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Abstract. In this paper we introduce a variant of temporal logic tailored for spec-
ifying desired properties of continuous signals. The logic is based on a bounded
subset of the real-time logic MITL, augmented with a static mapping from con-
tinuous domains into propositions. From formulae in this logic we create auto-
matically property monitors that can check whether a given signal of bounded
length and finite variability satisfies the property. A prototype implementation of
this procedure was used to check properties of simulation traces generated by
Matlab/Simulink.

1 Introduction

Temporal logic [MP95] is a rigorous formalism for specifying desired behaviors of
discrete systems such as programs or digital circuits. The algorithmic approach to ver-
ification [Kur94,CGP99,BBF+01,VW86] consists of checking whether all (finite and
infinite) state-event sequences generated by a system S satisfy a formula ϕ, that is, ef-
fectively deciding the language inclusion [[S]] ⊆ [[ϕ]]. Recently a version of a temporal
logic-based specification formalism, PSL-Sugar [BBDE+02], has been adopted by the
hardware industry as a standard specification language.

For systems which are outside the scope of automatic verification tools, either due to
the incorporation of unbounded variables (numbers, queues) or simply due to size, sim-
ulation/testing is still the preferred validation method. It has been suggested by several
authors that the specification component of verification can be exported toward sim-
ulation through property monitors (observers, testers). In the software context this is
called run-time verification [HR02a,SV03]. The idea is simple: unlike the inclusion test
[[S]] ⊆ [[ϕ]] used in verification, in monitoring one performs each time a much simpler
membership test ξ ∈ [[ϕ]] on an individual simulation trace ξ ∈ [[S]] and the responsibil-
ity for exhaustive coverage is delegated to the test generation procedure (or abandoned
altogether).

The essence of this approach is the automatic construction of a monitor from the
formula in the form of a program that can be interfaced with the simulator and alert the
user if the property is violated by a simulation trace. This process is much more reliable
than manual (visual or textual) inspection of simulation traces, or manual construction
of property monitors.

� This work was partially supported by the EC projects IST-2001-33520 CC (Control and Com-
putation), IST-2001-35302 AMETIST (Advanced Methods for Timed Systems) and IST-2003-
507219 PROSYD (Property-Based System Design).



Temporal logic has been used as the specification language in a number of monitor-
ing tools, including Temporal Rover (TR) [Dru00], FoCs [ABG+00], Java PathExplorer
(JPaX) [HR01] and MaCS [KLS+02]. TR is a commercial tool that allows to annotate
programs with temporal logic formulae and then monitor them. FoCs is a monitoring
system developed at IBM that automatically transforms PSL-Sugar properties into de-
terministic property checkers in the form of simulation blocks compatible with various
HDL simulators. JPaX is a software-oriented runtime verification system for data race
analysis, deadlock detection and temporal specifications. MaCS is another software-
oriented monitoring framework aimed at runtime checking (and steering) of real-time
programs.

Unlike verification, where the availability of the system model allows one to reason
about infinite computations (carried by cycles in the transition graph), monitoring is
usually restricted to finite traces. One thread of monitoring research attempts to redefine
the semantics of temporal formulae on finite (truncated) runs [EFH+03]. We avoid this
problem altogether by considering a temporal logic with bounded time modalities which
interprets naturally over finite traces.

The main contribution of this work is the definition of a temporal logic for spec-
ifying properties of dense-time real-valued signals and the automatic generation of
property monitors for this language. The motivation to do so stems from the need to
improve validation methodology for continuous and hybrid systems. Two prime exam-
ples of such systems are control systems, where the continuous variables are used to
model the physical plant under control, and analog and mixed-signal circuits where
such variables represent currents and voltages throughout the circuit. The natural mod-
els for such systems are differential equations, for purely continuous systems, or hybrid
automata, a combination of automata with differential equations, when the dynamics is
mixed and contains mode switching, saturation, etc. The exact exhaustive verification
of continuous and hybrid systems is impossible due to undecidability except for some
trivial sub-classes. Even approximate verification is very hard, restricted in the current
state-of-the-art to systems with very few continuous variables. Consequently, numer-
ical simulation is the commonly-used method to validate such systems and our work
can be seen as a step toward making this process more systematic and rigorous. Some
primitive forms of monitoring do exist in certain numerical simulation tools but their
temporal (“sequential”) sophistication is very limited.

The rest of the paper is organized as follows. In Section 2 we introduce the real-time
temporal logic MITL[a,b], a restricted version of the logic MITL of Alur and Henzinger
[AFH96] along with its semantic domain, Boolean signals of finite variability defined
over finite prefixes of the positive real time axis. In Section 3 we describe a simple
offline monitoring procedure which reads a formula ϕ and a signal s of a sufficient
length (relative to the formula) and determines whether s satisfies ϕ. This procedure by
itself can be used to monitor dense real-time properties of digital circuits and programs.
In section 4 we introduce the logic STL (Signal Temporal Logic), discuss its semantic
domain and show how monitoring for its formulae can be reduced, via static Boolean
abstraction, to monitoring of MITL[a,b] formulae. The behavior of a prototype imple-
mentation on simulation traces generated by Matlab/Simulink is illustrated in Section 5,
followed by discussions of related and future work.



2 Signals and their Temporal Logic

2.1 Signals

Let the time domain T be the set R≥0 of non-negative real numbers. A finite length
signal s over a domain D is a partial function s : T → D whose domain of definition
is the interval I = [0, r), r ∈ Q≥0. We say that the length of the signal is r and denote
this fact by |s| = r. We use the notation s[t] = ⊥ for every t ≥ |s|.

Signals over different domains can be combined and separated using the standard
pairing and projection operators as well as any pointwise operation. Let s1 : T → D1,
s2 : T → D2, s12 : T → D1×D2 and s3 : T → D3 be signals and let f : D1×D2 → D3

be a function. The pairing function is defined as

s1 ‖ s2 = s12 if ∀t s12[t] = (s1[t], s2[t]).

and its inverse operation, projection as:

s1 = π1(s12) s2 = π2(s12).

The lifting of f to signals is defined as

s3 = f(s1, s2) if ∀t s3[t] = f(s1[t], s2[t]).

Note that if s1 and s2 differ in length, the convention f(x,⊥) = f(⊥, x) = ⊥ guaran-
tees that |s3| = min(|s1|, |s2|).

In the rest of this paper, unless otherwise stated, we restrict our attention to Boolean
signals, D = B. In this case (and for discrete domains in general) all reasonable signals
are piecewise-constant1 and can be represented by their values on a countable number
of intervals. An interval covering for an interval I = [0, r) is a sequence I = I1, I2 . . .
of left-closed right-open intervals such that

⋃
Ii = I and Ii ∩ Ij = ∅ for every i �= j.

An interval covering I is said to be consistent with a signal s if s[t] = s[t′] for every
t, t′ belonging to the same interval Ii. In that case we can abuse notation and write
s(Ii). We say that a signal s is of finite variability if it has a finite interval covering
[AFH96]. It is not hard to see that such signals are closed under pointwise operations,
pairing and projection. We restrict ourselves to signals of finite variability which are,
by definition, non-Zeno. An interval covering I is said to refine I ′, denoted by I ≺ I ′

if ∀I ∈ I ∃I ′ ∈ I′ such that I ⊆ I ′. Clearly, if I ′ is consistent with s, so is I.
We denote by Is the minimal interval covering consistent with a finite variability

signal s. The set of positive intervals of s is I+
s = {I ∈ Is : s(I) = 1} and the set of

negative intervals is I−
s = Is − I+

s . A Boolean signal s : T → B can be represented
by the pair (|s|, I+

s ). Such a signal is said to be unitary if I+
s is a singleton. Clearly any

Boolean signal s of finite variability can be written as s = s1∨s2∨ . . .∨sk where all si
are unitary and the boundaries of their corresponding positive intervals do not intersect.

1 Pathological signals which are 1 on rationals and 0 on irrationals are out of the scope of this
work.



2.2 Real-time Temporal Logic

We consider the logic MITL[a,b] as a fragment of the real-time temporal logic MITL

[AFH96], such that all temporal modalities are restricted to intervals of the form [a, b]
with 0 ≤ a < b and a, b ∈ Q≥0. More on various dialects of real-time logic can
be found in [AH92,Hen98]. The use of bounded temporal properties is justified by
the nature of monitoring where the behavior of a system is observed for a finite time
interval. The basic formulae of MITL[a,b] are defined by the grammar

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1U[a,b]ϕ2

where p belongs to a set P = {p1, . . . , pn} of propositions. From basic MITL[a,b] op-
erators one can derive other standard Boolean and temporal operators, in particular the
time-constrained eventually and always operators:

�[a,b]ϕ = T U[a,b]ϕ and �[a,b]ϕ = ¬�[a,b]¬ϕ
In this paper, MITL[a,b] formulae are interpreted over n-dimensional Boolean sig-

nals. The satisfaction relation (s, t) |= ϕ, indicating that signal s satisfies ϕ starting
from position t, is defined inductively as follows:

(s, t) |= p ↔ πp(s)[t] = T

(s, t) |= ¬ϕ ↔ (s, t) �|= ϕ
(s, t) |= ϕ1 ∨ ϕ2 ↔ (s, t) |= ϕ1 or (s, t) |= ϕ2

(s, t) |= ϕ1U[a,b]ϕ2 ↔ ∃t′ ∈ [t+ a, t+ b] (s, t′) |= ϕ2 and ∀t′′ ∈ [t, t′], (s, t′′) |= ϕ1

Note that our definition of the semantics of the time-bounded until operator differs
slightly from its conventional definition since it requires a time instant t′ ∈ [t+a, t+ b]
where both (s, t′) |= ϕ2 and (s, t′) |= ϕ1. This definition does not have any repercus-
sion on the derived eventually and always operators which retain their usual seman-
tics:

(s, t) |= �[a,b]ϕ↔ ∃t′ ∈ t+ [a, b] (s, t′) |= ϕ
(s, t) |= �[a,b]ϕ ↔ ∀t′ ∈ t+ [a, b] (s, t′) |= ϕ

A signal s satisfies the formula ϕ iff (s, 0) |= ϕ.
According to the standard semantics for temporal logic, the satisfaction of a formula

with unbounded modalities can rarely be determined with respect to a finite signal or
sequence. In fact, only the satisfaction of �p or the violation of �p can be detected in
finite time. By using bounded modalities we avoid the problems related to the ambigu-
ity of |= when applied to finite signals or sequences. Nevertheless, even for MITL[a,b]

certain signals are too short to determine satisfaction of the formula, for example the
property �[a,b]�[c,d]p cannot be evaluated on signals shorter than b + d. Hence we re-
strict ourselves to signals which are sufficiently long. The necessary length associated
with a formula ϕ, denoted by ||ϕ||, is defined inductively on the structure of the formula:

||p|| = 0
||¬ϕ|| = ||ϕ||
||ϕ1 ∨ ϕ2|| = max(||ϕ1||, ||ϕ2||)
||ϕ1U[a,b]ϕ2|| = max(||ϕ1||, ||ϕ2||) + b

The reader can verify that s |= ϕ is well defined whenever |s| > ||ϕ||.



3 Monitoring MITL[a,b] Formulae

In this section we present a procedure for deciding the satisfiability of an MITL[a,b]

formula by a sufficiently long signal. This procedure, partly inspired by [Pnu03] and
[HR02b], is very simple. It works in a bottom-up fashion on the parse tree of the for-
mula. Starting from the leaves we construct for every sub-formula ψ a signal sψ such
that sψ[t] = 1 iff (s, t) |= ψ. When the process is completed we have the signal sϕ for
the formula whose value at 0 determines satisfiability. Since future temporal modalities
talk about truth now as a function of some truth in the future, it is natural that our pro-
cedure goes backwards, propagating, for example, the truth value of p at time t, toward
the truth of �[a,b]p at [t− b, t− a]. This procedure is not causal and has to wait for the
termination of the simulation before starting the evaluation of the signal with respect to
the formula.

For Boolean operators the computation of (a representation of) a signal for a formula
from (the representations of) the signals of its sub-formulae is rather straightforward.
For negation we have I+

¬p = I−
p . For disjunction ψ = p ∨ q we first construct a refined

interval covering I = {I1, . . . Ik} for p||q and then for each Ii, letψ(Ii) = p(Ii)∨q(Ii).
Finally we merge adjacent positive intervals to obtain I+

ψ (see Figure 1).

p

q

p′

q′

p′ ∨ q′

p ∨ q

Fig. 1. To compute p ∨ q we first refine the interval covering to obtain the a representation of
the signals by p′ and q′, then perform interval-wise operations to obtain p′ ∨ q′ and then merge
adjacent positive intervals.

To treat the until we need to shift intervals backwards. Let I = [m,n) and [a, b] be
intervals in T. The [a, b]-back shifting of I , is

I � [a, b] = [m− b, n− a) ∩ T.

This is essentially the inverse of the Minkowski sum with saturation at zero (see Fig-
ure 2).

Claim (Unitary Until). Let p and q be two unitary signals with I+
p = {Ip} and I+

q =
{Iq}. Then the signal ψ = pU[a,b]q is a unitary signal satisfying

I+
ψ = {((Ip ∩ Iq) � [a, b]) ∩ Ip}.



I

I � [a, b]

0 0 0
(c)(b)(a)

Fig. 2. Three instances of back shifting I ′ = [m, n) � [a, b]: (a) I ′ = [m − b, n − a); (b)
I ′ = [0, n − a] because m − b < 0; (c) I ′ = ∅ because n − a < 0

Proof. This follows directly from the definition of U[a,b] semantics. Let t be point in
((Ip ∩ Iq)� [a, b])∩ Ip. This means that there is a time t′ ∈ [t+ a, t+ b] where q and p
are satisfied and that p is satisfied also at t. Since p is unitary, this implies that p holds
throughout the interval [t, t′]. A point t not belonging to Iψ will either not have such a
point t′ or will not satisfy p and hence will not satisfy ψ.

Claim (General Until). Let p = p1 ∨ . . . ∨ pm and q = q1 ∨ . . . ∨ qn be two signals,
each written as a union of unitary signals. Then

pU[a,b]q =
m∨

i=1

n∨

j=1

piU[a,b]qj .

Proof. First, observe that pU[a,b](q1∨q2) = pU[a,b]q1∨pU[a,b]q2. This is because q[t] is
quantified existentially in the semantic definition. Secondly, when the positive intervals
of p1 and p2 are separated we have (p1 ∨ p2)U[a,b]q = p1U[a,b]q ∨ p1U[a,b]q.

In practice this should be computed only for pi and qj such that their respective positive
intervals intersect, and the number of such pairs is at mostm+n. Figure 3 demonstrates
why we cannot work directly on I+

p and I+
q but rather need to go through unitary

decomposition.
These claims imply the correctness of our procedure2 whose complexity is O(k ·n)

where k is the number of sub-formulae and n is the maximal number of positive inter-
vals in the atomic signals. As an example, the execution of our procedure is illustrated
in Figure 4 on the formula �[0,10](p→ �[1,2]q). We have implemented this procedure.

4 Real-Valued Signals

In this section we extend our semantic domain and logic to real-valued signals. While
Boolean signals of finite variability admit a finite representation, this is typically not the
case for real-valued signals which are often represented via sampling, that is a sequence
of time stamped values of the form (t, s[t]). Although we define the semantics of the

2 Note that the design decision to allow only closed intervals in the time modalities contributed
significantly to its simplicity, because we can restrict our attention to left-closed right-open
intervals without the annoying case splitting associated with different types of intervals.



p = p1 ∨ p2

q = q1 ∨ q2

s1 = p ∩ q

s2 = s1 � [a, b]

s3 = s2 ∩ p

pU[a,b]q = s3

(a)

p2

q1

s4 = p2 ∩ q1

s5 = s4 � [a, b]

s6 = s5 ∩ p2

p2

q2

s7 = p2 ∩ q2

s9 = s8 ∩ p2

s8 = s7 � [a, b]

pU[a,b]q = s6 ∨ s9

(b)

Fig. 3. (a) Applying back shifting to non-unitary signals leads to wrong results for pU [a,b]q; (b)
Applying back shifting to the unitary decomposition of p and q leads to correct results. The
computation with p1 is omitted as it has an empty intersection with q.
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→
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p

q

�[1,2]q

p → �[1,2]q

�[0,10](p → �[1,2]q)

Fig. 4. Monitoring two 2-dimensional signals against the formula �[0,10](p → �[1,2]q): (a) The
formula parse tree; (b) The property is satisfied; (c) The formula is violated.

logic in terms of the mathematical objects, signals of the from s : T → Rm, we can-
not ignore issues related to their effective representation based on the output of some
numerical simulator.

Our logic, to be defined in the sequel, does not speak about continuous signals
directly but rather via a set of static abstractions of the from μ : Rm → B. Typically μ
will partition the continuous state-space according to the satisfaction of some inequality
constraints on the real variables. As long as μ(s[t]) remains constant we do not really
care about the exact value of s[t]. However, in order to evaluate formulae we need the
sampling to be sufficiently dense so that all such transitions can be detected when they
happen. The problem of “event detection” in numerical simulation is well-known (see
a survey in [Mos99]) and can be resolved using variable step adaptive methods for
numerical integration.

However this may raise problems related to finite variability and Zenoness. Consider
an abstraction μ : R → B defined as μ(x) = 1 iff x > 0 and consider a signal s that
oscillates with an unbounded frequency near the origin. Such a signal will cross zero
too often and its abstraction may lead to Boolean signals of infinite variability. These
are eternal problems that need to be solved pragmatically according to the context.
In any case the dynamics of most reasonable systems have a bounded frequency, and
even if we add white noise to a system, the frequency remains bounded by the size
of the integration step used by the simulator. From now on we assume that we deal
with signals that are well-behaving with respect to every μ, that is, μ(s) has a bounded



variability and every change in μ(s) is detected in the sense that every point t such that
μ(s[t]) �= limt′→t μ(s[t′]) is included in the sampling.

Definition 1 (Signal Temporal Logic). Let U = {μ1, . . . , μn} be a collection of pred-
icates, effective functions of the form μi : Rm → B. An STL(U) formula is an MITL[a,b]

formula over the atomic propositions μ1(x), . . . μn(x).

Any signal which is well-behaving with respect to U can be transformed into a
Boolean signal s′ : T → Bn such that s′ = μ1(s)||μ2(s)|| . . . ||μn(s) is of bounded
variability. By construction, for every signal s and STL formula ϕ, s |= ϕ iff s′ |=
ϕ′ in the MITL[a,b] sense where ϕ′ is obtained from ϕ by replacing every μi(x) by a
propositional variable pi.

The monitoring process for STL formulae decomposes hence into two parts. First
we construct a Boolean “filter” for every μi ∈ U which transforms s into a Boolean
signal pi = μi(s). Consider, for example, the signal sin[t] where t is given in degrees
and μ(x) = x > 0. The signal is of length 400 and is sampled every 50 time units plus
two additional sampling points to detect zero crossing at 180 and 360. The input to the
Boolean filter is

(0, 0.0), (50, 0.766), (100, 0.984), (150, 0.5), (180, 0.0), (200,−0.342),
(250,−0.939), (300,−0.866), (350,−0.173), (360, 0), (400, 0.643)

and the output is a signal p such that I+
p = {[0, 180), [360, 400)}. From there the

monitoring procedure described in the previous section can be applied.

5 Examples

In this section we demonstrate the behavior of a prototype implementation of our tool
on signals generated using Matlab/Simulink. From the formula we generate a set of
Boolean filters and a program that monitors the result of the simulation. As a first ex-
ample consider two sinusoidal signals x1[t] = sin(ωt) and x2[t] = sin(ω(t + d)) + θ
where d is a random delay ranging in [3, 5] degrees and θ is an additive random noise
(see Figure 5). The property to be verified is

�[0,300]((x1 > 0.7) ⇒ �[3,5](x2 > 0.7)).

When θ is negligible, the property is satisfied as expected, while when θ ∈ [−0.5, 0.5],
traces are generated that violate the property.

The second example is based on a model of a water level controller in a steam
generator of a nuclear plant [Ben02,Don03]. The plant is modeled by a hybrid system
with each discrete state having a linear dynamics. There are 5 state variables, among
which the variable of disturbance (electricity demand), a control variable (steam flow)
and an output variable (the water level). The controller is modeled as a hybrid PI con-
troller whose coefficients depend on the system state. A high-level block diagram of the
system is depicted in Figure 6-(a).

The property that we want to check is a typical stabilizability property for control
systems. We want the output stay always in the interval [−30, 30] (except, possibly, for
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Fig. 5. Monitoring two 2-dimensional continuous signals against the property � [0,300]((x1 >
0.7) ⇒ �[3,5](x2 > 0.7)): (a) The generating system; (b) The property is satisfied; (c) The
property is violated.



an initialization period of length 300) and if, due to a disturbance, it goes outside the
interval [−0.5, 0.5], it will return to it within 150 time units and will stay there for at
least 20 time units. The whole property is

�[300,2500]((|y| ≤ 30) ∧ ((|y| > 0.5) ⇒ �[0,150]�[0,20](|y| ≤ 0.5)))

The result of monitoring for this formula appear on Figure 6-(b). When the disturbance
is well-behaving the property is verified while when the disturbance changes too fast,
the property is violated both by over-shooting below −30 and by taking more than 150
time to return to [−0.5, 0.5].

To demonstrate the complexity of our procedure as a function of signal length we
applied it to increasingly longer signals ranging from 5000 to one million seconds. We
use variable integration/sampling step with average step size of 2 seconds so the number
of sampling point in the input is roughly half the number of seconds. The results are
depicted in Table 1 and one can see that monitoring can be done very quickly and
it adds a negligible overhead to the simulation of complex systems. For example, the
simulation of the water level controller for a time horizon of million seconds takes 45
minutes while monitoring the output takes less than 3 seconds.

sig length |I+
p | |I+

q | time(sec)
5000 98 82 0.01

50000 970 802 0.13
100000 1920 1602 0.25
200000 3872 3202 0.49
500000 9732 8002 1.36

1000000 19410 16002 2.84

Table 1. CPU time of monitoring the water level controller example as a function of the time
horizon (signal length). The number of positive intervals in the Boolean abstractions is given as
another indication for the complexity of the problem.

6 Related Work

In this section we mention some work related to the extension of monitoring to real-time
properties and to generation of models from real-time logics in general. Some restricted
versions of real-time temporal logic already appear in some tools, for example, the
specification of real-time properties in MaCS is based on a logic that supports time-
stamped instantaneous events and conditions which have a duration between two events.
The TemporalRover allows formulae in the discrete time temporal logic MTL.

TimeChecker [KPA03] is a real-time monitoring system with properties written in
LTLt which uses a freeze quantifier to specify time constraints. The time notion in
TimeChecker is discrete. Despite the discrete sampling, the runtime verification steps
are not done at the chosen resolution but are rather event-based, i.e. performed only at
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Fig. 6. (a) The water level controller: general scheme, the plant (left) and the controller (right);
(b) Monitoring results: property satisfied (left) and violated (right).



relevant points of time. This approach allows efficient monitoring of applications where
the sampling period is required to be very small, but the period between two relevant
events may be large.

Another runtime monitoring method based on discrete-time temporal specifications
is presented in [TR04] who use Metric Temporal Logic (MTL). Like TimeChecker,
this method is event-based and can be seen as an on-the-fly adaptation of tableau con-
struction. The efficiency of the algorithm is based mainly on a procedure that keeps
transformed MTL formulae in a canonical form that retains its size relatively small.

The only work we are aware of concerning monitoring of dense time properties is
that of [BBKT04] who propose an automatic generation of real-time (analog or digital)
observers from timed automaton specifications. They use the method of state-estimation
to check whether an observed timed trace satisfies the specified property. This technique
corresponds to an on-the-fly determinization of the timed automaton by computing all
possible states that can be reached by the observed trace. No logic is used in this work.

Geilen [Gei02,GD00,Gei03] identifies MITL≤ as an interesting portion of MITL

with the restriction that all the temporal operators have to be bounded by an interval of
the form [0, d]. He proposes an on-the-fly tableau construction algorithm that converts
any MITL≤ formula into a timed automaton. Dense time does not admit a natural no-
tion of discrete states needed for a tableau construction algorithm. Hence, the idea of
ϕ-fine intervals is used to separate the dense timed sequences into a finite number of in-
teresting “portions” (states). An important feature of this method is that the constructed
timed automaton requires only one timer per temporal operator in the formula (unlike
the timed automata generated from full MITL). However, his automata are still non-
deterministic and would require an on-the-fly subset construction in order to be able
to monitor a timed sequence. In [Gei02], a restricted fragment of MITL≤ is introduced
which yields deterministic timed automata suitable for observing finite paths. However,
this restriction is strong since it does not allow an arbitrary nesting of until and release
temporal operators.

7 Conclusions and Future Work

This work is, to the best of our knowledge, the first application of temporal logic mon-
itoring to continuous and hybrid systems and we hope it will help in promoting formal
methods beyond their traditional application domains. The simple and elegant offline
monitoring procedure for MITL[a,b] is interesting by itself and can be readily applied to
monitoring of timed systems such as asynchronous circuits or real-time programs. We
are now working on the following improvements:

– Online monitoring: online monitoring has the following advantages over an offline
procedure. The first is that it may sometimes declare satisfaction or violation before
the simulation terminates when the automaton associated with the formula reaches
a sink state (either accepting or rejecting) after reading a prefix of the trace. This
can be advantageous when simulation is costly. The second reason to prefer an on-
line procedure is when the simulation traces are too big to store in memory [TR04].
Finally, for monitoring real (rather then virtual) systems offline monitoring is not



an option. For discrete systems there are various ways to obtain a deterministic ac-
ceptor for a formula, e.g. by applying subset construction to the non-deterministic
automaton obtained using a tableau-based translation method. Although, in gen-
eral, timed automata are not determinizable, monitoring for bounded variability
signals is probably possible without generating more and more clocks (see related
discussions in [KT04,Tri02,GD00,MP04]).

– Extending the logic with events: Adding new atoms such as p↑ and p↓ which hold
exactly at times where the signal changes its value, can add expressive power
without making monitoring harder. With such atoms we can express properties of
bounded variability such as �[a,b](p↑ ⇒ �[0,d]p) indicating that after becoming
true p holds for at least d time.

– Richer temporal properties: in the current version of STL, values of s at different
time instances can “communicate” only through their Boolean abstractions. This
means that one cannot express properties such as ∀t, t′ (s[t′] − s[t])/(t′ − t) < d.
To treat such properties we need to extend the architecture of the monitor beyond
Boolean filters to include arithmetical blocks, integrators, etc.

– Frequency domain properties: these properties are not temporal in our sense but
speak about the spectrum of the signal via some transform such as Fourier or
wavelets. It is not hard to construct a simple (non-temporal) logic to express such
spectral properties. To monitor them we need to pass the signal first through the
transform in question and then check whether the result satisfies the formula. Some
of these transforms can be done only offline and some can be dome partially online
using a shifting time window.

– Tighter integration with simulators: the current implementation is still in the “proof
of concept” stage. The monitor is a stand-alone program which interacts with the
simulator through the Matlab workspace. In the future versions we will develop
a tighter coupling between the monitor and the simulator where the monitor is a
Matlab block that can influence the choice of sampling points in order to detect
changes in the Boolean abstractions. We will also work on integration with other
simulators used in control and circuit design.
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