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Abstract

The fault tolerance theories of Arora and Kulkarni [3] and of Jhumkaet
al. [11] view a fault-tolerant program as the result of composing a fault-intolerant
program with fault tolerance components calleddetectorsand correctors. At
their core, the theories assume that the correctness specifications under consid-
eration arefusion closed. In general, fusion closure of specifications can be
achieved by addinghistory variablesto the program. However, addition of his-
tory variables causes an exponential growth of the state space of the program,
causing addition of fault tolerance to be expensive. To redress this problem, we
present a method which can be used to add history information to a program in a
way that (in a certain sense) minimizes the additional states. Hence, automated
methods that add fault tolerance can now be efficiently applied in environments
where specifications are not necessarily fusion closed.
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1 Introduction

It is an established engineering method in computer science to generate complicated
things from simpler things. The most obvious example for this is a compiler for a pro-
gramming language (like C). The compiler takes a high-level programming instruction
in form of a C program and generates a sequence of machine code instructions that per-
form the specified task. Of course, the original C program might be complicated too,
but it is at least easier to understand than the generated assembly code since it abstracts
away from the machine architecture and supports a more natural formulation of control
structures etc.

Another area in which this technique has been applied is the area of fault-tolerant
systems. The goal is to start off with a system which is not fault-tolerant for certain
kinds of faults and use a sound procedure to transform it into a program which is
fault-tolerant. The approaches which have been proposed range from practical propos-
als like Schneider’s state machine approach [17] to theoretical studies like the one by
Basu et al. [5]. The former approach can be used to tolerate permanent faults in a cer-
tain number of replicated processes while the latter approach studies tolerance against
certain types of transient communication faults. Although these methods can be com-
bined, in general they seem a little oversized since they cannot be easily adapted to
other types of faults with finer granularity like a stuck-at-0 register.

To this end, Arora and Kulkarni [3] initially presented a method which can be used
to combat finer grained fault assumptions. Fault tolerance is achieved by composing a
fault-intolerant program with two types of fault-tolerance components calleddetectors
andcorrectors. Briefly spoken, a detector is used to detect a certain (error) condi-
tion on the system state and a corrector is used to bring the system into a valid state
again. Since common fault-tolerance methods like triple modular redundancy or er-
ror correcting codes can be modeled by using detectors and correctors, the theory can
be viewed as an abstraction of many existing fault tolerance techniques, including the
state machine approach.

Kulkarni and Arora [12] and more recently Jhumkaet al. [11] proposed meth-
ods to automate the addition of detectors and correctors to a fault-intolerant program.
The basic idea of these methods is to perform a state space analysis of the fault-
affected program and change its transition relation in such a way that it still satisfies
its specification in the presence of faults. These changes result in either the removal
of transitions to satisfy a safety specification or the addition of transitions to satisfy
a liveness specification. G̈artner and V̈olzer [9] analyzed the assumptions behind the
original Kulkarni-Arora method and argued that it is based on two distinct forms of
redundancy:redundancy in spaceandredundancy in time. The former refers to non-
reachable states of the program while the latter refers to non-reachable transitions.
However, the detector/corrector method cannot be viewed as a method which “adds
redundancy” (like for example the state machine approach) because the redundancy is
already present in the fault intolerant program. This stems from the fact that Arora and
Kulkarni [3] assume that their correctness specifications arefusion closed.

Basically, fusion closure means that the next step of a program merely depends
on the current state and not on the previous history of the execution. For example,
given a program with a single variablex ∈ N, then the specification “neverx = 1”
is fusion closed while the specification “x = 4 implies that previouslyx = 2” is
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not. Specifications written in the popular Unity Logic [6] are fusion closed [10], as
are specifications consisting of state transition systems (like C programs). But general
temporal logic formulas which are usually used in the area of fault-tolerant program
synthesis and refinement [15, 16] are not. Arora and Kulkarni [3, p. 75] originally
argued that this assumption is not restrictive in the sense that for every non-fusion
closed specification there exists an “equivalent” specification which is fusion closed if
it is allowed to addhistory variablesto the program. History variables are additional
control variables which are used to record the previous state sequence of an execution
and hence can be used to answer the question of, e.g., “has the program been in state
x = 2?”. Using such a history variableh the example above which was not fusion
closed can be rephrased in a fusion-closed fashion as:

“never (x = 4 and(x = 2) 6∈ h)”

However, these history variables add states to the program and in effect add the neces-
sary redundancy to be fault-tolerant.

There are obvious “brute force” approaches on how to add history information like
the one sketched above where the history variable remembers the entire previous state
sequence of an execution. However, since history variables must be implemented,
they exponentially enlarge the state space of the fault-intolerant program. Rephrasing
this in the redundancy terminology of Gärtner and V̈olzer [9], history variables add
redundancy in space. Specifically, the history variables add exponential redundancy
in space, which is costly. So, we are interested in adding as little redundancy (i.e.,
as little additional states) as possible. Intuitively, the minimal amount of redundancy
which is necessary to tolerate a certain class of faults depends on the kind and nature
of the faults.

In this paper, we present a method to add history states to a program in a way
which (in general) avoids exponential growth of the state space. More specifically,
we start with a problem specificationSPEC1 which is not fusion closed, a program
Σ1 which satisfiesSPEC1 and a class of faultsF . Depending onF we show how to
transformSPEC1 andΣ1 into SPEC2 andΣ2 in such a way that (a)SPEC2 is fusion
closed, (b)Σ2 can be made fault tolerant forSPEC2 iff Σ1 can be made fault tolerant
for SPEC1, and (c)Σ2 is (in a certain sense) minimal with respect to the added states.
We restrict our attention to cases whereSPEC is a safety property and therefore are
only concerned with what Arora and Kulkarni callfail-safe fault-tolerance[3].

The benefit of the proposed method is the following: Firstly, it makes the methods
which automatically add detectors [11, 12] amendable to specifications which are not
fusion closed and closes a gap in the applicability of the detector/corrector theory [3].
And secondly, the presented method offers further insight into the efficiency of the
basic mechanisms which are applied in fault tolerance.

The paper is structured as follows: We first present some preliminary definitions
in Section 2 and then relate the assumption of fusion closure to the notion of state
space redundancy in Section 3. In Section 4 we study specifications which are not fu-
sion closed and present a method which makes these types of specifications efficiently
manageable in the context of automated methods which add fault tolerance. Finally,
Section 5 presents some open problems and directions for future work.
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2 Formal Preliminaries

In this section we define the formal system model used throughout this paper.

2.1 States, Traces and Properties

The state spaceof a program is an unstructured finite nonempty setC of states. A
state predicate overC is a boolean predicate overC. A state transition overC is a
pair (r, s) of states fromC.

In the following, letC be a state set andT be a state transition set. We define a
trace overC to be a non-empty sequences1, s2, s3, . . . of states overC. We sometimes
use the notationsi to refer to thei-th element of a trace. Note that traces can be finite
or infinite. A trace isfinite if its length is finite. We will always use greek letters to
denote traces and normal lowercase letters to denote states. For two tracesα andβ,
we writeα · β to mean the concatenation of the two traces. We say that a transitiont
occursin some traceσ if there exists ani such that(si, si+1) = t.

We define aproperty overC to be a set of traces overC. A traceσ satisfiesa
propertyP iff σ ∈ P . If σ does not satisfyP we say thatσ violatesP . There are two
important types of properties calledsafetyand liveness[2, 13]. Informally spoken, a
safety property demands that “something bad never happens” [13], i.e., it rules out a set
of unwanted trace prefixes. Mutual exclusion and deadlock freedom are two promi-
nent examples of safety properties. A liveness property on the other hand demands
that “something good will eventually happen” [13] and can be used to formalize, e.g.,
notions of termination. Since we are only concerned with safety properties we omit a
formal definition of liveness. Safety properties are formally defined as follows.

Definition 1 (safety property overC) A safety propertyS overC is a property over
C for which the following holds: For each traceσ which violatesS there exists a prefix
α of σ such that for all tracesβ, α · β violatesS.

2.2 Programs, Specifications and Correctness

We define programs as state transition systems consisting of a state setC, a set of
initial statesI ⊆ C and a transition relationT overC, i.e., aprogram(sometimes also
calledsystem) is a tripleΣ = (C, I, T ). The state predicateI together with the state
transition setT describe a safety propertyS, i.e., all traces which are constructable by
starting in a state inI and using only state transitions fromT . We denote this property
by safety-prop(Σ). For brevity, we sometimes writeΣ instead ofsafety-prop(Σ). A
states ∈ C of a programΣ is reachableiff there exists a traceσ ∈ Σ such thats
occurs inσ. Otherwises is non-reachable. Sometimes we will call a non-reachable
state aredundant.

We define specifications to be properties, i.e., aspecification overC is a prop-
erty overC. A safety specificationis a specification which is a safety property. Un-
like Arora and Kulkarni [3], we donot assume that problem specifications are fusion
closed. Fusion closure is defined as follows: LetC be a state set,s ∈ C, X be property
overC, α, γ finite state sequences, andβ, δ, σ be state sequences overC.
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Definition 2 (fusion closed set)The setX is fusion closedif the following holds: If
α · s · β andγ · s · δ are inX thenα · s · δ andγ · s · β are also inX.

It is easy to see that for every programΣ holds thatsafety-prop(Σ) is fusion closed.
Intuitively, fusion closure means that the entire history of every trace is present in
every state of the trace. We will give examples for fusion closed and not fusion closed
specifications later.

Let SPEC be a specification andΣ be a program overC. We say thatΣ satisfies
SPEC iff all traces inΣ satisfySPEC . Consequently, we say thatΣ violatesSPEC iff
there exists a traceσ ∈ Σ which violatesSPEC .

2.3 Extensions

Given some programΣ1 = (C1, I1, T1) our goal is to define the notion of a fault-
tolerant versionΣ2 of Σ1 meaning thatΣ2 does exactly whatΣ1 does in fault-free
scenarios and has additional fault-tolerance abilities whichΣ1 lacks. Sometimes,Σ2 =
(C2, I2, T2) will have additional states (i.e.,C2 ⊃ C1) and for this case we must define
what these states “mean” with respect to the original programΣ1. This is done using
astate projection functionπ : C2 7→ C1 which tells which states ofΣ2 are “the same”
with respect to states ofΣ1. A state projection function can be naturally extended to
traces and properties, e.g., for a traces1, s2, . . . over C2 holds thatπ(s1, s2, . . .) =
π(s1), π(s2), . . .

Definition 3 (extends) Let Σ1 = (C1, I1, T1) and Σ2 = (C2, I2, T2) be two pro-
grams. ProgramΣ2 extends programΣ1 using state projectionπ iff the following
conditions hold:

1. C2 ⊇ C1,

2. π is a total mapping fromC2 to C1 (for simplicity we assume that for anys ∈ C1

holds thatπ(s) = s), and

3. π(safety-prop(Σ2)) = safety-prop(Σ1).

Note that the concept of extension is related to the notion ofrefinement[1]. Ex-
tensions are refinements with the additional property that the original state space is
preserved and that there is no notion ofstuttering[1].

If Σ2 extendsΣ1 usingπ andΣ1 satisfiesSPEC then obviouslyπ(Σ2) satisfies
SPEC . When it is clear from the context thatΣ2 extendsΣ1 we will simply say that
Σ2 satisfiesSPEC instead of “π(Σ2) satisfiesSPEC ”.

2.4 Fault Models and Fault-Tolerant Versions

Since we are concerned with fault tolerant systems we must have a way of modeling
faulty behavior. We define a fault modelF as being a program transformation [8],
i.e., a mappingF from programs to programs. The resulting program is called the
fault-affected version. For a given programΣ, F (Σ) is also calledprogramΣ in the
presence of faults F.
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We require that a fault model does not tamper with the set of initial states, i.e.,
we rule out “immediate” faults that occur before the system is switched on. We also
restrict ourselves to the case whereF “adds” transitions, since this is the only way to
violate a safety specification.

Definition 4 (fault model) A fault modelF maps a programΣ = (C, I, T ) to a pro-
gramF (Σ) = (F (C), F (I), F (T )) such that the following conditions hold:

1. F (C) = C

2. F (I) = I

3. F (T ) ⊃ T

For a given fault modelF and a specificationSPEC , we say that a programΣ is
F -intolerant with respect toSPEC if Σ satisfiesSPEC butF (Σ) violatesSPEC .

Given two programsΣ1 andΣ2 such thatΣ2 extendsΣ1 and a fault modelF , it
makes sense to assume thatF treatsΣ1 andΣ2 in a “similar way”. Basically, this
means thatF should at least add the same transitions toΣ1 andΣ2. But with respect
to the possible new states ofΣ2 it can possibly add new fault transitions. This models
faults which occur within the fault-detection and correction mechanisms.

Definition 5 (fault extension monotonicity) A fault modelF is extension monotonic
iff for any two programsΣ1 = (C1, I1, T1) andΣ2 = (C2, I2, T2) such thatΣ2 extends
Σ1 usingπ holds:

F (T1) \ T1 ⊆ F (T2) \ T2

original system Σ1

extension Σ2 a b

a b a b

d c

a b

d

π

not extension monotonicextension monotonic

Figure 1: Examples for extension monotonic and not extension monotonic fault mod-
els.

An example is given in Fig. 1. The original system is given at the top and the
extension is given below (the state projection is implied by vertical orientation, i.e.,
states which are vertically aligned are mapped to the same state byπ). In the left
example the fault model is extension monotonic since all fault transitions inΣ1 are
also inΣ2. The right example is not extension monotonic. Intuitively, an extension
monotonic fault model maintains at least its original transitions over extensions.
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The extension monotonicity requirement does not restrict faulty behavior on the
new states of the extension. However, we have to restrict this type of behavior since
it would be impossible to build fault-tolerant versions otherwise. In this paper we
assume a very general type of restriction: it basically states that in any infinite sequence
of extensions of the original program there is always some point whereF does not
introduce new fault transitions anymore.

Definition 6 (finite fault model) A extension monotonic fault modelF is finite iff for
any infinite sequence of programsΣ1,Σ2, . . . such that for alli, Σi+1 extendsΣi holds
that there exists aj such that for allk ≥ j no new fault transition is introduced inΣk,
i.e.,F (Tk+1) \ Tk+1 = F (Tk) \ Tk.

Finite fault models retain the fault transitions in the original program (i.e., they are
extension monotonic for each pair of extensions). They do not restrict the additional
faulty behavior introduced in the new states of an extension. However, they exclude
fault models for which infinite redundancy is necessary to tolerate them. The engineer-
ing process is as follows: Given a programΣ1 and a fault modelF , we extendΣ1 to
Σ2 to makeF tolerable. Then we look at the new states introduced in this process and
consider faults which might happen there. Regarding these new faults we construct a
new extensionΣ3 of Σ2 to potentially tolerate these faults. This process is repeated.
In theory, this process might never terminate, namely ifF forever adds certain kinds
of faults to the new states. A finite fault model guarantees that this process must even-
tually terminate. In this paper, we assume our fault model to be finite and extension
monotonic.

Now we are able to define afault-tolerant version. It captures the idea of starting
with some programΣ1 which is fault-intolerant regarding a specificationSPEC and
some fault modelF . A fault-tolerant versionΣ2 of Σ1 is a program which has the
same behavior asΣ1 if no faults occur, but additionally satisfiesSPEC in the presence
of faults.

Definition 7 (fault-tolerant version) LetF be a fault model,SPEC be a specification
andΣ1 andΣ2 be programs. Assume thatΣ1 satisfiesSPEC butF (Σ1) violatesSPEC.
We call a programΣ2 the F -tolerant versionof programΣ1 for SPEC using state
projectionπ iff the following conditions hold:

1. Σ2 extendsΣ1 usingπ,

2. F (Σ2) satisfiesSPEC.

3 Problem Statement

The basic task we would like to solve is to construct a fault-tolerant version for a given
program and a safety specification.

Definition 8 (general fail-safe transformation problem) Given a fault modelF and
a programΣ1 which is F -intolerant with respect to a general safety specification
SPEC1. Thegeneral fail-safe transformation problemconsists of finding a fault-tolerant
version ofΣ1, i.e., a programΣ2 such thatΣ2 extendsΣ1 andF (Σ2) satisfiesSPEC1.
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The case whereSPEC is fusion closed has been studied by Kulkarni and Arora
[12] and Jhumkaet al. [11], i.e., they solve a restricted transformation problem.

Definition 9 (fusion-closed fail-safe transformation problem) Thefusion-closed fail-
safe transformation problemconsists of solving the general fail-safe transformation
problem whereSPEC1 is fusion closed.

In the remainder of this section we briefly recall the approaches used by Kulkarni
and Arora [12] and Jhumkaet al. [11] to solve the latter problem.

3.1 Adding Fail-Safe Fault Tolerance to Fusion-Closed Specifications

The basic mechanism which Kulkarni and Arora [12] and Jhumkaet al. [11] apply
is the creation of non-reachable states. The fact that specifications are fusion closed
implies that safety specifications can be concisely represented by a set of “bad” tran-
sitions, transitions which causes a violation of the specification [3, 10].

Definition 10 (maintains) Let Σ be a program,SPEC be a specification andα be a
finite computation ofΣ. We say thatα maintainsSPEC iff there exists a sequence of
statesβ such thatα · β ∈ SPEC.

If SPEC is a safety property, every trace not inSPEC has a prefix which does
not maintainSPEC . From the definition of maintains, we have that there must be a
transition where a given traceσ switches from “good” to “bad”, i.e.,σ can be written
asα · d · b · β such thatα · d maintainsSPEC and all “longer” prefixes (starting with
α · d · b) do not maintainSPEC . Arora and Kulkarni have shown [4, “Only-if” part of
Lemma 3.2] that(d, b) is a transition which will cause any trace in which it occurs to
violateSPEC . We rephrase this result as follows:

Lemma 1 Let Σ = (C, I, T ) be a system,SPEC be safety property which is fusion
closed and assume thatΣ violatesSPEC and that for allx ∈ I holds thatx maintains
SPEC. Then there exists a transition(d, b) ∈ T such that for all tracesσ of Σ holds:
if (d, b) occurs inσ thenσ 6∈ SPEC.

The known automated procedures [11, 12] which are based on the concept of non-
reachable states use the following approach for addition of fail-safe fault tolerance:
SinceF (Σ1) violatesSPEC , there must exist executions in which a specified bad
transition occurs. Inevitably, we must prevent the occurrence of such a transition. So,
for all bad transitionst = (d, b) we must make either stated or stateb unreachable in
F (Σ2). If t is a program transition then it depends on whether or nott is reachable in
Σ1 or not.

• If t is a reachable program transition, then a violation ofSPEC can occur even
if no faults occur, so, obviously, no fault-tolerant version exists since we would
have to change the behavior of the original program.

• If t is a redundant (i.e., non-reachable) program transition, then we can remove
it resulting in a smaller transition setT2 of Σ2.
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If t is a transition which has been introduced byF , then we cannot remove it directly.
The best we can do is make the starting stated of t unreachable. But this can only
be done if there exists a non-reachable program transition on the path tod. If such a
transition exists, we can safely remove it. If not, then again no fault-tolerant version
exists.

a b e fc d g h

Figure 2: Illustration for the Kulkarni-Arora method. The specification is “neverh”.

As an illustration of the method consider Figure 2 which shows a programΣ1

in a state-chart like notation. Again, states are drawn as circles and transitions are
arrows between states. Initial states are identified using arrows without starting states.
Transitions which are introduced byF are shown as dashed arrows.

Assume the correctness specificationSPEC for Σ1 is that it never reaches stateh.
Obviously, the system satisfiesSPEC in the absence of faults but it violatesSPEC in
the presence of faults. The bad transitions which we must prevent inF (Σ2) are all
transitions which have stateh as destination state. We can remove the transition(g, h)
easily fromT2 because its removal does not change the fault-free behavior ofΣ2. But
we cannot remove transition(f, h) since it is a fault transition. But luckily, there exists
a redundant transition(d, e) on the path leading tof which can be removed inT2. So
Σ2 is constructed fromΣ1 by removing(g, h) and(d, e) from T2.

Figure 2 also helps to illustrate the cases where no fault-tolerant version exists. For
example, if there were a transition(c, h) ∈ T1 thenh is reachable inΣ1 and, hence,Σ1

does not satisfy the specification anyway. The other case arises for example, if there
were a fault transition(b, h) ∈ F (T1), i.e.,h is reachable along a path with only fault
transitions and reachable program transitions. Again, such anF is not tolerable. How-
ever, the fact thatF is not tolerable is not a drawback of the transformation method; it
is simply states that generally the chosen fault assumption is too severe to be tolerated.

This concludes the recapitulation of the known approaches to automatically make
a program fail-safe fault tolerant. Recall that specifications are required to be fusion
closed. The above illustrations show that fusion closure together with the assumption
that a fault assumption is tolerable implies that state space redundancy (e.g., statesd
andg) is already available in the fault-intolerant systemΣ1. This type of redundancy
allows to formulatedetection predicatesin the language of guarded commands [6,
7] which is the basis of the Arora-Kulkarni theory [3]. These detection predicates
are conjoined to the guards of certain actions and hence have the effect of removing
transitions.

3.2 Handling Specifications which are Not Fusion Closed

Programs are presented in a guarded command notation [6, 7]. The state space of a
program is defined by a set of variables and the state transitions by a set of actions. An
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processΣ1

var x ∈ {0, 1, 2, 3, 4} init 0

begin
x = 0 −→ x := 1

[] x = 1 −→ x := 2
[] x = 2 −→ x := 3
[] x = 3 −→ x := 4
[] f : x = 1 −→ x := 3

end

processΣ2

var x ∈ {0, 1, 2, 3, 4} init 0
h sequence of{0, 1, 2, 3, 4} init 〈〉
begin

x = 0 −→ x := 1; h := 〈1〉
[] x = 1 −→ x := 2; h := 〈1, 2〉
[] x = 2 −→ x := 3; h := 〈1, 2, 3〉
[] x = 3 −→ x := 4; h := 〈1, 2, 3, 4〉
[] f : x = 1 −→ x := 3

end

Figure 3: Two programs in guarded command notation.

action of a program has the form

〈guard〉 → 〈statement〉

in which the guard is a boolean expression over the program variables and the state-
ment is either the empty statement or an instantaneous assignment to one or more vari-
ables. An execution is constructed by repeatedly and non-deterministically choosing
any action where the guard evaluates to true and executing the corresponding action.

Consider the program on the left side of Figure 3. The program has a variable
x which can take five different values (0–4) and simply proceeds from statex = 0 to
x = 4 through all intermediate states. The fault assumptionF has added one transition
from x = 1 to x = 3 to the transition relation (the action is marked with an ‘f ’).

Consider the correctness specification

SPEC = “always (x = 4 implies that previouslyx = 2)”

Note thatF (Σ1) does not satisfySPEC (i.e., F (Σ1) can reach statex = 4 without
having been in statex = 2), and thatSPECis not fusion closed. To see the latter,
consider the two traces0, 3, 2, 4 and2, 3, 4 from SPEC . The fusion at statex = 3
yields trace0, 3, 4 which is not inSPEC . SinceSPEC is not fusion closed, we cannot
apply the known transformation methods [11, 12].

The specification can be made fusion closed by adding a history variableh which
records the entire state history. Such a variable has been added to the program on the
right side of Figure 3. NowSPEC can be rephrased as

SPEC = “always (x = 4 implies〈2〉 ∈ h)”

or equivalently
SPEC = “never (x = 4 and〈2〉 6∈ h)”

Now we can identify a set of bad transitions which must be prevented, e.g.:

x = 3 ∧ h = 〈1〉 → x = 4 ∧ h = 〈1, 2, 3, 4〉

The precondition for the transition to a state wherex = 4 must be strengthened by the
detection predicateh 6= 〈1〉, i.e., the fourth guarded command ofΣ2 must be changed
to:

x = 3 ∧ h 6= 〈1〉 −→ x := 4; h := 〈1, 2, 3, 4〉
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Hence, bad transitions are prevented and the modified system satisfiesSPEC in the
presence faultf .

3.3 State Space Redundancy Through History Variables

Adding a history variableh in the previous example adds states to the state space of the
system. In fact, defining the domain ofh as the set of all sequences over{0, 1, 2, 3, 4}
adds infinitely many states. Clearly this can be reduced by the observation that if faults
do not corrupth, thenh will only take on five different values (〈〉, 〈1〉, 〈1, 2〉, 〈1, 2, 3〉,
and〈1, 2, 3, 4〉). But still, the state space has been increased from five states to52 = 25
states.

Note thatΣ2 has redundant states andΣ1 is not redundant at all. So the redundancy
is due to the history variableh. But even if the domain ofh has cardinality 5, the
redundancy is in a certain sense not minimal, as we now explain.

Consider the programΣ3 on the left side of Figure 4. It tolerates the faultf by
adding onlyonestate to the state space ofΣ1 (namely,x = 5). The state space together
with the transitions is depicted on the right side of the figure. Note thatΣ3 has only one
redundant state, soΣ3 can be regarded as redundancy-minimal with respect toSPEC .
The metric used for minimality is the number of redundant states. We want to exploit
this observation to deal with the general case.

processΣ3

var x ∈ {0, 1, 2, 3, 4, 5} init 0

begin
x = 0 −→ x := 1

[] x = 1 −→ x := 2
[] x = 2 −→ x := 5
[] x = 5 −→ x := 4
[] f : x = 1 −→ x := 3

end

1 2 3 40

5

Figure 4: A redundancy-minimal version of the program in Figure 3 in guarded com-
mands (left) and a state chart notation (right). The specification is “always (x = 4
implies that previouslyx = 2)”.

4 Beyond Fusion Closure

Although the automated procedures of [11, 12] were developed for fusion-closed spec-
ifications, they (may) still work for specifications which are not fusion closed only if
the fault model has a certain pleasant form. For example, consider the system in Fig-
ure 5 and the specification

SPEC = “(e implies previouslyc) and (neverg)”

Obviously, the fault modelF can be tolerated using the known transformation methods
becauseF does not “exploit” the part of the specification which is not fusion closed.
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a b c d e f g

Figure 5: The fail-safe transformation can be successful even if the specification is not
fusion closed. The specification in this case is “(e implies previouslyc) and (neverg)”.

4.1 Exploiting Non-Fusion Closure

Now we formalize what it means for a fault model to “exploit” the fact that a specifi-
cation is not fusion-closed (we call this propertynon-fusion closure). First we define
what it means for a trace to be the fusion of two other traces.

Definition 11 (fusion and fusion point of traces) Let s be a state andα = αpre · s ·
αpost andβ = βpre · s · βpost be two traces in whichs occurs. Then we define

fusion(α, s, β) = αpre · s · βpost

If fusion(α, s, β) 6= α and fusion(α, s, β) 6= β we calls a fusion pointof α andβ.

Lemma 2 For the fusion of three tracesα, β, γ holds: Ifs occurs befores′ in β then

fusion(α, s, fusion(β, s′, γ)) = fusion(fusion(α, s, β), s′, γ)

and
fusion(γ, s′, fusion(α, s, β)) = fusion(γ, s′, β)

Proofs are written in a structured style similar to proof trees of interactive theorem
proving environments. This approach is advocated by Lamport who promises that this
style “makes it much harder to prove things that are not true” [14]. The proof is a
sequence of numbered steps at different levels. Every step has a proof which may be
refined at lower levels by additional steps. For example, step〈1〉2. is the second step
on level 1. Proofs may also be read in a structured way, for example, by reading only
the top level steps and going into sublevels only when necessary.

PROOF: Assume thats occurs befores′ in β. The proof is by direct calculation. Let
α = αpre · s · αpost, β = βpre · s · βmid · s′ · βpost, andγ = γpre · s′ · γpost. Then

fusion(α, s, fusion(β, s′, γ)) = fusion(α, s, βpre · s · βmid · s′γpost)
= αpre · s · βmid · s′ · γpost

= fusion(αpre · ·s · βmid · s′ · βpost, s
′, γpost)

= fusion(fusion(α, s, β), s′, γ)
proves the first equation and

fusion(γ, s′, fusion(α, s, β)) = fusion(γ, s′, αpre · s · βmid · s′ · βpost)
= γpre · s′ · βpost

= fusion(γ, s′, β)
proves the second equation.

If SPEC is a set of traces, we recursively define the fusion closure ofSPEC , de-
noted byfusion-closure(SPEC), as the set which is closed under finite applications of
thefusionoperator.
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Definition 12 (fusion closure) Given a specificationSPEC, a traceσ is in fusion-closure(SPEC)
iff

1. σ is in SPEC, or

2. σ = fusion(α, s, β) for tracesα, β ∈ fusion-closure(SPEC) and a states that
occurs inα andβ.

Lemma 2 guarantees that every trace infusion-closure(SPEC) which is not in
SPEC has a “normal form”, i.e., it can be represented uniquely as the sequence of
fusions of traces inSPEC . This is shown in the following theorem.

Theorem 1 For every traceσ ∈ fusion-closure(SPEC) which is not inSPEC there
exists a sequence of tracesα0, α1, α2, . . . and a sequence of statess1, s2, s3, . . . such
that

1. for all i ≥ 0, αi ∈ SPEC,

2. for all i ≥ 1, si is a fusion point ofαi−1 andαi, and

3. σ can be written as:

σ = fusion(fusion(. . . fusion(α0, s1, α1), s2, α2), s3, α3), . . .)

PROOF SKETCH: The proof is by induction on the structure of howσ evolved from
traces inSPEC . Basically this means an induction on the number of fusion points
in sigma. The induction step assumes thatσ is the fusion of two traces which have
at mostn fusion points and depending on their relative positions uses the rules of
Lemma 2 to construct the normal form forsigma.

1 〈1〉1. The theorem holds for all traces which have one fusion point.
PROOF: Sinceσ has one fusion point, it can be written asσ = fusion(α0, s1, α1)
with α0 andα1 from SPEC ands1 a fusion point ofα0 andα1.

2 〈1〉2. ASSUME: The theorem holds for all traces with at mostn fusion points.
PROVE: The theorem holds for all tracesσ which are fusions of traces with at

mostn fusion points.
PROOF SKETCH: Take two tracesτ andτ ′ which have at mostn fusion points and
which share an additional common fusion points (see Fig. 6). The new fusion point
s divides the fusion points inτ andτ ′ into two groups ofk andm fusion points in
τ (andk′ andm′ fusion points inτ ′ respectively). The fusion of both traces will
maintain thek fusion points ofτ and them′ fusion points ofτ ′. This follows from
the second equation of Lemma 2. Because of the ordering of the fusion points we
can use the first equation of Lemma 2 to construct the normal form. In general, the
resulting trace can have more thann fusion points.

2.1 〈2〉1. σ can be written asσ = fusion(τ, s, τ ′) whereτ andτ ′ have at mostn fusion
points.

PROOF: Follows from the fact thatσ is the fusion of two traces with at mostn
fusion points.

2.2 〈2〉2. σ can be written as
σ = fusion(fusion(. . . fusion(α0, s1, α1), s2, α2) . . .), s,

fusion(. . . fusion(α′
0, s

′
1, α

′
1), s

′
2, α

′
2) . . .))
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PROOF: Follows from the induction hypothesis and by replacingτ andτ ′ with
their normal forms in the formula of step〈2〉1.

2.3 〈2〉3. Letk, m, k′ andm′ denote the number of fusion points to the left and right of
s in τ andτ ′ (see Fig. 6). Thenσ can be written as

fusion(. . . fusion(α0, s1, α1), s2, α2) . . .), s,
fusion(. . . fusion(α′

k′ , s′k′+1, α
′
k′+1), s

′
k′+2, α

′
k′+2) . . .))

PROOF: The firstk′ fusion points ofτ ′ precedes and so by repeatedly applying
the second equation of Lemma 2 we can remove thek′ first applications of fusions
from the formula of step〈2〉2.

2.4 〈2〉4. σ can be written as
fusion(. . . fusion(α0, s1, α1), s2, α2) . . .),

sk, αk), s, α′
k′), s′k′+1, α

′
k′+1), s

′
k′+2, α

′
k′+2) . . .)

PROOF: From the definition of fusion, we can ignore the finalm fusion points of
τ . The formula follows by repeatedly applying the first equation of Lemma 2 to
the formula of step〈2〉3 (shifting the fusion operator to the left).

2.5 〈2〉5. Q.E.D.
PROOF: The formula of step〈2〉4 has the required normal form because allαi

andα′
j are inSPEC and allsi ands′j are fusion points of consecutive elements in

the formula.
3 〈1〉3. Q.E.D.

PROOF: Follows from induction.

τ

τ ′
σ

k m

k′ m′

s

s

Figure 6: Diagram accompanying the proof of Theorem 1.

Now consider the system depicted in Figure 7. The corresponding specification is:

SPEC = “f implies previouslyd”

The system may exhibit the following two traces in the absence of faults, namely
α = a · b · c andβ = a · d · e · f . In the presence of faults, a new trace is possible,
namelyγ = a · b · e · f . Observe thatγ violatesSPEC and thatγ is the fusion of two
tracesα, β ∈ SPEC (the state which plays the role ofs in Definition 11 is statee). In
such a case we say that fault modelF exploits the non-fusion closure ofSPEC .

We now formally define what is meant by exploiting the non-fusion closure of a
specification.

Definition 13 (exploiting non-fusion closure) LetΣ be a system,F be a fault model
and SPEC be a specification which is satisfied byΣ. ThenF (Σ) exploits the non-
fusion closure ofSPEC iff there exists a traceσ ∈ F (Σ) such thatσ 6∈ SPEC and
σ ∈ fusion-closure(SPEC).
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b c d e fa

Figure 7: Example where the non-fusion closure of a specification is exploited by a
fault model. The specification is “f implies previouslyd”.

Intuitively, exploiting the non-fusion closure means that there exists a bad com-
putation (σ 6∈ SPEC ) that can potentially “impersonate” a good computation (σ ∈
fusion-closure(SPEC)). Definition 13 states thatF causes a violation ofSPEC by
constructing a fusion of two (allowed) traces.

Given a fault modelF such thatF (Σ) exploits the non-fusion closure ofSPEC ,
then also we say thatthe non-fusion closure ofSPEC is exploited forΣ in the presence
of F .

Obviously, if for some specificationSPEC and systemΣ such anF exists, then
SPEC is not fusion closed. Similarly trivial to prove is the observation that no fault
modelF can exploit the non-fusion closure of a specification which is fusion closed.

On the other hand, if the non-fusion closure ofSPEC cannot be exploited, this does
not necessarily mean thatSPEC is fusion closed. To see this consider Figure 8. The
correctness specificationSPEC of the program is “c implies previouslya”. Obviously,
a fault model can only generate traces that begin witha. Sincea is an initial state
and we assume initial state preservance, noF can exploit the non-fusion closure. But
SPEC is not fusion closed.

b ca

Figure 8: Example where the non-fusion closure cannot be exploited but the specifica-
tion is not fusion closed. The specification is “c implies previouslya”.

4.2 Preventing the Exploitation of Non-Fusion Closure

The fact that a fault model may not exploit the non-fusion closure of a specification
will be important in our approach to solve the general fail-safe transformation problem
(Def. 8). A method to solve this problem, i.e., that of finding a fault-tolerant version
Σ2, should be a generally applicable method, which constructsΣ2 from Σ1 (this is de-
picted in the top part of Figure 9). Instead of devising such a method from scratch, our
aim is to reuse the existing transformations to add fail-safe fault tolerance which are
based on fusion-closed specifications [11, 12]. This approach is shown in the bottom
part of Figure 9. Starting fromΣ1, we construct some intermediate programΣ′

2 and
some intermediate fusion-closed specificationSPEC2 to which we apply one of the
above mentioned methods for fusion-closed specifications [11, 12]. The construction
of Σ′

2 andSPEC2 must be done in such a way that the resulting program satisfies the
properties of the general transformation problem stated in Definition 8. How can this
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be done?
The idea of our approach is the following: First, chooseSPEC2 to be the fusion

closure ofSPEC1, i.e., choose

SPEC2 = fusion-closure(SPEC1)

and constructΣ′
2 from Σ1 in such a way thatF (Σ′

2) does not exploit the non-fusion
closure ofSPEC1. More precisely,Σ′

2 results from applying a constructive method
(which we give below) which ensures that

• Σ′
2 extendsΣ1 using some state projectionπ and

• F (Σ′
2) does not exploit the non-fusion closure ofSPEC1.

Our claim, which we formally prove later, is that the programΣ2 resulting from ap-
plying (for example) the algorithms of [11, 12] toΣ′

2 with respect toSPEC2 in fact
satisfies the requirements of Definition 8, i.e.,Σ2 is in fact anF -tolerant version ofΣ1

with respect toSPEC1.

fault-intolerant w.r.t.
general specification

SPEC1

fusion-closed

SPEC2

general method

“standard” fail-safe transformation
w.r.t. fusion-closed SPEC2

this paper

Σ′
2

fault-tolerant w.r.t.
SPEC1

Σ1

Σ1 Σ2

Σ2

Figure 9: Overview of transformation problem (top) and our approach (bottom). The
constructive method described in Section 4.3 offers a solution to the first step (i.e.,
Σ1 → Σ′

2).

4.3 Bad Fusion Points

For a given systemΣ and a specificationSPEC , how can we tell whether or not the
nature ofSPEC is exploitable by a fault model? For the negative case (where it can
be exploited), we give a sufficient criterion. It is based on the notion of abad fusion
point.

Definition 14 (bad fusion point) Let SPEC be a specification,Σ be a system satis-
fying SPEC, s be a state ofΣ, andF a fault model such thatF (Σ) violatesSPEC.
States is a bad fusion point ofΣ for SPEC in the presence ofF iff there exist traces
α, β ∈ SPEC such that
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1. s is a fusion point ofα andβ,

2. fusion(α, s, β) ∈ F (Σ), and

3. fusion(α, s, β) 6∈ SPEC.

Intuitively, a bad fusion point is a state in which “multiple pasts” may have hap-
pened, i.e., there may be two different execution paths passing throughs, and from the
point of view of the specification it is important to tell the difference. We now give
several examples of bad fusion points.

As an example, consider Fig. 7 wheree is a bad fusion point. To instantiate the
definition, takeα = a · b · e ∈ F (Σ) andβ = a · d · e · f ∈ F (Σ). The fusion ate
yields the tracea · b · e · f which is not inSPEC .

Theorem 2 (bad fusion point criterion) Let SPEC be a specification,Σ be a system
satisfyingSPEC andF be a fault model. The following two statements are equivalent:

1. Σ has no bad fusion point forSPEC in the presence ofF .

2. F (Σ) does not exploit the non-fusion closure ofSPEC.

α0

α1

s1

s1

αk+1

sk+1

αk−1

αk

sk

σ

sk

sk+1β

σ′α

Figure 10: Diagram accompanying the proof of Theorem 2.

PROOF SKETCH: We prove the contraposition of the theorem in both directions. First
we assume thatF (Σ) exploits the non-fusion closure and use Theorem 1 to construct
a bad fusion point. Second we prove that if there exists a bad fusion point thenF (Σ)
exploits the non-fusion closure.

1 〈1〉1. ASSUME: Σ has no bad fusion point forSPEC in the presence ofF .
PROVE: F (Σ) does not exploit the non-fusion closure ofSPEC .

1.1 〈2〉1. ASSUME: F (Σ) exploits the non-fusion closure ofSPEC .
PROVE: False

1.1.1 〈3〉1. There exists a minimal prefixσ′ of σ which violatesSPEC .
PROOF: Follows from the fact thatσ 6∈ SPEC and thatSPEC is a safety prop-
erty.

1.1.2 〈3〉2. σ′ contains at least one fusion point.
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PROOF: Sinceσ 6∈ SPEC but σ ∈ fusion-closure(SPEC) we can apply Theo-
rem 1 and writeσ as the fusion of tracesαi ∈ SPEC (see Fig. 10. If there were
no fusion point withinσ′, thenσ′ would be a prefix ofα0, a contradiction to
the fact thatα0 ∈ SPEC .

1.1.3 〈3〉3. Let s denote the rightmost fusion pointsk in σ′ and letα denote the prefix
of σ′ up to and including states (see Fig. 10). Thenα ∈ SPEC .

PROOF: Follows from the fact thatσ′ is minimal (i.e., prefixes ofσ′ satisfy
SPEC , shown in step〈3〉1) and the fact thatα is a prefix ofσ′.

1.1.4 〈3〉4. If there exists a fusion pointsk+1 aftersk in αk, let β be the traceαk up
to and includingsk (see Fig. 10). Otherwise letβ be the traceαk. Then
β ∈ SPEC .

PROOF: In both casesβ is a prefix ofαk, which is inSPEC and soβ ∈ SPEC
too.

1.1.5 〈3〉5. fusion(α, s, β) 6∈ SPEC
PROOF: Follows from the fact thatσ′ is a prefix offusion(α, s, β) andSPEC
is a safety property (any extension ofσ′ is not inSPEC ).

1.1.6 〈3〉6. fusion(α, s, β) ∈ F (Σ)
PROOF: Follows from the construction ofα ands (in step〈3〉3) andβ (in step
〈3〉4) and the fact thatfusion(α, s, β) is a prefix ofσ which is inF (Σ).

1.1.7 〈3〉7. s is a bad fusion point forΣ in the presence ofF .
PROOF: Steps〈3〉3 and〈3〉4 exhibit tracesα andβ which are both inSPEC .
Step〈3〉6 shows that their fusion at states is in F (Σ). Finally, step〈3〉5 shows
that this fusion is not inSPEC . From Definition 14 follows thats is a bad
fusion point forΣ in the presence ofF .

1.1.8 〈3〉8. Q.E.D.
PROOF: Step〈3〉7 contradicts the assumption thatΣ has no bad fusion point in
the presence ofF .

1.2 〈2〉2. Q.E.D.
PROOF: Follows indirectly from step〈2〉1.

2 〈1〉2. ASSUME: F (Σ) does not exploit the non-fusion closure ofSPEC .
PROVE: SPEC has no bad fusion point forΣ in the presence ofF .

2.1 〈2〉1. ASSUME: SPEC has a bad fusion point forΣ in the presence ofF .
PROVE: False

2.1.1 〈3〉1. There exists a traceσ in F (Σ) such thatσ 6∈ SPEC andσ is the fusion of
two tracesα andβ in SPEC at some states.

PROOF: From assumption.
2.1.2 〈3〉2. The non-fusion closure ofSPEC can be exploited forΣ

PROOF: From step〈3〉1 and the definition of exploits (Definition 13)
2.1.3 〈3〉3. Q.E.D.

PROOF: Step〈3〉2 contradicts the assumption of the theorem.
2.2 〈2〉2. Q.E.D.

PROOF: Follows indirectly from step〈2〉1.
3 〈1〉3. Q.E.D.

PROOF: The two top level steps show both directions of the equivalence.
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4.4 Removal of Bad Fusion Points

Theorem 2 states that it is both necessary and sufficient to remove all bad fusion points
from Σ to make its structure robust against fault models that exploit the non-fusion
closure ofSPEC . So how can we get rid of bad fusion points?

Recall that a bad fusion point is one which has multiple pasts, and from the point
of view of the specification, it is necessary to distinguish between those pasts. Thus,
the basic idea of our method is to introduce additional states which split the fusion
paths. This is sketched in Figure 11. LetΣ1 = (C1, I1, T1) be a system. Ifs is a bad
fusion point ofΣ1 for SPEC , there exists a traceβ ∈ SPEC and a traceα ∈ F (Σ)
which both go throughs.

Constructive Method to Remove Bad Fusion Points: To remove bad fusion points,
we now construct an extensionΣ2 = (C2, I2, T2) of Σ1 in the following way:

• C2 = C1 ∪ {s′} wheres′ is a “new” state,

• I2 = I1, and

• T2 results fromT1 by “diverting” the transitions ofβ to and froms′ instead ofs.

The extension is completed by defining the state projection functionπ to maps′ to s.
Observe thats is not a bad fusion point regardingα andβ anymore becauseα now
containss andβ a different states′ which cannot be fused. So this procedure gets rid
of one bad fusion point. Also, it does not by itself introduce a new one, sinces′ is an
extension state which cannot be referenced inSPEC . So we can repeatedly apply the
procedure and incrementally build a sequence of extensionsΣ1,Σ2, . . . where in every
step one bad fusion point is removed and an additional state is added. However,F
may cause new bad fusion points to be created during this process by introducing new
faults transitions defined on the newly added states. But since the fault model is finite it
will do this only finitely often. Hence, repeating this construction for every bad fusion
point will terminate unless there are infinitely many bad fusion points. This, however,
is impossible if the state space is finite.

Note that in the extension process, certain states can be extended multiple times
because they might be bad fusion points for different combinations of traces.

s s

s′

α
β α

β

Figure 11: Splitting fusion paths.

We now prove that the above method results in a program with the desired proper-
ties.

Lemma 3 LetF be a fault model,SPEC1 be a non-fusion closed specification, andΣ1

be a program such thatΣ1 satisfiesSPEC1 but F (Σ1) violatesSPEC1. The program
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Σ′
2 which results from applying the constructive method described above satisfies the

following properties:

1. Σ′
2 extendsΣ1 using some state projectionπ and

2. F (Σ′
2) does not exploit the non-fusion closure ofSPEC1.

PROOF SKETCH: To show the first point we argue that there exists a projection function
π (which is induced by our method) such that every fault-free execution ofΣ′

2 is an
execution ofΣ1. To show the second point, we argue that the method removes all bad
fusion points and apply the bad fusion point criterion proved as Theorem 2.

1 〈1〉1. The induced projection functionπ of the constructive method above is such that
Σ′

2 extendsΣ1 usingπ.
1.1 〈2〉1. For every states of Σ1 exists aπ-images′ in the state space ofΣ′

2.
PROOF: The constructive method starts off with the the state space ofΣ′

2 being
equal to the state space ofΣ1 and any subsequent changes toπ do not affect this
initial mapping.

1.2 〈2〉2. Consider an arbitrary fault-free executionσ′ = s′1, s
′
2, . . . of Σ′

2. Thenπ(σ′)
is an execution ofΣ1.

PROOF: Looking at Figure 11, every executionσ′ of Σ′
2 evolves from an execution

of Σ1 by splitting fusion paths and adaptingπ appropriately. Therefore, under the
projection functionπ both executions look the same. Formally, this is proved
using an induction on the length of the execution.

1.3 〈2〉3. Q.E.D.
PROOF: Steps〈2〉1 and〈2〉2 prove the two conditions of Definition 3 (extension)
with respect to the projection functionπ. Hence,Σ′

2 extendsΣ1 usingπ.
2 〈1〉2. F (Σ′

2) does not exploit the non-fusion closure ofSPEC1.
2.1 〈2〉1. Σ′

2 has no bad fusion point in the presence ofF .
PROOF: This is a result from applying the constructive method. Because all fusion
paths are split, no fusion points remain.

2.2 〈2〉2. Q.E.D.
PROOF: Because of step〈2〉1 we can apply the bad fusion point criterion (Theo-
rem 2) which shows that the non-fusion-closure ofSPEC cannot be exploited for
Σ′

2 in the presence ofF .
3 〈1〉3. Q.E.D.

PROOF: The above two steps show the two consequents of the lemma.

4.5 Correctness of the Combined Method

Starting from a programΣ1, Lemma 3 shows that the programΣ′
2 resulting from

the constructive method for removing bad fusion points enjoys certain properties (see
Fig. 9). We now prove that starting off from these properties and choosingSPEC2

as the fusion closure ofSPEC1, the programΣ2, which results from applying the
algorithms of [11, 12] onΣ′

2, has the desired properties of the transformation problem
(Definition 8).

Lemma 4 GivenF , SPEC1, andΣ1 as in Lemma 3, letSPEC2 = fusion-closure(SPEC1)
and letΣ2 be the result of applying any of the known methods that solve the fusion-
closed transformation problem of Definition 9 toΣ′

2 with respect toF and SPEC2,
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whereΣ′
2 results fromΣ1 through the application of the constructive method. Then

the following statements hold:

1. Σ2 extendsΣ1 using some state projectionπ.

2. If F (Σ2) satisfiesSPEC2 thenF (Σ2) satisfiesSPEC1.

PROOF SKETCH: To prove the first point we argue that a fault tolerance addition proce-
dure only removes non-reachable transitions. Hence, every fault-free execution ofΣ′

2

is also an execution ofΣ2. But sinceΣ′
2 extendsΣ1 so mustΣ2. To show the second

point we first observe thatF (Σ′
2) does not necessarily satisfySPEC1 but not all traces

for this are inF (Σ2) anymore (due to the removal of bad transitions during addition
of fault tolerance). Next we show that any trace ofF (Σ2) which violatesSPEC1 must
exploit the non-fusion closure ofSPEC1. But this must also be a trace ofF (Σ′) and
so is ruled out by assumption.

1 〈1〉1. If Σ′
2 extendsΣ1 using state projectionπ′ thenΣ2 extendsΣ1 using state pro-

jectionπ
1.1 〈2〉1. Application of the known methods to add fail-safe fault tolerance according

to Definition 9 does not change the fault-free behavior of that system.
PROOF: For the methods of Kulkarni and Arora [12] and Jhumkaet al. [11] this
has been discussed in Section 3.

1.2 〈2〉2. Every (fault-free) execution ofΣ′
2 is also a (fault-free) execution ofΣ2 and

vice versa.
PROOF: Follows from step〈2〉1 and the fact thatΣ2 results fromΣ′

2 by applying
the fail-safe-tolerance transformation (see Fig. 9).

1.3 〈2〉3. Every execution ofΣ′
2 underπ′ is an execution ofΣ1.

PROOF: Follows from the assumption thatΣ′
2 extendsΣ1 usingπ′.

1.4 〈2〉4. Every execution ofΣ2 is also an execution ofΣ1 underπ′ and vice versa.
PROOF: Starting with an arbitrary executionσ of Σ2, step〈2〉2 allows to find an
equivalent executionσ′ of Σ′

2. Then forσ′, step〈2〉3 allows to find an equivalent
executionσ′′ of Σ1.

1.5 〈2〉5. Q.E.D.
PROOF: Step〈2〉4 allows to construct a state projection function such that the
safety properties ofΣ1 andΣ2 are identical. Hence,Σ2 extendsΣ1.

2 〈1〉2. ASSUME: 1. F (Σ′
2) does not exploit the non-fusion closure ofSPEC1.

2. F (Σ2) satisfiesSPEC2.
PROVE: F (Σ2) satisfiesSPEC1.

2.1 〈2〉1. All executionsσ of F (Σ′
2) that violateSPEC1 are not inF (Σ2).

PROOF: This follows from applying a fail-safe tolerance transformation proce-
dure, such as those in [11, 12]. Since these procedures are proved to be sound,
i.e., the resulting programs are indeed fail-safe fault-tolerant, then no execution
can violate the specification.

2.2 〈2〉2. ∀σ ∈ F (Σ2) : σ ∈ SPEC2

PROOF: Follows directly from second assumption, i.e.,F (Σ2) satisfiesSPEC2.
2.3 〈2〉3. ∀σ ∈ F (Σ2) : σ ∈ F (Σ′

2)
PROOF: The known fail-safe tolerance transformation procedures that solve Def-
inition 9 guarantee thatF (Σ2) ⊆ F (Σ′

2), from which this step follows.
2.4 〈2〉4. F (Σ2) does not exploit non-fusion closure ofSPEC1.
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PROOF: For a contradiction, assume that there is an executionτ ∈ F (Σ2) that
exploits non-fusion closure ofSPEC1. Sinceτ ∈ F (Σ2), from step〈2〉3 we have
thatτ ∈ F (Σ′

2). Hence,F (Σ′
2) also exploits the non-fusion closure ofSPEC1, a

contradiction to assumption 2.
2.5 〈2〉5. ∀σ ∈ F (Σ2) : σ ∈ SPEC1

2.5.1 〈3〉1. ASSUME: σ ∈ Σ2

PROVE: QED
PROOF: Sinceσ ∈ Σ2 andΣ2 extendsΣ1 we have thatσ ∈ Σ1. But sinceΣ1

satisfiesSPEC1 we conclude thatσ ∈ SPEC1.
2.5.2 〈3〉2. ASSUME: σ ∈ F (Σ2) \ Σ2

PROVE: QED
PROOF: First note thatσ cannot be infusion-closure(SPEC1)\SPEC1 (follows
from step〈2〉4). But sincefusion-closure(SPEC1) = SPEC2 and sinceF (Σ2)
satisfiesSPEC2 we have thatσ must be inSPEC1.

2.5.3 〈3〉3. Q.E.D.
PROOF: Follows from steps〈3〉1 and 〈3〉2 and the fact that they cover all
cases.

2.6 〈2〉6. Q.E.D.
PROOF: Step〈2〉5 shows thatF (Σ2) satisfiesSPEC1 which is what we wanted
to prove.

3 〈1〉3. Q.E.D.
PROOF: Steps〈1〉1 and〈1〉2 prove the first and second point of the lemma, respec-
tively.

Lemmas 3 and 4 together guarantee that the composition of the method described
in Section 4.3 and the fail-safe transformation methods for fusion-closed specifica-
tions in fact solves the transformation problem for non-fusion closed specifications of
Definition 8.

Theorem 3 Given a fault modelF and a programΣ1 which isF -intolerant with re-
spect to a non-fusion closed specificationSPEC1. The composition of the constructive
method described in Section 4.3 and the fail-safe transformation methods for fusion-
closed specifications solves the general transformation problem of Definition 8, i.e.,
constructs a programΣ2 such thatΣ2 extendsΣ1 andF (Σ2) satisfiesSPEC1.

4.6 Examples

Finally, we present two examples of the application of our method. The top of Fig-
ure 12 (system 1) shows the original system. The augmented system is depicted at the
bottom (system 4). The correctness specification for the system is “(d implies previ-
ouslyb) and (e implies previouslyc)”. There are only two bad fusion points, namelyc
andd which have to be extended. In the first step,c is “removed” by splitting the fusion
path which is indicated using two short lines. This results in system 2. Subsequently,
d is refined, resulting in system 3. Note thatd has to be refined twice because there are
two sets of fusion paths. This results in system 4, which can be subject to the standard
fail-safe transformation methods, which will remove the transitions(c, d′′) and(d, e).

A similar, yet more complex example is shown in Figure 13. The correctness
specification for the system 1 at the top is “g implies previously (b or c)”. The figure
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Figure 12: Removing bad fusion points. The specification is “(d implies previouslyb)
and (e implies previouslyc)”.
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shows that again a “two level” extension is necessary here, since the only execution
which must be prevented is the one which usesboth fault transitions. This means that
statef is a bad fusion point for multiple execution paths and hence must be refined
twice (note that the fault transition(d, f) is a new fault added to the system in the
extension).

4.7 Discussion

The complexity of our method directly depends on the number of bad fusion points
which have to be removed. Bad fusion points are not hard to find if the specification
is given as a temporal logic formula in the spirit of those used throughout this paper.
For example, if specifications are given in the form “x only if previouslyy” then only
states which occur in traces betweenx andy can be fusion points. Candidates forbad
fusion points are all states where two execution paths merge.

Our method requires to check every one of these states whether it is a bad fusion
point. So obviously, applying our method induces a larger overhead than directly
adding history variables. But as can be seen in Figs. 12 and 13, the number of states is
significantly less than adding a general history variable. For example, a clever addition
of history variables to the system im Fig. 12 would require two bits, one to record the
visit to stateb and one to record the visit toc. Overall this would result in2×2×5 = 20
states. Our methods achieves the same result with a total of 8 states. The system in
Fig. 13 could employ a boolean history variable which records whether statesb or e
have been visited (it is set totrue as soon as one of these states is reached). Adding
such a variable would create a total of 7 additional states. Our methods just adds 5.

Note however that the resulting system in Fig. 12 is not redundancy minimal. The
stated′′ is not necessary since it may become unreachable even in the presence of
faults after the fail-safe transformation is applied. This is the price we still have to pay
for the modularity of our approach, i.e., adding history states does at present not “look
ahead” which states might become unreachable even in the presence of faults.

In theory there are cases where our method of adding history states does not termi-
nate because there are infinitely many bad fusion points. For this to happen, the state
space must be infinite. If we consider the application area of embedded software, we
can safely assume a bounded state space.

Given a programΣ and a general specificationSPEC , then our combined method
will find a solution to the general transformation problem iff (a) there exists one with a
finite number of additional states and (b) the method of adding fail-safe fault-tolerance
for fusion-closed specifications is complete. Requirement (a) ensures that our method
of removing bad fusion points will terminate.

5 Conclusions

In this paper, we have presented ways on how get rid of a restriction upon which
procedures that add fault tolerance [11, 12] are based, namely that specifications have
to be fusion closed. Our method can be viewed as a finer grained method to add
history information to a given system and hence add state space redundancy. We have
shown that our method in general adds less history states than would be added using
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Figure 13: A more complex example. The specification is “g implies previously (b or
e)”.
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standard history variables (which in general lead to an exponential growth of the state
space). Thus, adding state redundancy using the approach presented in this paper
makes addition of fault tolerance more efficient.

As future work, it would be interesting to combine our method with one of the
methods to add detectors so that the resulting method is redundancy minimal. We
are also investigating issues of non-masking fault-tolerance, i.e, adding tolerance with
respect to liveness properties.
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