Automating the Addition of Fail-Safe
Fault-Tolerance: Beyond Fusion-Closed
Specifications

Felix C. Gartner
Ecole Polytechnique&tkrale de Lausanne (EPFL)
Departement de Sy&ies de Communications
Laboratoire de Programmation Distriel
CH-1015 Lausanne, Switzerland
fcg@acm.org

Arshad Jhumka
Technische Universit Darmstadt
Fachbereich Informatik
D-64283 Darmstadt, Germany
arshad@informatik.tu-darmstadt.de

April 11, 2003

Swiss Federal Institute of Technology (EPFL)
School of Computer and Communication Sciences
Technical Report IC/2003/23

Abstract

The fault tolerance theories of Arora and Kulkarni [3] and of Jhuraka
al. [11] view a fault-tolerant program as the result of composing a fault-intolerant
program with fault tolerance components callbetectorsand correctors At
their core, the theories assume that the correctness specifications under consid-
eration arefusion closed In general, fusion closure of specifications can be
achieved by addingistory variablego the program. However, addition of his-
tory variables causes an exponential growth of the state space of the program,
causing addition of fault tolerance to be expensive. To redress this problem, we
present a method which can be used to add history information to a program in a
way that (in a certain sense) minimizes the additional states. Hence, automated
methods that add fault tolerance can now be efficiently applied in environments
where specifications are not necessarily fusion closed.

Keywords:

fault-tolerance, safety, fusion closure, specifications, transition systems, theory, exten-
sion

1 Introduction

It is an established engineering method in computer science to generate complicated
things from simpler things. The most obvious example for this is a compiler for a pro-
gramming language (like C). The compiler takes a high-level programming instruction
in form of a C program and generates a sequence of machine code instructions that per-
form the specified task. Of course, the original C program might be complicated too,
butitis at least easier to understand than the generated assembly code since it abstracts
away from the machine architecture and supports a more natural formulation of control
structures etc.

Another area in which this technique has been applied is the area of fault-tolerant
systems. The goal is to start off with a system which is not fault-tolerant for certain
kinds of faults and use a sound procedure to transform it into a program which is
fault-tolerant. The approaches which have been proposed range from practical propos-
als like Schneider’s state machine approach [17] to theoretical studies like the one by
Basu et al. [5]. The former approach can be used to tolerate permanent faults in a cer-
tain number of replicated processes while the latter approach studies tolerance against
certain types of transient communication faults. Although these methods can be com-
bined, in general they seem a little oversized since they cannot be easily adapted to
other types of faults with finer granularity like a stuck-at-0 register.

To this end, Arora and Kulkarni [3] initially presented a method which can be used
to combat finer grained fault assumptions. Fault tolerance is achieved by composing a
fault-intolerant program with two types of fault-tolerance components cd#¢ettors
and correctors Briefly spoken, a detector is used to detect a certain (error) condi-
tion on the system state and a corrector is used to bring the system into a valid state
again. Since common fault-tolerance methods like triple modular redundancy or er-
ror correcting codes can be modeled by using detectors and correctors, the theory can
be viewed as an abstraction of many existing fault tolerance techniques, including the
state machine approach.

Kulkarni and Arora [12] and more recently Jhum&aal. [11] proposed meth-
ods to automate the addition of detectors and correctors to a fault-intolerant program.
The basic idea of these methods is to perform a state space analysis of the fault-
affected program and change its transition relation in such a way that it still satisfies
its specification in the presence of faults. These changes result in either the removal
of transitions to satisfy a safety specification or the addition of transitions to satisfy
a liveness specification. &tner and Wlzer [9] analyzed the assumptions behind the
original Kulkarni-Arora method and argued that it is based on two distinct forms of
redundancyredundancy in spacandredundancy in timeThe former refers to non-
reachable states of the program while the latter refers to non-reachable transitions.
However, the detector/corrector method cannot be viewed as a method which “adds
redundancy” (like for example the state machine approach) because the redundancy is
already present in the fault intolerant program. This stems from the fact that Arora and
Kulkarni [3] assume that their correctness specification$ieien closed

Basically, fusion closure means that the next step of a program merely depends
on the current state and not on the previous history of the execution. For example,
given a program with a single variablec N, then the specification “nevar = 1”
is fusion closed while the specificationr “= 4 implies that previouslyr = 2" is

not. Specifications written in the popular Unity Logic [6] are fusion closed [10], as
are specifications consisting of state transition systems (like C programs). But general
temporal logic formulas which are usually used in the area of fault-tolerant program
synthesis and refinement [15, 16] are not. Arora and Kulkarni [3, p. 75] originally
argued that this assumption is not restrictive in the sense that for every non-fusion
closed specification there exists an “equivalent” specification which is fusion closed if

it is allowed to addhistory variablego the program. History variables are additional
control variables which are used to record the previous state sequence of an execution
and hence can be used to answer the question of, e.g., “has the program been in state
x = 27", Using such a history variable the example above which was not fusion
closed can be rephrased in a fusion-closed fashion as:

“never @ = 4and(z =2) € h)"

However, these history variables add states to the program and in effect add the neces-
sary redundancy to be fault-tolerant.

There are obvious “brute force” approaches on how to add history information like
the one sketched above where the history variable remembers the entire previous state
sequence of an execution. However, since history variables must be implemented,
they exponentially enlarge the state space of the fault-intolerant program. Rephrasing
this in the redundancy terminology ofa@ner and Vblzer [9], history variables add
redundancy in space. Specifically, the history variables add exponential redundancy
in space, which is costly. So, we are interested in adding as little redundancy (i.e.,
as little additional states) as possible. Intuitively, the minimal amount of redundancy
which is necessary to tolerate a certain class of faults depends on the kind and nature
of the faults.

In this paper, we present a method to add history states to a program in a way
which (in general) avoids exponential growth of the state space. More specifically,
we start with a problem specificati®8PEC; which is not fusion closed, a program
31 which satisfiesSPEC, and a class of fault’. Depending orF’ we show how to
transformSPEC, andX; into SPEC, andXs in such a way that (aJPEC, is fusion
closed, (b)>, can be made fault tolerant f&/PEC iff >; can be made fault tolerant
for SPEC1, and (c)X: is (in a certain sense) minimal with respect to the added states.
We restrict our attention to cases whetEC is a safety property and therefore are
only concerned with what Arora and Kulkarni ctdil-safe fault-tolerancg3].

The benefit of the proposed method is the following: Firstly, it makes the methods
which automatically add detectors [11, 12] amendable to specifications which are not
fusion closed and closes a gap in the applicability of the detector/corrector theory [3].
And secondly, the presented method offers further insight into the efficiency of the
basic mechanisms which are applied in fault tolerance.

The paper is structured as follows: We first present some preliminary definitions
in Section 2 and then relate the assumption of fusion closure to the notion of state
space redundancy in Section 3. In Section 4 we study specifications which are not fu-
sion closed and present a method which makes these types of specifications efficiently
manageable in the context of automated methods which add fault tolerance. Finally,
Section 5 presents some open problems and directions for future work.

2 Formal Preliminaries

In this section we define the formal system model used throughout this paper.

2.1 States, Traces and Properties

The state spacef a program is an unstructured finite nonempty Getf states. A
state predicate ovet’ is a boolean predicate ovér. A state transition oveC is a
pair (r, s) of states fronC'.

In the following, letC' be a state set arifl be a state transition set. We define a
trace overC to be a non-empty sequengge ss, s3, . . . Of states ove€’'. We sometimes
use the notation; to refer to thei-th element of a trace. Note that traces can be finite
or infinite. A trace isfinite if its length is finite. We will always use greek letters to
denote traces and normal lowercase letters to denote states. For twaotracds,
we write o« - # to mean the concatenation of the two traces. We say that a transition
occursin some trace if there exists an such thats;, s;11) = t.

We define goproperty overC' to be a set of traces ovér. A traceo satisfiesa
propertyP iff o € P. If o does not satisfyP we say that violatesP. There are two
important types of properties callsafetyandlivenesg2, 13]. Informally spoken, a
safety property demands that “something bad never happens”[13], i.e., itrules out a set
of unwanted trace prefixes. Mutual exclusion and deadlock freedom are two promi-
nent examples of safety properties. A liveness property on the other hand demands
that “something good will eventually happen” [13] and can be used to formalize, e.g.,
notions of termination. Since we are only concerned with safety properties we omit a
formal definition of liveness. Safety properties are formally defined as follows.

Definition 1 (safety property over C) A safety propertys overC'is a property over
C for which the following holds: For each traeewhich violatesS there exists a prefix
« of ¢ such that for all trace$, o - 3 violatesS.

2.2 Programs, Specifications and Correctness

We define programs as state transition systems consisting of a staie aedet of
initial states/ C C' and a transition relatioi overC, i.e., aprogram(sometimes also
calledsystenis a tripleX = (C, I, T). The state predicatetogether with the state
transition sefl” describe a safety propersy i.e., all traces which are constructable by
starting in a state ii and using only state transitions frdf We denote this property
by safety-propX). For brevity, we sometimes writé instead ofsafety-prog). A
states € C of a programX is reachableiff there exists a trace € X such thats
occurs ing. Otherwises is non-reachable Sometimes we will call a non-reachable
state aredundant

We define specifications to be properties, i.espacification ovelC' is a prop-
erty overC. A safety specificatiors a specification which is a safety property. Un-
like Arora and Kulkarni [3], we daot assume that problem specifications are fusion
closed. Fusion closure is defined as follows: Cdte a state set, € C, X be property
overC, a, ~ finite state sequences, afdd, o be state sequences oveér

Definition 2 (fusion closed set)The setX is fusion closedf the following holds: If
a-s-fandy-s-dareinX thena-s-dandvy-s- S are also inX.

It is easy to see that for every prograihholds thasafety-progX) is fusion closed.
Intuitively, fusion closure means that the entire history of every trace is present in
every state of the trace. We will give examples for fusion closed and not fusion closed
specifications later.

Let SPEC be a specification and be a program ovet’. We say that: satisfies
SPEC iff all traces inX satisfySPEC. Consequently, we say thatviolatesSPEC iff
there exists a trace € ¥ which violatesSPEC.

2.3 Extensions

Given some progranx; = (C1,I;,71) our goal is to define the notion of a fault-
tolerant version:, of 3; meaning that; does exactly what; does in fault-free
scenarios and has additional fault-tolerance abilities whiclacks. Sometimes,s =
(Cq, I, To) will have additional states (i.e(2 D C4) and for this case we must define
what these states “mean” with respect to the original progtamThis is done using
astate projection functiom : C5 — C which tells which states of, are “the same”
with respect to states af;. A state projection function can be naturally extended to
traces and properties, e.g., for a tragess, ... over Cy holds thatr(sy, s2,...) =

m(s1),m(s2),. ..

Definition 3 (extends) Let ¥; = (Cy,11,T1) and o = (Cq, I2,T») be two pro-
grams. ProgramX, extends progrant; using state projection iff the following
conditions hold:

1. Cy O Chy,

2. wis atotal mapping front’; to C'y (for simplicity we assume that for arye C4
holds thatr(s) = s), and

3. w(safety-progXs)) = safety-prog).

Note that the concept of extension is related to the notioefaiemen{1]. Ex-
tensions are refinements with the additional property that the original state space is
preserved and that there is no notiorstittering[1].

If X9 extendsY; usingm and¥; satisfiesSPEC then obviouslyr(X,) satisfies
SPEC. When it is clear from the context thak extends¥:; we will simply say that
Y, satisfiesSPEC instead of ‘r(X9) satisfiesSPEC”.

2.4 Fault Models and Fault-Tolerant Versions

Since we are concerned with fault tolerant systems we must have a way of modeling
faulty behavior. We define a fault modél as being a program transformation [8],
i.e., @ mappingF’ from programs to programs. The resulting program is called the
fault-affected versionFor a given progrank, F'(X) is also calledorogram in the
presence of faults.F

We require that a fault model does not tamper with the set of initial states, i.e.,
we rule out “immediate” faults that occur before the system is switched on. We also
restrict ourselves to the case whdfeéadds” transitions, since this is the only way to
violate a safety specification.

Definition 4 (fault model) A fault modelF” maps a progrant = (C, I, T) to a pro-
gramF'(X) = (F(C), F(I), F(T)) such that the following conditions hold:

1. F(C)=C
2. F(I) =1
3. F(T)>T

For a given fault modeF' and a specificatioSPEC, we say that a program is
F-intolerant with respect t&PEC if X satisfiesSPEC but F'(X) violatesSPEC.

Given two program&; and>s such that, extendsy; and a fault modeF, it
makes sense to assume thatreatsX; and X, in a “similar way”. Basically, this
means thaf" should at least add the same transitionE{candX,. But with respect
to the possible new states B it can possibly add new fault transitions. This models
faults which occur within the fault-detection and correction mechanisms.

Definition 5 (fault extension monotonicity) A fault modelF” is extension monotonic
iff for any two program&:; = (C1, I1,T1) andXy = (Cy, I2, T) such thadl, extends
¥}, usingz holds:

F(T)\ThW C F(Tx) \ Ty

original system 3; 4—@ @—> 4—@ @—>

extension Yo 4—@ @—> 4.@ G)>_>

extension monotonic not extension monotonic

Figure 1: Examples for extension monotonic and not extension monotonic fault mod-
els.

An example is given in Fig. 1. The original system is given at the top and the
extension is given below (the state projection is implied by vertical orientation, i.e.,
states which are vertically aligned are mapped to the same stat¢. bin the left
example the fault model is extension monotonic since all fault transitiol iare
also inX,. The right example is not extension monotonic. Intuitively, an extension
monotonic fault model maintains at least its original transitions over extensions.

6

The extension monotonicity requirement does not restrict faulty behavior on the
new states of the extension. However, we have to restrict this type of behavior since
it would be impossible to build fault-tolerant versions otherwise. In this paper we
assume a very general type of restriction: it basically states that in any infinite sequence
of extensions of the original program there is always some point whedees not
introduce new fault transitions anymore.

Definition 6 (finite fault model) A extension monotonic fault modglis finite iff for
any infinite sequence of prograris, >, . .. such that for alli, ;. ; extendsZ; holds
that there exists @ such that for allk > j no new fault transition is introduced Ay,
.8, F(Th+1) \ The1 = F(Ti) \ T

Finite fault models retain the fault transitions in the original program (i.e., they are
extension monotonic for each pair of extensions). They do not restrict the additional
faulty behavior introduced in the new states of an extension. However, they exclude
fault models for which infinite redundancy is necessary to tolerate them. The engineer-
ing process is as follows: Given a prograin and a fault modeF', we extend®; to
Yo to makeF tolerable. Then we look at the new states introduced in this process and
consider faults which might happen there. Regarding these new faults we construct a
new extensiorts of ¥, to potentially tolerate these faults. This process is repeated.
In theory, this process might never terminate, namely fbrever adds certain kinds
of faults to the new states. A finite fault model guarantees that this process must even-
tually terminate. In this paper, we assume our fault model to be finite and extension
monotonic.

Now we are able to definefault-tolerant version It captures the idea of starting
with some progrant; which is fault-intolerant regarding a specificatiSREC and
some fault modeF'. A fault-tolerant versior®; of ¥, is a program which has the
same behavior as; if no faults occur, but additionally satisfi&EC in the presence
of faults.

Definition 7 (fault-tolerant version) LetF' be a fault modelSPEC be a specification
andX; andX; be programs. Assume thaj satisfiesSSPEC but (X) violatesSPEC.
We call a programX, the F-tolerant versiorof program; for SPEC using state
projectionr iff the following conditions hold:

1. ¥, extendsZ; usingm,

2. F(X,) satisfiesSPEC.

3 Problem Statement

The basic task we would like to solve is to construct a fault-tolerant version for a given
program and a safety specification.

Definition 8 (general fail-safe transformation problem) Given a fault modeF and

a program¥; which is F-intolerant with respect to a general safety specification
SPEC,. Thegeneral fail-safe transformation probleansists of finding a fault-tolerant
version of¥4, i.e., a program®, such that, extends:; and F(X,) satisfiesSPEC; .

7

The case wher8PEC is fusion closed has been studied by Kulkarni and Arora
[12] and Jhumkat al. [11], i.e., they solve a restricted transformation problem.

Definition 9 (fusion-closed fail-safe transformation problem) Thefusion-closed fail-
safe transformation probleonsists of solving the general fail-safe transformation
problem whereSPEC; is fusion closed.

In the remainder of this section we briefly recall the approaches used by Kulkarni
and Arora [12] and Jhumket al. [11] to solve the latter problem.

3.1 Adding Fail-Safe Fault Tolerance to Fusion-Closed Specifications

The basic mechanism which Kulkarni and Arora [12] and Jhueikal. [11] apply

is the creation of non-reachable states. The fact that specifications are fusion closed
implies that safety specifications can be concisely represented by a set of “bad” tran-
sitions, transitions which causes a violation of the specification [3, 10].

Definition 10 (maintains) Let > be a program SPEC be a specification and be a
finite computation okE. We say thaty maintainsSPEC iff there exists a sequence of
statess such thain - 3 € SPEC.

If SPEC is a safety property, every trace not %*)EC has a prefix which does
not maintainSPEC. From the definition of maintains, we have that there must be a
transition where a given traeeswitches from “good” to “bad”, i.e.s can be written
asa - d - b- ¢ such thaty - d maintainsSPEC and all “longer” prefixes (starting with
« - d - b) do not maintairSPEC. Arora and Kulkarni have shown [4, “Only-if” part of
Lemma 3.2] thatd, b) is a transition which will cause any trace in which it occurs to
violate SPEC. We rephrase this result as follows:

Lemmal LetX = (C,I,T) be a systemSPEC be safety property which is fusion
closed and assume thatviolatesSPEC and that for allz € I holds thatr maintains
SPEC. Then there exists a transitiqi, b) € 7' such that for all traces of ¥ holds:

if (d,b) occurs ino theno ¢ SPEC.

The known automated procedures [11, 12] which are based on the concept of hon-
reachable states use the following approach for addition of fail-safe fault tolerance:
Since F'(X,) violates SPEC, there must exist executions in which a specified bad
transition occurs. Inevitably, we must prevent the occurrence of such a transition. So,
for all bad transition$ = (d, b) we must make either statkor stateb unreachable in
F(X,). If tis a program transition then it depends on whether ot i®teachable in
Y1 or not.

e If ¢ is a reachable program transition, then a violatiolSBEC can occur even
if no faults occur, so, obviously, no fault-tolerant version exists since we would
have to change the behavior of the original program.

e If ¢ is aredundant (i.e., non-reachable) program transition, then we can remove
it resulting in a smaller transition s&p of Xs.

If ¢ is a transition which has been introducedBythen we cannot remove it directly.
The best we can do is make the starting statd ¢+ unreachable. But this can only

be done if there exists a non-reachable program transition on the patHfteuch a
transition exists, we can safely remove it. If not, then again no fault-tolerant version
exists.

PR P
-
-

20YONG

Figure 2: Illustration for the Kulkarni-Arora method. The specification is “néver

As an illustration of the method consider Figure 2 which shows a progiam
in a state-chart like notation. Again, states are drawn as circles and transitions are
arrows between states. Initial states are identified using arrows without starting states.
Transitions which are introduced ly are shown as dashed arrows.

Assume the correctness specificat&PEC for 3, is that it never reaches state
Obviously, the system satisfi8®EC in the absence of faults but it violat8®EC in
the presence of faults. The bad transitions which we must prevefi{ih) are all
transitions which have stateas destination state. We can remove the trans{tjon)
easily fromT, because its removal does not change the fault-free behavioy. dut
we cannot remove transitidif, #) since it is a fault transition. But luckily, there exists
a redundant transitiofi, ¢) on the path leading t¢ which can be removed iii;. So
Y9 is constructed fronx; by removing(g, h) and(d, e) from Ts.

Figure 2 also helps to illustrate the cases where no fault-tolerant version exists. For
example, if there were a transitign, 1) € T thenh is reachable ift; and, hencey;
does not satisfy the specification anyway. The other case arises for example, if there
were a fault transitiortb, h) € F'(11), i.e., h is reachable along a path with only fault
transitions and reachable program transitions. Again, sudhiamot tolerable. How-
ever, the fact thaf’ is not tolerable is not a drawback of the transformation method; it
is simply states that generally the chosen fault assumption is too severe to be tolerated.

This concludes the recapitulation of the known approaches to automatically make
a program fail-safe fault tolerant. Recall that specifications are required to be fusion
closed. The above illustrations show that fusion closure together with the assumption
that a fault assumption is tolerable implies that state space redundancy (e.g.d states
andg) is already available in the fault-intolerant systém This type of redundancy
allows to formulatedetection predicatet the language of guarded commands [6,
7] which is the basis of the Arora-Kulkarni theory [3]. These detection predicates
are conjoined to the guards of certain actions and hence have the effect of removing
transitions.

3.2 Handling Specifications which are Not Fusion Closed

Programs are presented in a guarded command notation [6, 7]. The state space of a
program is defined by a set of variables and the state transitions by a set of actions. An

processy;

processx; - var z € {0,1,2,3,4} init 0
\t;ar x €10,1,2,3,4}init 0 h seque{nce of 0, 1,}2,3,4} init ()
eglnxzo e pe=1 begin
[z=1 e =0 — z:=1;h:={(1)
| z—2 e] z=1 — z:=2;h:=(1,2)
| 2=3 L p—4 | =2 — x:=3;h:=(1,2,3)
| fio=1 — 2.=3 | z=3 — z:=4;h=(1,2,3,4)
end ' | f:za=1 — 2x:=3
end

Figure 3: Two programs in guarded command notation.

action of a program has the form
(guard — (statemernt

in which the guard is a boolean expression over the program variables and the state-
ment is either the empty statement or an instantaneous assignment to one or more vari-
ables. An execution is constructed by repeatedly and non-deterministically choosing
any action where the guard evaluates to true and executing the corresponding action.
Consider the program on the left side of Figure 3. The program has a variable
x which can take five different values (0—4) and simply proceeds from state) to
x = 4 through all intermediate states. The fault assumpfidras added one transition
fromz = 1 to x = 3 to the transition relation (the action is marked with gf)."
Consider the correctness specification

SPEC = “"always (x = 4 implies that previously = 2)”

Note thatF'(¥X;) does not satisfySPEC (i.e., F'(X;) can reach state = 4 without
having been in state = 2), and thatSPECis not fusion closed. To see the latter,
consider the two trace® 3,2,4 and2, 3,4 from SPEC. The fusion at state = 3
yields trace), 3, 4 which is not inSPEC. SinceSPEC is not fusion closed, we cannot
apply the known transformation methods [11, 12].

The specification can be made fusion closed by adding a history vafiatiéch
records the entire state history. Such a variable has been added to the program on the
right side of Figure 3. NowSPEC can be rephrased as

SPEC = “always (& = 4 implies(2) € h)”

or equivalently
SPEC = “never (x = 4 and(2) & h)”

Now we can identify a set of bad transitions which must be prevented, e.g.:
t=3Ah=(1)—z=4ANh=(1,2,34)

The precondition for the transition to a state where 4 must be strengthened by the
detection predicatg # (1), i.e., the fourth guarded command®§ must be changed
to:

r=3Nh# (1) — x:=4;h:=(1,2,3,4)

10

Hence, bad transitions are prevented and the modified system sa§RE€Sin the
presence faulf.

3.3 State Space Redundancy Through History Variables

Adding a history variablé in the previous example adds states to the state space of the
system. In fact, defining the domain fofas the set of all sequences oyér1,2,3,4}

adds infinitely many states. Clearly this can be reduced by the observation that if faults
do not corruptr, thenh will only take on five different values(y, (1), (1,2), (1,2, 3),

and(1, 2, 3, 4)). Butstill, the state space has been increased from five staiést@5
states.

Note thats has redundant states ang is not redundant at all. So the redundancy
is due to the history variablg. But even if the domain of, has cardinality 5, the
redundancy is in a certain sense not minimal, as we now explain.

Consider the prograrts on the left side of Figure 4. It tolerates the faiilby
adding onlyonestate to the state spaceXf (hamely,z = 5). The state space together
with the transitions is depicted on the right side of the figure. Notelihias only one
redundant state, 905 can be regarded as redundancy-minimal with respeSPHC.

The metric used for minimality is the number of redundant states. We want to exploit
this observation to deal with the general case.

processys
var z € {0,1,2,3,4,5} init O ° G ° @/@
begin
z=0 — x:=1 e

| z=1 — z:=2

| z=2 — x:=5

| =z=5 — z:=

| fiz=1 — 2:=3

end

Figure 4: A redundancy-minimal version of the program in Figure 3 in guarded com-
mands (left) and a state chart notation (right). The specification is “always @
implies that previously: = 2)”.

4 Beyond Fusion Closure

Although the automated procedures of [11, 12] were developed for fusion-closed spec-
ifications, they (may) still work for specifications which are not fusion closed only if
the fault model has a certain pleasant form. For example, consider the system in Fig-
ure 5 and the specification

SPEC = “(e implies previously) and (neveg)”

Obviously, the fault model’ can be tolerated using the known transformation methods
becausd’ does not “exploit” the part of the specification which is not fusion closed.

11

Figure 5: The fail-safe transformation can be successful even if the specification is not
fusion closed. The specification in this case isiiiplies previously) and (neveg)”.

4.1 Exploiting Non-Fusion Closure

Now we formalize what it means for a fault model to “exploit” the fact that a specifi-
cation is not fusion-closed (we call this propentyn-fusion closure First we define
what it means for a trace to be the fusion of two other traces.

Definition 11 (fusion and fusion point of traces) Let s be a state andv = oy - s -
Qpost ANA 3 = Bpre - 5 - Bpost b€ two traces in which occurs. Then we define

fusion(c, s,) = apre = S - Bpost
If fusion(a, s,) # « and fusiorta, s, 3) # [we calls a fusion pointof « and 3.
Lemma 2 For the fusion of three traces, 3, v holds: If s occurs before’ in 3 then
fusion(a, s, fusion(3, s, v)) = fusionfusiona, s,), s,)

and
fusion(y, ', fusion(a, s, 3)) = fusion(~, s’, 3)

Proofs are written in a structured style similar to proof trees of interactive theorem
proving environments. This approach is advocated by Lamport who promises that this
style “makes it much harder to prove things that are not true” [14]. The proof is a
sequence of numbered steps at different levels. Every step has a proof which may be
refined at lower levels by additional steps. For example, &tgh is the second step
on level 1. Proofs may also be read in a structured way, for example, by reading only
the top level steps and going into sublevels only when necessary.

PROOFR Assume that occurs befores’ in 3. The proof is by direct calculation. Let
O = Opre * S * Opost, B = ﬁpre 5 Bmid - s ﬂposta and’Y = Tpre * s Ypost- Then
fusion(a, s, fusion(8, s',~v)) = fusiona, s, Bpre * 8 * Bmid * S Vpost)
Opre = S+ Brmid * s Vpost
= fUSior(apre -8 Brmid - s - ﬁpost; 3/7 'Ypost)
= fusionfusion(a, s,), s’,7)
proves the first equation and
fusion(v, s, fusiona, s, 8)) = fusion(v, s, apre = 8+ Brmid * 8"+ Bpost)
= pre- s’ Bpost
= fusion(y, s, 8)
proves the second equatidn.

If SPEC is a set of traces, we recursively define the fusion closusP®iC, de-
noted byfusion-closuréSPEC), as the set which is closed under finite applications of
thefusionoperator.

12

2.1

2.2

Definition 12 (fusion closure) Given a specificatioSPEC, a traceo is in fusion-closuréSPEC)

iff
1. oisin SPEC, or

2. 0 = fusion(a, s,) for tracesa, 8 € fusion-closuréSPEQ and a states that
occurs ina and g.

Lemma 2 guarantees that every tracefusion-closuréSPEC) which is not in
SPEC has a “normal form”, i.e., it can be represented uniquely as the sequence of
fusions of traces i$PEC. This is shown in the following theorem.

Theorem 1 For every traces € fusion-closuréSPEC) which is not inSPEC there
exists a sequence of traces, a1, as, ... and a sequence of stateg s», s3, ... such
that

1. forall< > 0, o; € SPEC,
2. foralli > 1, s; is a fusion point ofy; 1 and«;, and
3. o can be written as:

o = fusion(fusion(. . . fusionayp, s1, a1), s2, @2), s3, a3), . . .)

PrROOF SkETCH The proof is by induction on the structure of hawevolved from
traces iINSPEC. Basically this means an induction on the number of fusion points
in sigma. The induction step assumes thats the fusion of two traces which have
at mostn fusion points and depending on their relative positions uses the rules of
Lemma 2 to construct the normal form feigma.
(1)1. The theorem holds for all traces which have one fusion point.
PROOF Sinceo has one fusion point, it can be written as= fusionayg, s1, a1)
with aig anda; from SPEC ands; a fusion point ofog anda; . [
(1)2. AssuMmE The theorem holds for all traces with at mastusion points.
PrRovE: The theorem holds for all traceswhich are fusions of traces with at
mostn fusion points.
PROOF SKETCH Take two traces andr’ which have at most fusion points and
which share an additional common fusion paitisee Fig. 6). The new fusion point
s divides the fusion points im and7’ into two groups oft andm fusion points in
7 (andk’ andm/’ fusion points inr’ respectively). The fusion of both traces will
maintain thek fusion points ofr and them’ fusion points ofr’. This follows from
the second equation of Lemma 2. Because of the ordering of the fusion points we
can use the first equation of Lemma 2 to construct the normal form. In general, the
resulting trace can have more tharfusion points.
(2)1. o can be written as = fusion(r, s, 7’) wherer andr’ have at most fusion
points.
PrRoOFE Follows from the fact that is the fusion of two traces with at most
fusion points(]
(2)2. o can be written as
o = fusionfusion(. . . fusionay, s1, a1), s2, a2) .. .), S,
fusion(. . . fusionay, s}, &), s5,a5) . ..))

13

PROOF Follows from the induction hypothesis and by replacingnd ’ with
their normal forms in the formula of step)1. []
(2)3. Letk, m, k" andm’ denote the number of fusion points to the left and right of
sin 7 andr’ (see Fig. 6). Thea can be written as
fusion(. . . fusionav, s1, 1), $2, 2) .. .), 8,
fusion(. . . fusion(a,, sp 41, A1), Sir o Qo) -)
PROOF The firstk’ fusion points ofr’ precedes and so by repeatedly applying
the second equation of Lemma 2 we can removétfiest applications of fusions
from the formula of steg2)2. []
(2)4. o can be written as
fusion(. . . fusionayg, s1, a1), s2, a2) .. .),
3k>(yk)v57(X2’)7s%ﬂ+1v(X%ﬂ+1)>32ﬂ+2>(12ﬂ+2)"')
PrROOF From the definition of fusion, we can ignore the fimafusion points of
7. The formula follows by repeatedly applying the first equation of Lemma 2 to
the formula of ste2)3 (shifting the fusion operator to the left).
(2)5. Q.E.D.
PROOFR The formula of steg2)4 has the required normal form becausecll
anda; are inSPEC and alls; ands; are fusion points of consecutive elements in

the formulal
(1)3. Q.E.D.
PrROOF. Follows from inductionl]

k s m
r — ° —
_______________ ,
1
1
1
1
D U
o ° :
K s m’

Figure 6: Diagram accompanying the proof of Theorem 1.

Now consider the system depicted in Figure 7. The corresponding specification is:
SPEC = “ f implies previouslyd”

The system may exhibit the following two traces in the absence of faults, namely
a=a-b-candf =a-d-e- f. Inthe presence of faults, a new trace is possible,
namelyy =a-b-e- f. Observe that violatesSPEC and thaty is the fusion of two
tracesa, 8 € SPEC (the state which plays the role sfin Definition 11 is state). In
such a case we say that fault modeexploits the non-fusion closure SPEC.

We now formally define what is meant by exploiting the non-fusion closure of a
specification.

Definition 13 (exploiting non-fusion closure) Let Y be a systemi’ be a fault model
and SPEC be a specification which is satisfied By ThenF'(X) exploits the non-
fusion closure ofSPEC iff there exists a trace € F(X) such thatc ¢ SPEC and
o € fusion-closuréSPEC).

14

Figure 7. Example where the non-fusion closure of a specification is exploited by a
fault model. The specification isf“implies previouslyd”.

Intuitively, exploiting the non-fusion closure means that there exists a bad com-
putation ¢ ¢ SPEC) that can potentially “impersonate” a good computationg
fusion-closuréSPEC)). Definition 13 states that’ causes a violation o§PEC by
constructing a fusion of two (allowed) traces.

Given a fault modeF' such thatF'(X) exploits the non-fusion closure SPEC,
then also we say th#étte non-fusion closure &PEC is exploited forx in the presence
of F.

Obviously, if for some specificatioSPEC and systen® such anF' exists, then
SPEC is not fusion closed. Similarly trivial to prove is the observation that no fault
model F' can exploit the non-fusion closure of a specification which is fusion closed.

On the other hand, if the non-fusion closureS®EC cannot be exploited, this does
not necessarily mean th&PEC is fusion closed. To see this consider Figure 8. The
correctness specificati#PEC of the program is ¢ implies previously”. Obviously,

a fault model can only generate traces that begin wittSincea is an initial state
and we assume initial state preservancefnwan exploit the non-fusion closure. But
SPEC is not fusion closed.

Figure 8: Example where the non-fusion closure cannot be exploited but the specifica-
tion is not fusion closed. The specification isifnplies previously:”.

4.2 Preventing the Exploitation of Non-Fusion Closure

The fact that a fault model may not exploit the non-fusion closure of a specification
will be important in our approach to solve the general fail-safe transformation problem
(Def. 8). A method to solve this problem, i.e., that of finding a fault-tolerant version
Y9, should be a generally applicable method, which constilgtsom X, (this is de-
picted in the top part of Figure 9). Instead of devising such a method from scratch, our
aim is to reuse the existing transformations to add fail-safe fault tolerance which are
based on fusion-closed specifications [11, 12]. This approach is shown in the bottom
part of Figure 9. Starting fronx;, we construct some intermediate progra¥nand

some intermediate fusion-closed specificatSREC, to which we apply one of the
above mentioned methods for fusion-closed specifications [11, 12]. The construction
of X}, and SPEC» must be done in such a way that the resulting program satisfies the
properties of the general transformation problem stated in Definition 8. How can this

15

be done?
The idea of our approach is the following: First, cho®$#C, to be the fusion
closure ofSPEC, i.e., choose

SPEC4 = fusion-closuréSPEC)

and construckl, from X; in such a way thaf#'(X}) does not exploit the non-fusion
closure of SPEC,. More preciselyX), results from applying a constructive method
(which we give below) which ensures that

e Y, extends:; using some state projectionand
e F(X)) does not exploit the non-fusion closureSHEC, .

Our claim, which we formally prove later, is that the programresulting from ap-
plying (for example) the algorithms of [11, 12] &), with respect taSPEC> in fact
satisfies the requirements of Definition 8, i¥,,is in fact anf'-tolerant version ok,

with respect taSPEC} .

general method

2 > 22
fault-intolerant w.r.t.) fault-tolerant w.r.t.
general specification fusion-closed SPEC,

SPEC, ~ SPEC,

PN = 25 = 22

this paper “standard” fail-safe transformation

w.r.t. fusion-closed SPEC,

Figure 9: Overview of transformation problem (top) and our approach (bottom). The
constructive method described in Section 4.3 offers a solution to the first step (i.e.,
Y1 — Xh).

4.3 Bad Fusion Points

For a given systenk and a specificatioSPEC, how can we tell whether or not the
nature ofSPEC is exploitable by a fault model? For the negative case (where it can
be exploited), we give a sufficient criterion. It is based on the notiontdhfusion
point

Definition 14 (bad fusion point) Let SPEC be a specification}. be a system satis-
fying SPEC, s be a state ob, and F' a fault model such that'(X) violates SPEC.
States is a bad fusion point of for SPEC in the presence of' iff there exist traces
a, 3 € SPEC such that

16

1. sis a fusion point ofx and 3,
2. fusion(a, s, 3) € F(X), and
3. fusion(a, s, 3) ¢ SPEC.

Intuitively, a bad fusion point is a state in which “multiple pasts” may have hap-
pened, i.e., there may be two different execution paths passing thspagt from the
point of view of the specification it is important to tell the difference. We now give
several examples of bad fusion points.

As an example, consider Fig. 7 wherds a bad fusion point. To instantiate the
definition, takeaw = a-b-e € F(¥)andf =a-d-e- f € F(X). The fusion at
yields the trace: - b - e - f which is not inSPEC.

Theorem 2 (bad fusion point criterion) Let SPEC be a specificationy be a system
satisfyingSPEC and F' be a fault model. The following two statements are equivalent:

1. ¥ has no bad fusion point f8PEC in the presence af.

2. F(X) does not exploit the non-fusion closureSHEC.

o e ——
1
1
aq *——
S1 :
1
1
\ Sk
Qf—1 :]
T
1
ﬂ | Sk+1
(€93
e B
Sk 1
a o !
Akt ¢

Figure 10: Diagram accompanying the proof of Theorem 2.

PROOF SkKeTCH We prove the contraposition of the theorem in both directions. First
we assume that’'(X) exploits the non-fusion closure and use Theorem 1 to construct
a bad fusion point. Second we prove that if there exists a bad fusion poinfit¥en
exploits the non-fusion closure.
1 (1)1. AsSsuME X has no bad fusion point f&8PEC in the presence af'.
PROVE: F(X) does not exploit the non-fusion closureSHEC.
1.1 (2)1. ASSUME F(X) exploits the non-fusion closure SPEC.
PROVE: False

1.1.1 (3)1. There exists a minimal prefix' of o which violatesSPEC.
PrROOE Follows from the fact that ¢ SPEC and thatSPEC is a safety prop-
erty.[]

112 (3)2. ¢’ contains at least one fusion point.

17

PROOE Sinceos ¢ SPEC buto € fusion-closuréSPEC) we can apply Theo-
rem 1 and writer as the fusion of traces; € SPEC (see Fig. 10. If there were
no fusion point withine’, thens’ would be a prefix ofvg, a contradiction to
the fact thaty, € SPEC. [
1.13 (3)3. Let s denote the rightmost fusion poigt in ¢’ and leta denote the prefix
of o/ up to and including state (see Fig. 10). Then € SPEC.
PrROOF Follows from the fact that’ is minimal (i.e., prefixes o’ satisfy
SPEC, shown in sted3)1) and the fact that is a prefix ofo”. []
1.1.4 (3)4. If there exists a fusion point, 1 aftersy in «y, let g be the tracey, up
to and includings;, (see Fig. 10). Otherwise l¢t be the tracey,. Then
8 € SPEC.
PROOEF In both caseg is a prefix ofay, which is inSPEC and so8 € SPEC
too.[]
1.15 (3)5. fusion«, s, 3) € SPEC
PrRoOOF Follows from the fact that’ is a prefix offusion«, s,) and SPEC
is a safety property (any extensiondafis not in SPEC). [
1.1.6 (3)6. fusiona, s, B) € F (%)
PrROOE Follows from the construction ef ands (in step(3)3) andg (in step
(3)4) and the fact thafusiona, s,) is a prefix ofs which is in F(%). []
1.1.7 (3)7. sis abad fusion point foE in the presence aF.
PROOF Steps(3)3 and(3)4 exhibit tracesy and 3 which are both inSPEC.
Step(3)6 shows that their fusion at statés in F'(X). Finally, step(3)5 shows
that this fusion is not iSPEC. From Definition 14 follows that is a bad
fusion point forY in the presence aof". []
1.1.8 (3)8. Q.E.D.
PROOF Step(3)7 contradicts the assumption ti¥atas no bad fusion pointin
the presence af. []
1.2 (2)2. Q.E.D.
PROOF. Follows indirectly from steg2)1. [
2 (1)2. ASSUME F'(X) does not exploit the non-fusion closureSHEC.
PrRoVE: SPEC has no bad fusion point fdt in the presence af'.
21 (2)1. AsSUME SPEC has a bad fusion point fat in the presence af'.
PrROVE: False
211 (3)1. There exists a trace in F'(X) such that ¢ SPEC ando is the fusion of
two tracesy and3 in SPEC at some state.
PROOF. From assumption.]
212 (3)2. The non-fusion closure &FPEC can be exploited foE
PROOF. From step(3)1 and the definition of exploits (Definition 18)
213 (3)3. Q.E.D.
PROOF. Step(3)2 contradicts the assumption of the theorem.
2.2 (2)2. Q.E.D.
PROOF. Follows indirectly from steg2)1. [
3 (1)3. Q.E.D.
PROOF. The two top level steps show both directions of the equivalénce.

18

4.4 Removal of Bad Fusion Points

Theorem 2 states that it is both necessary and sufficient to remove all bad fusion points
from X to make its structure robust against fault models that exploit the non-fusion
closure ofSPEC. So how can we get rid of bad fusion points?

Recall that a bad fusion point is one which has multiple pasts, and from the point
of view of the specification, it is necessary to distinguish between those pasts. Thus,
the basic idea of our method is to introduce additional states which split the fusion
paths. This is sketched in Figure 11. Det = (Cy,1,71) be a system. I is a bad
fusion point of%; for SPEC, there exists a tracé € SPEC and a tracex € F(X)
which both go throughs.

Constructive Method to Remove Bad Fusion Points: To remove bad fusion points,
we now construct an extensialy = (Cs, I2, 1) of 31 in the following way:

e Oy = (1 U{s'} wheres' is a “new” state,
o Ih =1, and
e T, results fromI’ by “diverting” the transitions ofs to and froms’ instead ofs.

The extension is completed by defining the state projection funatimnmaps’ to s.
Observe that is not a bad fusion point regardingand 3 anymore because now
containss and3 a different state’ which cannot be fused. So this procedure gets rid
of one bad fusion point. Also, it does not by itself introduce a new one, sinsean
extension state which cannot be referenceSREC. So we can repeatedly apply the
procedure and incrementally build a sequence of extensipns,, . .. where in every
step one bad fusion point is removed and an additional state is added. However,
may cause new bad fusion points to be created during this process by introducing new
faults transitions defined on the newly added states. But since the fault model is finite it
will do this only finitely often. Hence, repeating this construction for every bad fusion
point will terminate unless there are infinitely many bad fusion points. This, however,
is impossible if the state space is finite.

Note that in the extension process, certain states can be extended multiple times
because they might be bad fusion points for different combinations of traces.

I

Figure 11: Splitting fusion paths.

We now prove that the above method results in a program with the desired proper-
ties.

Lemma 3 Let F' be a fault modelSPEC; be a non-fusion closed specification, and
be a program such that; satisfiesSPEC; but F'(¥;) violatesSPEC;. The program

19

11

1.2

13

2.2

¥, which results from applying the constructive method described above satisfies the
following properties:

1. ¥}, extends:; using some state projectionand
2. F(X}) does not exploit the non-fusion closureS#EC; .

PROOF SKETCH To show the first point we argue that there exists a projection function
7 (which is induced by our method) such that every fault-free executid,af an
execution of®J;. To show the second point, we argue that the method removes all bad
fusion points and apply the bad fusion point criterion proved as Theorem 2.
(1)1. Theinduced projection function of the constructive method above is such that
¥, extendsy; usingr.
(2)1. For every state of 3; exists ar-images’ in the state space afy,.
PROOF The constructive method starts off with the the state spac#,dfeing
equal to the state space Bf and any subsequent changesrtdo not affect this
initial mapping[]
(2)2. Consider an arbitrary fault-free executioh= s/, s, ... of ¥5. Thenz(o’)
is an execution oE;.
PROOF Looking at Figure 11, every executietiof 3/, evolves from an execution
of ¥, by splitting fusion paths and adaptingappropriately. Therefore, under the
projection functionr both executions look the same. Formally, this is proved
using an induction on the length of the executidn.
(2)3. Q.E.D.
PROOF Steps(2)1 and(2)2 prove the two conditions of Definition 3 (extension)
with respect to the projection function Hence X/, extends:; usingr. U
(1)2. F(X}) does not exploit the non-fusion closureSHEC}.
(2)1. 3 has no bad fusion point in the presence-of
PROOEF This is a result from applying the constructive method. Because all fusion
paths are split, no fusion points remdih.
(2)2. Q.E.D.
PROOF Because of stef2)1 we can apply the bad fusion point criterion (Theo-
rem 2) which shows that the non-fusion-closure&SBEC cannot be exploited for
32 in the presence of". []
(1)3. Q.E.D.
PROOF The above two steps show the two consequents of the lebdma.

45 Correctness of the Combined Method

Starting from a progrant;, Lemma 3 shows that the prograni, resulting from

the constructive method for removing bad fusion points enjoys certain properties (see
Fig. 9). We now prove that starting off from these properties and chodithig”»

as the fusion closure B§PEC,, the programX,, which results from applying the
algorithms of [11, 12] orX},, has the desired properties of the transformation problem
(Definition 8).

Lemma 4 GivenF', SPECy, andX; asin Lemma 3, I&§PEC; = fusion-closuréSPEC))
and letX, be the result of applying any of the known methods that solve the fusion-
closed transformation problem of Definition 9 ¥, with respect toF' and SPEC;,

20

1

11

1.2

13

1.4

15

2.1

2.2

2.3

2.4

whereX, results fromX; through the application of the constructive method. Then
the following statements hold:

1. ¥ extends; using some state projection

2. If F(X,) satisfiesSPEC; then F'(X9) satisfiesSPEC; .

PrROOF skETCH To prove the first point we argue that a fault tolerance addition proce-

dure only removes non-reachable transitions. Hence, every fault-free execulign of

is also an execution df,. But sinceX, extendsX; so mustt,. To show the second

point we first observe thdt (X)) does not necessarily satis$)EC, but not all traces

for this are inF'(X3) anymore (due to the removal of bad transitions during addition

of fault tolerance). Next we show that any tracef§®>,) which violatesSPEC; must

exploit the non-fusion closure &PEC;. But this must also be a trace 6%>’) and

so is ruled out by assumption.

(1)1. If Xf extends¥; using state projection’ thenX, extendsX; using state pro-
jectionm

(2)1. Application of the known methods to add fail-safe fault tolerance according

to Definition 9 does not change the fault-free behavior of that system.
PrRoOF For the methods of Kulkarni and Arora [12] and Jhuneitaal. [11] this
has been discussed in Section3.

(2)2. Every (fault-free) execution of}, is also a (fault-free) execution af, and

vice versa.
PROOF. Follows from step2)1 and the fact thaE, results from>, by applying
the fail-safe-tolerance transformation (see Fig[D).
(2)3. Every execution ok}, underr’ is an execution oE;.
PROOF. Follows from the assumption tha, extends:; usingz’. []

(2)4. Every execution oE; is also an execution df; undern’ and vice versa.
PROOF Starting with an arbitrary executionof 3,, step(2)2 allows to find an
equivalent execution’ of X},. Then foro’, step(2)3 allows to find an equivalent
executions” of ;.]

(2)5. Q.E.D.

PROOF. Step(2)4 allows to construct a state projection function such that the
safety properties df; andX; are identical. Hence,, extends:;. [
(1)2. AssuME 1. F(X) does not exploit the non-fusion closureSHEC.
2. F(3) satisfiesSPECs.
PROVE: F(X,) satisfiesSPEC].

(2)1. All executionss of F (X)) that violateSPEC, are not inF'(Xz).

PrROOF This follows from applying a fail-safe tolerance transformation proce-
dure, such as those in [11, 12]. Since these procedures are proved to be sound,
i.e., the resulting programs are indeed fail-safe fault-tolerant, then no execution
can violate the specificatiohl

<2>2 Vo € F(Eg) :0 € SPEC,

PROOF Follows directly from second assumption, i.B(Y,) satisfiesSPEC.]

(2)3. Vo € F(X2) : 0 € F(X))

PrRoOFE The known fail-safe tolerance transformation procedures that solve Def-
inition 9 guarantee thaf' ($,) C F(X}), from which this step follows.]

(2)4. F(X2) does not exploit non-fusion closure SPEC .

21

25
251

252

2.5.3

2.6

PROOF For a contradiction, assume that there is an executien F'(X2) that
exploits non-fusion closure &fPEC;. Sincer € F'(3,), from step(2)3 we have
thatT € F(X}). Hence,F' (X)) also exploits the non-fusion closure $PEC, a
contradiction to assumption 2.
<2>5 Vo € F(Zg) 10 € SPEC,
(3)1. ASSUME 0o € 3
PrRoOVE: QED
PROOE Sinceo € Y5 andX, extendsX; we have thatr € ¥;. But sinceX;
satisfiesSPEC; we conclude that € SPEC;. (]
(3)2. ASSUME 0 € F(33) \ X2
PrRoVE: QED
PROOE First note that cannot be iffusion-closuréSPEC+)\ SPEC, (follows
from step(2)4). But sincefusion-closuréSPEC;) = SPEC» and sinceF'(%5)
satisfiesSPEC, we have that- must be inSPEC;. [
(3)3. Q.E.D.
PROOE Follows from steps(3)1 and (3)2 and the fact that they cover all
casesl]
(2)6. Q.E.D.
PROOF Step(2)5 shows thatF'(X,) satisfiesSPEC; which is what we wanted
to prove]
(1)3. Q.E.D.
PROOESteps<1>1 and(1)2 prove the first and second point of the lemma, respec-
tively.

Lemmas 3 and 4 together guarantee that the composition of the method described
in Section 4.3 and the fail-safe transformation methods for fusion-closed specifica-
tions in fact solves the transformation problem for non-fusion closed specifications of
Definition 8.

Theorem 3 Given a fault modeF' and a program; which is F-intolerant with re-
spect to a hon-fusion closed specificat&PEC,. The composition of the constructive
method described in Section 4.3 and the fail-safe transformation methods for fusion-
closed specifications solves the general transformation problem of Definition 8, i.e.,
constructs a progrants such thatt, extends:; and F'(X,) satisfiesSPEC; .

4.6 Examples

Finally, we present two examples of the application of our method. The top of Fig-
ure 12 (system 1) shows the original system. The augmented system is depicted at the
bottom (system 4). The correctness specification for the system imfflies previ-
ouslyb) and ¢ implies previously)”. There are only two bad fusion points, namely
andd which have to be extended. In the first stefs “removed” by splitting the fusion
path which is indicated using two short lines. This results in system 2. Subsequently,
d is refined, resulting in system 3. Note tlidtas to be refined twice because there are
two sets of fusion paths. This results in system 4, which can be subject to the standard
fail-safe transformation methods, which will remove the transitiendg”) and(d, e).

A similar, yet more complex example is shown in Figure 13. The correctness
specification for the system 1 at the top isifplies previously § or ¢)". The figure

22

Figure 12: Removing bad fusion points. The specificationdsrt{plies previously)
and ¢ implies previously)”.

23

shows that again a “two level” extension is necessary here, since the only execution
which must be prevented is the one which usethfault transitions. This means that
statef is a bad fusion point for multiple execution paths and hence must be refined
twice (note that the fault transitiofd, f) is a new fault added to the system in the
extension).

4.7 Discussion

The complexity of our method directly depends on the number of bad fusion points
which have to be removed. Bad fusion points are not hard to find if the specification
is given as a temporal logic formula in the spirit of those used throughout this paper.
For example, if specifications are given in the formodnly if previouslyy” then only
states which occur in traces betweeandy can be fusion points. Candidates fad
fusion points are all states where two execution paths merge.

Our method requires to check every one of these states whether it is a bad fusion
point. So obviously, applying our method induces a larger overhead than directly
adding history variables. But as can be seen in Figs. 12 and 13, the nhumber of states is
significantly less than adding a general history variable. For example, a clever addition
of history variables to the system im Fig. 12 would require two bits, one to record the
visit to stateh and one to record the visit to Overall this would resulti@ x2 x5 = 20
states. Our methods achieves the same result with a total of 8 states. The system in
Fig. 13 could employ a boolean history variable which records whether $tates
have been visited (it is set toue as soon as one of these states is reached). Adding
such a variable would create a total of 7 additional states. Our methods just adds 5.

Note however that the resulting system in Fig. 12 is not redundancy minimal. The
stated” is not necessary since it may become unreachable even in the presence of
faults after the fail-safe transformation is applied. This is the price we still have to pay
for the modularity of our approach, i.e., adding history states does at present not “look
ahead” which states might become unreachable even in the presence of faults.

In theory there are cases where our method of adding history states does not termi-
nate because there are infinitely many bad fusion points. For this to happen, the state
space must be infinite. If we consider the application area of embedded software, we
can safely assume a bounded state space.

Given a progrant. and a general specificatiiPEC, then our combined method
will find a solution to the general transformation problem iff (a) there exists one with a
finite number of additional states and (b) the method of adding fail-safe fault-tolerance
for fusion-closed specifications is complete. Requirement (a) ensures that our method
of removing bad fusion points will terminate.

5 Conclusions

In this paper, we have presented ways on how get rid of a restriction upon which
procedures that add fault tolerance [11, 12] are based, namely that specifications have
to be fusion closed. Our method can be viewed as a finer grained method to add
history information to a given system and hence add state space redundancy. We have
shown that our method in general adds less history states than would be added using

24

1)

(2)

®3)

(4)

®)

(6)

Figure 13: A more complex example. The specificatioryigmiplies previously § or

e)”.

25

standard history variables (which in general lead to an exponential growth of the state
space). Thus, adding state redundancy using the approach presented in this paper
makes addition of fault tolerance more efficient.

As future work, it would be interesting to combine our method with one of the
methods to add detectors so that the resulting method is redundancy minimal. We
are also investigating issues of non-masking fault-tolerance, i.e, adding tolerance with
respect to liveness properties.

Acknowledgments

We wish to thank Sandeep Kulkarni for helpful discussions. Work by the first author
was supported by Deutsche Forschungsgemeinschaft (DFG) as part of “Graduiertenkol-
leg ISIA” and Emmy Noether programme.

References

[1] Martin Abadi and Leslie Lamport. The existence of refinement mappinge-
oretical Computer Scien¢82(2):253-284, May 1991.

[2] Bowen Alpern and Fred B. Schneider. Defining livendsformation Processing
Letters 21:181-185, 1985.

[3] Anish Arora and Sandeep S. Kulkarni. Component based design of multitoler-
ant systemslEEE Transactions on Software Engineer,i24(1):63—78, January
1998.

[4] Anish Arora and Sandeep S. Kulkarni. Detectors and correctors: A theory of
fault-tolerance components. Rroceedings of the 18th IEEE International Con-
ference on Distributed Computing Systems (ICDCS9igy 1998.

[5] Anindya Basu, Bernadette Charron-Bost, and Sam Toueg. Simulating reliable
links with unreliable links in the presence of process crashesPrdeeedings
of the 10th International Workshop on Distributed Algorithms (WDAGP&Yyes
105-122, Bologna, Italy, October 1996. Springer-Verlag.

[6] K. Mani Chandy and Jayadev Misrdarallel Program Design: A Foundation
Addison-Wesley, Reading, MA, Reading, Mass., 1988.

[7] Edsger W. Dijkstra. Guarded commands, nondeterminacy, and formal derivation
of programs.Communications of the ACM8(8):453—-457, August 1975.

[8] Felix C. Gartner. Transformational approaches to the specification and verifi-
cation of fault-tolerant systems: Formal background and classificafiounal
of Universal Computer Science (J.UCS}10):668-692, October 1999. Special
Issue on Dependability Evaluation and Assessment.

[9] Felix C. Gartner and Hagen 8Mzer. Redundancy in space in fault-tolerant sys-
tems. Technical Report TUD-BS-2000-06, Department of Computer Science,
Darmstadt University of Technology, Darmstadt, Germany, July 2000.

26

[10] H. Peter Gumm. Another glance at the Alpern-Schneider characterization of
safety and liveness in concurrent executionsformation Processing Letters
47(6):291-294, 1993.

[11] Arshad Jhumka, Felix C. &tner, Christof Fetzer, and Neeraj Suri. On system-
atic design of fast and perfect detectors. Technical Report 200263, Swiss Federal
Institute of Technology (EPFL), School of Computer and Communication Sci-
ences, Lausanne, Switzerland, September 2002.

[12] Sandeep S. Kulkarni and Anish Arora. Automating the addition of fault-
tolerance. In Mathai Joseph, editégrmal Techniques in Real-Time and Fault-
Tolerant Systems, 6th International Symposium (FTRTFT 2000) Procegedings
number 1926 in Lecture Notes in Computer Science, pages 82-93, Pune, India,
September 2000. Springer-Verlag.

[13] Leslie Lamport. Proving the correctness of multiprocess progrieisE Trans-
actions on Software Engineering(2):125-143, March 1977.

[14] Leslie Lamport. How to write a proof. American Mathematical Monthly
102(7):600-608, August/September 1995.

[15] zhiming Liu and Mathai Joseph. Specification and verification of fault-tolerance,
timing and schedulingACM Transactions on Programming Languages and Sys-
tems 21(1):46-89, 1999.

[16] Heiko Mantel and Felix C. @rtner. A case study in the mechanical verification
of fault tolerance.Journal of Experimental & Theoretical Artificial Intelligence
(JETAI), 12(4):473-488, October 2000.

[17] Fred B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorialACM Computing Survey82(4):299-319, December 1990.

27

