thus all possible execution paths) of the system. The
correctness properties are frequently formalized as LTL formulae.

In graph transformation systems, a state is a graph, while a transition cor-
responds to the application of a rule for a certain matching of the left hand side
in such a graph. Traversing all enabled transitions then means applying all rules
on all possible matchings. During this process, it is important to realize whether
a certain state has been investigated before; therefore the model checker has to
store all the graphs that it has encountered. Furthermore, ideally a model checker
should exploit the symmetric nature of a problem by investigating isomorphic
situations only once. The two approaches compared in the paper introduce very
different techniques to tackle these problems.

For the current paper, we restrict our investigation to the verification of
safety and reachability properties. A safety property defines a desired property
that should always hold on every execution path or (equivalently) an undesired
situation which should never hold on any execution paths (which we will call
a danger property below). A reachability property describes, on the contrary,
a desired situation which should be reached along at least one execution path.
From a verification point of view, safety and reachability properties are dual: the
refutation of a safety property is a counter-example which satisfies the reach-
ability property obtained as the negation of the safety property. On the other
hand, if a safety property holds (or a reachability property is refuted) the model
checker has to traverse the entire state space.

A safety or reachability property can be interpreted as a special graph pat-
tern (called property graph in the sequel) which immediately terminates the
verification process if it is matched successfully. We have shown in [14] that the
properties expressible in this way are equivalent to the 3-3 fragment of (V-free)
first order logic with binary predicates. For instance, the property that there
exists an element that is shared among two list cells, expressed by the first-order
logic property 3 v:lnt, ¢, ¢a: Cell . val(cy, v) A val(ca,v) A ¢ # co is alternatively
encoded in the left graph of Figure 4.

The other property graphs in Fig. 4 are Isolated stating that every Int-object
is either a method parameter or contained in the list, and Terminated expressing
that there are no Append-methods left. Since different interleavings of append
method calls access the list concurrently, we need model checking to ensure that
these properties hold.
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Shared Isolated Terminated
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Fig. 4. Danger and reachability property graphs.

3 The CheckVML Approach

Main concepts. The main idea of the CheckVML approach [20,23,24] is to ex-
ploit off-the-shelf model checker tools like SPIN [11] for the verification of graph
transformation systems. More specifically, it translates a graph transformation
system parameterized with a type graph and an initial graph (via an abstract
transition system representation) into its Promela equivalent to carry out the
formal analysis in SPIN. Furthermore, property graphs are also translated into
their temporal logic equivalents.

Traditional model checkers are based on so-called Kripke structures, which
are state-transition models where the structure of a state consists of a subset
of a finite universe of propositions. This determines the storage structures used
(usually Binary Decision Diagrams or a variant thereof), the logic used to express
properties (propositional logic extended with temporal operators, usually LTL
or CTL) and the model checking algorithms (automata-based or tableau-based).

Since graph transformation is a meta-level specification paradigm (i.e. it de-
fines how each instance of a type graph should behave) while the Kripke structure
(transition system) formalism of Promela is a model-level specification language
(i.e. a Promela model describes how a specific model should behave), the main
challenge in this approach is rule instantiation, i.e. to generate one Promela
transition for all the potential application of a graph transformation rule in a
preprocessing phase at compile time.

The potential benefits of the Check VML approach are the following;:

1. It considers typed and attributed graphs which fits well to the metamodeling
philosophy of UML and other modeling languages.

2. The size of the state vector depends only on the dynamic model elements
(i.e., elements that can be altered by at least one graph transformation rule)
while immutable static parts of a model are not stored in the state vector.
This is a typical case for data-flow like systems (dataflow networks, Petri
nets, etc).

3. It can be easily adapted to various back-end model checker tools.

The essential disadvantage of the approach is that dynamic model elements
(that are not restricted by static constraints) easily blow up both the verification
model and state space; moreover, symmetries in graphs can be handled for only
very limited cases. Further research is necessitated in these directions.
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Graphs and transformation rules. CheckVML uses directed, typed and at-
tributed graphs (or MOF metamodels and models) as model representation (see
the example presented in Sec. 2.1-2.2). Inheritance between node types is also
supported.

Concerning the rule application strategy, CheckVML prescribes that a match-
ing in the host graph should be an injective occurrence of the LHS (and NAC)
graphs. Arbitrary creation and deletion of edges are allowed while there is an a
priori upper bound for the number of nodes (of a certain type) potentially cre-
ated during a verification run, which is passed as a parameter to the translator.
Moreover, all dangling edges are implicitly removed when deleting a node.

New (unpublished) features. Several new features of CheckVML have been added
as an incremental improvement since the previous papers [20,24]. In order to
improve performance, the entire tool has been rewritten, and the translator now
uses relational database technology for generating all potential matches.

The main novelty is the automated translation of property graphs into LTL
formulae; thus the users do not need SPIN-specific knowledge for stating prop-
erties. Since property graphs denote safety or reachability properties, thus this
translation should find all potential matchings of this pattern in a similar way
as done for instantiating rules.

Furthermore, in order to handle certain isomorphic situations, node identi-
fiers have been ordered and made reusable. When a new node is created, the
smallest available identifier is assigned to it, therefore, the same node can be re-
assigned several times. As a result, certain (but not all) isomorphic host graphs
are handled only once.

Input / Output formats. CheckVML uses the GXL format [21] to store all host
graphs, rule graphs (LHS, RHS, NAC) and property graphs. An XML configu-
ration file is responsible for declaring the role of a certain graph (rule, host or
property), and the user can set several translation parameters as well (e.g. upper
bound for nodes of a certain type). In the near future, we plan to port Check-
VML to a graph transformation tool with visual graph and rule editing facilities.
The AGG tool [8] is a primary candidate due to the similarities between both
the graph models and XML formats.

CheckVML generates a Promela model by instantiating rules on the host
graph, and the SPIN representation of LTL formulae (which can be copy-pasted
into the XSPIN framework). As a result, the users can work with high-level
graph models and no (significant) SPIN-specific knowledge is required for mod-
eling. However, counter-examples obtained as results of a verification run are
currently available only in SPIN (for instance, in the form of scenarios/sequence
diagrams), therefore, SPIN specific knowledge is required for the interpretation
of analysis results. In the future, we also plan to investigate the possibilities of
back-annotating analysis results so that they could be simulated (played back) in
a graph transformation tool. Unfortunately, existing graph transformation tools
provide very little support for importing entire execution traces.
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Note that the overall ideas behind the CheckVML approach are not restricted
to SPIN. In fact, thanks to a recent extension, Check VML also yields an XML
format for the generated transition system. Since the majority of model checker
tools use transition systems as the underlying mathematical model (naturally, in
their own dialect), this XML output can easily be adapted to various back-end
model checkers, e.g. by XSLT scripts.

4 The GROOVE Approach

Main concepts. The idea behind the GROOVE approach (see [15] for further
details on the project and downloads) is to use the core concepts of graphs and
graph transformations all the way through during model checking. This means
that states are explicitly represented and stored as graphs, and transitions as
applications of graph transformation rules; moreover, properties to be checked
should be specified in a graph-based logic, and graph-specific model checking
algorithms should be applied.

This approach implies that very little of the theory and tool development
for traditional model checkers can be applied immediately, since the most basic
concept, namely the underlying model, has been extended drastically.

Currently only the state space generation part of GROOVE has been fully
implemented. However, by the nature of graph transformation, this already im-
plies the ability to express and check safety and reachability of graph properties,
since they can be be formulated as rules with an identity morphism. Such a rule
is applicable (idempotently) at precisely those states where the property holds.
It is then straightforward to use such properties in controlling the state space
generation process.

In particular, when treating a safety/danger property as an invariant, the
state space generation halts with unexplored states exactly if the property is
violated; when treating the inverse of a reachability property as an invariant, it
halts precisely if the property is satisfied.

The GROOVE state space generator implements the process described in
Sec. 2 to match each newly generated state against existing states up to iso-
morphism. While an isomorphism check is in principle quite expensive, for the
examples we have worked out it stays within practical bounds.

The potential benefits of the GROOVE approach are the following:

1. There is no a priori upper bound to the size of the graphs;

2. There is an implicit symmetry check through the identification of isomorphic
graphs;

3. No pre- or post-processing is necessary to apply the GROOVE tool to a
given graph transformation system, or to translate the results of the model
checking back into graphs;

4. Existing graph transformation theory can be directly brought to bear upon
the tool, for instance, to discover rule independence or local confluence.

The essential disadvantage of this approach is that the huge body of existing
research in traditional model checking is only indirectly applicable. In each of
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the areas where this applies, we aim to develop alternative techniques that are
based directly on graphs.

1. Storage techniques (e.g., Binary Decision Diagrams). Rather than storing
each graph anew, we store only the differences with the graph that it was
derived from, in terms of the nodes and edges added and removed. This
does mean that the actual graph has to be reconstructed when it is needed,
e.g., for checking isomorphism; to alleviate the resulting time penalty this
minimal representation is combined with caching.

2. State space reduction techniques, such as partial order reduction and ab-
straction. For state space reduction, we intend to use confluence properties
of graph transformation rules (see advantage 3 above), or graph abstraction
in the sense of shape graphs (see [19]). A first step towards the latter was
reported in [17].

3. Logics and model checking algorithms. To replace the propositional logic used
in traditional model checking, we have proposed a predicate graph logic
in [13] for the purpose of formulating the properties to be checked. Some
preliminary ideas on model checking such properties can be found in [4].

Graphs and transformation rules. GROOVE uses untyped, non-attributed, edge-
labeled graphs without parallel edges. Node labels are not supported; however,
we simulate them using self-edges (which indeed are also depicted by writing the
labels inside the nodes). Furthermore, GROOVE implements the single pushout
rewrite approach [7] (which means that dangling edges are removed while non-
injective matching of the LHSs is allowed). It supports the use of negative ap-
plication conditions. These can be used to specify, among other things, injectiv-
ity constraints; thus we can also simulate transformation systems in which the
matchings are intended to be injective.

For the purpose of graph transformation, the lack of typing in GROOVE
is not a serious drawback, since type information is not used to control the
transformation process (although it may be used to optimize it). The absence of
attributes is a potentially greater drawback. The examples presented here have
been chosen such that attributes to not play a significant role, and so they can
be simulated using ordinary edges. In fact, an extension to “true” attributes is
not planned; rather, we plan to interpret data values as a special class of nodes,
with ordinary edges pointing to them, as in [10].

Input/output formats GROOVE uses the GXL format [21] to store host graphs
and rules. Each rule is saved as a single graph, combining the information in
LHS, RHS and NACs by adding structure on the edges (in the form of a prefix)
that indicates their role — or, in the case of nodes, by adding special edges for
this purpose. A graph transformation system consists of all the rules in a single
directory as well as its subdirectories (which are treated as separate namespaces,
thus giving rise to a simple hierarchy of rules). In the future we plan to support
the special-purpose format GTXL (see [22]).
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Table 1. Feature comparison for Check VML and GROOVE.

Aspects of comparison

GROOVE

CheckVML

Graph model Directed graphs
Labeled graphs

Typed and attributed graphs

+
+

+

+

GT rules NAC
Node creation
Edge creation/removal

+

arbitrary number
+

+

a priori upper bound
+

Property to be proved

graph constraint
safety / reachability

Dangling edges removed removed

Pattern matching non-injective injective
Input / Output  |Graphical input (editor) +

XML input + +

Graphical output (trace) built-in MSCs in XSPIN

XML output + +

graph constraint or LTL in SPIN
safety / reachability

Verification Exploration strategies
Symmetry recognition

Preprocessing

extensible library
graph isomorphism
none

SPIN
reusable object ids
translation to SPIN

Alternatively, the GROOVE tool packages a stand-alone graph editor that
can be used to construct graphs and rules and save them in the required format,
or to read and edit graphs obtained from elsewhere.

State transition systems generated as a result of state space generation are
also saved as GXL graphs, in which the nodes correspond to states (hence,
graphs) and the edges to rule applications, labeled by the rule names.

State spaces can be generated either using a graphical simulator or using a
command-line tool.

— The simulator, described before in [16], supports state space traversal by
allowing the user to select and apply rules and matchings, all the while
building up the transition system. Alternatively, the user can apply one of
the available automatic state space exploration strategies (branching, lin-
ear, bounded, invariant). Graphs and transition system can be inspected by
showing and hiding edges based on regular expressions over their labels.

— The command-line tool applies a pre-chosen strategy and generates and saves
the resulting transition system.

Finally, Table 1 provides a brief summarizing comparison of the two tools.

5 Experimental Comparison

We have carried out three different case studies to compare the two model check-
ing approaches, namely, (1) the Concurrent Append example of the current pa-
per, (2) the dining philosophers problem as discussed in [24], and (3) a mutual
exclusive resource allocation example taken from [9]. In the following we briefly
describe the salient features of these cases.

Dining philosophers = Symmetries + No dynamic allocation. We have chosen
this example because it is a traditional one, which has already been subject of a



Model Checking Graph Transformations: A Comparison of Two Approaches 237

study for the CheckVML approach. For the purpose of GROOVE,; this is an in-
teresting case because with n philosophers, the example obviously has symmetry
degree n, and this should then also be the reduction factor in number of states
and transitions. On the other hand, the example has no dynamic allocation, and
in this sense is not typical of the sort of problem for which we expect a graph
transformation-based approach to be superior to traditional model checkers. We
checked a safety property stating that no forks are ever held by more than one
philosophers.

Concurrent append = Dynamic allocation + No symmetries. This is the running
example of the paper. We have chosen it because it combines features that we
believe to be typical of the “hard” problems in software verification. On the one
hand, it contains dynamic allocation (list cells are created and append method
frames are created and deleted), and on the other hand, it specifies concurrent
behavior (several append methods are running in parallel). Note that, in the
representation chosen here, the example has few non-trivial symmetries. In par-
ticular, all Int-objects in the list are distinguished by their value. We checked
the property expressing that the list of cells is not allowed to contain the same
value more than once.

Mutual exclusion = Dynamic allocation + Symmetries. In this example, pro-
cesses try to access shared resources by using a token ring. We have chosen this
example because it combines dynamic allocation (processes and resources can be
created and deleted arbitrarily) and symmetry (processes and resources cannot
be distinguished from one another). Moreover, a graph-based description of the
protocol is very natural: an argument can be made that the specification of this
protocol using graph transformation rules is superior to any other. The verified
requirement was that at most one process may be allowed to access each resource
at a time.

Of the examples presented here, this is the only one for which the state
space is actually infinite (there is no upper bound to the numbers of processes
and resources). Therefore, an artificial upper bound has to be imposed for the
purpose of state space generation.

Results. In Table 2, we compare (a) the number of states traversed by the model
checker during a successful verification run, (b) the number of transitions in the
(reachable) state space, (c¢) the size of memory footprint of the state space, and
(d) the execution time for the verification run. Furthermore, we also present the
preprocessing time required for CheckVML to translate graph transformation
systems into SPIN and the size of state vectors in SPIN.

We have done our best to produce the results of both approaches on an equal
basis. We briefly list the characteristics of the experiments:

Memory Usage and Run-Time Performance. Experiments were run on a
3 GHz Pentium IV processor with 1 GB of memory. For the GROOVE
experiments, Java Virtual Machine was started with an initial memory size
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Table 2. Comparison of verification runs for Check VML+SPIN and GROOVE.

entities | preproc wvector | states transitions memory run time
DinPhil # s #bits # # MB s
CheckVML + 3 3.8 36 57 125 2,6 0.2
SPIN 4 45 48 181 554 26 0.2
5 5,0 60 603 2397 26 0.2
8 6,6 112  25.961 171.058 8.8 086
10 9.1 156 328.503 2.711.200 90,8 7.5
12 out of memory (for SPIN)
G 3 1 41 0,0 0.1
4 45 148 0.0 0.2
5 117 481 0.0 05
8 3.261 21.536 1.7 136
10 32903 271.634 418 199.5
12 106.329  965.589 74,2 793.3
Append App : Cell Append calls and cells initially present in the system
CheckVML +  2:3 (orig) out of memory (SPIN)
SPIN 2:3 (mod) 15,3 200 22 169 2.6 05
2:5 (mod) 117.9 316 86 395 26 11
3:5 (mod) | 1.021,0 520 3311 5764 37,0 40,0
rest oul of time (for CheckWVML)
Groove 23 57 116 0.0 03
25 145 292 0,0 0,6
5 1.125 3.163 0.4 44
a7 2716 7.768 1.0 13,0
4:8 31.104 116.658 12,4 2121
[Mutex prires:new
CheckVML + 2:2:0 6,1 44 5772 38.557 28 13
SPIN 3:2:0 18,5 60| 697.004 6.843.310 83,2 147
rest  |24,3-180 at least 70 minutes (execution aborted)
Groove 2:2:0 8.384 15.936 23 4.2
3:2:0 262.054  620.284 79,1 1626
330 out of memory at around 1 million states
2:0:2 11.692 22,675 31 55
2:0:3 515.134  1.206.935 155.6 361.8
Motation: pr is the number of processes initially present in the system

res is the number of resources initially present in the system
new is the upper bound for additional resources and additional processes

of 100 MB and maximum size of 1 GB. Although the space used for the
actual storage of the state space is under 200 MB for all the cases reported
here, during state space generation the tool heavily relies of caching and
limiting the amount of available memory dramatically worsens the run-time
performance.

Bounding the State Space. For the mutual exclusion example, we had to
put a bound to the state space (as mentioned above). The way this is im-
plemented in both tools is different. In GROOVE, all states which violate
the bounding constraint are first generated and added to the transition sys-
tem, after which the violation is detected and they are ignored for further
exploration. In the Check VML approach, on the other hand, the violation
is checked first and hence those states are not generated at all. It turns out
that the “spurious” states in the GROOVE results comprise about 85% of
the state space and about 25% of the number of transitions.

Activating vs. Creating Nodes. For the original concurrent append exam-
ple, SPIN failed even on very small examples due to the fact that each node
and edge type is dynamic?. However, verification times for CheckVML +

2 CheckVML generates the cross-product of all nodes and edges in the preprocessing
phase even though the number of edges are only linear in the number of nodes.
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SPIN could be reduced by a modeling trick, i.e. altering the models and the
rules by adding an isActive attribute for each node type and only activating
a node by changing this attribute instead of “real” node creation. This way,
many graph elements that were originally dynamic are turned into static
elements and thus abstracted by CheckVML during preprocessing. This ex-
ample thus also demonstrated some pros and contras of graph attributes.
However, the experimental results for the two approaches are not directly
comparable (as denoted by the “(mod)” postfix after the append test cases
in Table 2).

Evaluation. Based on Table 2, we come to the following overall conclusions:

— The space needed to store the transition system generated by both tools is
comparable. Yet the techniques are very different: for GROOVE it is based
on storing the differences between successive states, in terms of nodes and
edges added and removed, whereas SPIN (and hence CheckVML) stores
states as bit vectors that encode the entire graphs.

— The time needed to generate the states spaces is in a different order of mag-
nitude: on the cases reported here, Check VML typically takes under a tenth
of the time that GROOVE does. For this we offer three possible explana-
tions: (a) SPIN clearly shows the benefits of a more mature technology: over
a decade of research has gone into improving its implementation. (b) Over
the years, SPIN has been heavily optimized towards its implementation in
C, whereas GROOVE has been implemented entirely in Java. (¢) The ap-
proach taken by GROOVE, involving explicit graph matching and graph
isomorphism checks, is inherently more complex.

— For each of the problems studied the GROOVE approach can handle a larger
dimension than the CheckVML approach (which dimension is unquestion-
ably significant for the append and mutual exclusion examples). This shows
that the potential advantages of the approach, in terms of symmetry check-
ing and dealing with dynamic allocation, also really show up in practice.

6 Conclusions

In the paper, we tackled the problem of model checking graph transformation sys-
tems by two different approaches. CheckVML exploits traditional model check-
ing techniques for verification by translating graph transformation systems into
SPIN, an off-the-shelf model checker. GROOVE, on the other hand, uses the
core concepts of graphs and graph transformations all the way through during
model checking.

We compared the two approaches on three case studies having essentially
different characteristics concerning the dynamic and symmetric nature of the
problem. Our overall conclusion is the following:

— If the problem analyzed lends itself well to be modeled in SPIN; that is, if
dynamic allocation and/or symmetries are limited, it is to be expected that
the CheckVML approach will always remain superior.



240 Arend Rensink, Akos Schmidt, and Déaniel Varré

— On the other hand, for problems that are inherently dynamic, the GROOVE
approach is a promising alternative.

Our conclusions also imply certain directions for future work. Obviously,
CheckVML would yield a much more succinct state vector if further constraints
on the metamodels (such as multiplicities) were handled in the preprocessing
phase. For GROOVE, it is an interesting issue to make isomorphism checks
optional (thus serving as an intelligent compression technique). However, the
main line of research should find sophisticated abstraction techniques especially
for infinite state graph transformation systems.
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