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Abstract. We consider a general notion of timed automata with input-
determined guards and show that they admit a robust logical framework
along the lines of [E]7 in terms of a monadic second order logic charac-
terisation and an expressively complete timed temporal logic. We then
generalise these automata using the notion of recursive operators intro-
duced by Henzinger, Raskin, and Schobbens [E], and show that they
admit a similar logical framework. These results hold in the “pointwise”
semantics. We finally use this framework to show that the real-time logic
MITL of Alur et al [E] is expressively complete with respect to an MSO
corresponding to an appropriate input-determined operator.

Keywords: timed automata, monadic second-order logic, real-time tem-
poral logics

1 Introduction

The timed automata of Alur and Dill [[I] are a popular model for describing timed
behaviours. While these automata have the plus point of being very expressive
and having a decidable emptiness problem, they are neither determinisable nor
closed under complementation. This is a drawback from a couple of points of
view. Firstly, one cannot carry out model checking in the framework where a
system is modelled as a timed transition system 7 and a specification of timed
behaviours as a timed automaton .4, and where one asks “is L(7) C L(A)?”.
This would normally involve complementing A and then checking if its inter-
section with 7" is non-empty. One can get around this problem to some extent
by using determinisable specifications, or specifying directly the negation of the
required property. A second reason why lack of closure properties may concern
us is that it precludes the existence of an unrestricted logical characterisation of
the class of languages accepted by timed automata. The existence of a monadic
second order logic (MSO) characterisation of a class of languages is a strong en-
dorsement of the “regularity” of the class. It also helps in identifying expressively
complete temporal logics, which are natural to use as specification languages and
have relatively efficient model checking algorithms.



The event clock automata of [E] was one of the first steps towards identifying
a subclass of timed automata with the required closure properties. They were
shown to be determinisable in [ﬂ], and later to admit a robust logical framework
in terms of an MSO characterisation and an expressively complete timed tempo-
ral logic []. Similar results were shown in [[4], [ffl and [[f]. A common technique
used in all these results was the idea of “implicit” clocks, whose values are de-
termined solely by the timed word being read. For example the event recording
clock z, records the time since the last a action w.r.t. the current position in a
timed word, and is thus implicitly reset with each a action. The truth of a guard
over these clocks at a point in a timed word is thus completely determined by
the word itself, unlike in a timed automaton where the value of a clock depends
on the path taken in the automaton.

In this paper we generalise the notion of an implicit clock to that of an input
determined operator. An input determined operator A identifies for a given timed
word and position in it, a set of intervals in which it is “satisfied”. The guard
I € A is then satisfied at a point in a timed word if the set of intervals identified
by A contains I. For example, the event recording clock x, can be modelled as
an input determined operator <l, which identifies at a given point in a timed
word, the (infinite) set of intervals containing the distance to the last a action.
The guard (x, € I) now translates to (I €<,). As an example to show that this
framework is more general than implicit clocks, consider the input determined
operator <, inspired by the Metric Temporal logic (MTL) of [EI,E} This operator
identifies the set of all intervals I for which there is a future occurrence of an «a
at a distance which lies in I. The guard I € <, is now true iff there is a future
occurrence of an a action, at a distance which lies in I.

Timed automata which use guards based on a set of input determined op-
erators are what we call input determined automata. We show that input de-
termined automata form a robust class of timed languages, in that they are
(a) determinisable, (b) effectively closed under boolean operations, (c¢) admit
a logical characterisation via an unrestricted MSO, and (d) identify a natural
expressively complete timed temporal logic.

We then go over to a more expressive framework using the idea of recursive
event clocks from [E] In the recursive version of our input determined operator,
the operators now expect a third parameter (apart from the timed word and a
position in it) which identifies a set of positions in the timed word. This argu-
ment could be (recursively) another input determined automaton, or as is better
illustrated, a temporal logic formula 6. The formula # naturally identifies a set
of positions in a timed word where the formula is satisfied. Thus a recursive op-
erator A along with the formula 6, written Ay, behaves like an input determined
operator above, and the guard I € Ay is true iff the set of intervals identified
by Ay contains I. These recursive input determined automata are also shown to
admit similar robust logical properties above.

We should be careful to point out here that, firstly, these results hold in the
pointwise semantics, where formulas are evaluated only at the “action points” in
a timed word (used e.g. in [Lf]), and not at arbitrary points in between actions



in a timed word as allowed in the continuous semantics of [E,E] Secondly, we
make no claims about the existence of decision procedures for these automata
and logics. In fact it can be seen the operator &, above takes us out of the class
of timed automata as we can define the language of timed sequences of a’s in
which no two a’s are a distance 1 apart, with a single state input determined
automaton which has the guard —([1,1] € <,). Similar versions can be seen
to have undecidable emptiness problems and correspondingly undecidable logics
[@] Thus the contribution of this paper should be seen more in terms of a general
framework for displaying logical characterisations of timed automata, and prov-
ing expressive completeness of temporal logics related to these automata. Many
of the results along these lines from [ﬂ,ﬂ] and some in the pointwise semantics
from [13] follow from the results in this paper.

As a new application of this framework, we provide an expressive complete-
ness result for MITL in the pointwise semantics, by showing that it is expressively
equivalent to the first order fragment of an MSO based on recursive operators.
This answers an open question from [Q], apart from identifying an interesting
class of timed automata.

The techniques used in this paper essentially build on those from [ﬂ] and
[ﬂ] which use the notion of proper symbolic alphabets and factor through the
results of Biichi [E] and Kamp [E] The idea of using recursive operators comes
from [E], who show a variety of expressiveness results, including an expressive
completeness for MITL in the continuous semantics. Their result for MITL is
more interesting in that it uses event-clock modalities, while we use essentially
the same modalities as MITL. However, our MSO is more natural as unlike the
MSO in [[] it has unrestricted second order quantification.

2 Input determined automata

We use N to denote the set of natural numbers {0, 1,...}, and RZ% and Q=° to
denote the set of non-negative reals and rationals respectively. The set of finite
and infinite words over an alphabet A will be denoted by A* and A“ respectively.
We use the notation X — Y to denote the set of functions from X to Y.

An (infinite) timed word over an alphabet X is an element o of (¥ x RZ%)~
satisfying the following conditions. Let o = (ag, to)(a1,t1) - - -. Then:

1. (monotonicity) for each i € N, t; < t;11,
2. (progressiveness) for each t € R=0 there exists i € N such that t; > t.

Let TX“ denote the set of infinite timed words over X~. Where convenient, we
will use the representation of o as (o, 7) where @ € X% and 7 : N — R0 is a
time sequence satisfying the conditions above.

We will use rational bounded intervals to specify timing constraints. These
intervals can be open or closed, and we allow oo as an open right end. These
intervals denote a subset of reals in the usual manner — for example [2,00)
denotes the set {t € R=0 | 2 < ¢}. The set of all such intervals is denoted Zg.



Our input determined automata will use guards of the form “I € A”, where
I is an interval and A is an operator which determines for a given timed word
o and a position 7 in it, a set of intervals “satisfying” it at that point. We then
say that o at position ¢ satisfies the guard “I € A” if I belongs to the set of
intervals identified by A. By a “position” in the timed word we mean one of the
“action points” or instants given by the time-stamp sequence, and use natural
numbers 4 (instead of the time 7(i)) to denote these positions. More formally,
an input determined operator A (w.r.t. the alphabet X') has a semantic function
[A] : (TX* x N) — 222, The guard I € A is satisfied at position i in 0 € T X%
iff I € [A](o,7).

The transitions of our input determined automata are labelled by symbolic
actions of the form (a,g) where a is an action, and ¢ is a guard which is a
boolean combination of atomic guards of the form I € A. The set of guards over
a finite set of input determined operators Op is denoted by G(Op) and given by
the syntax g :=T | I € A | =g | gV g | g A g. The satisfaction of a guard g in
a timed word o at position i, written o,i = g, is given in the expected way: we
have o,i = T always, o,i E I € A as above, and the boolean operators -, V,
and A interpreted as usual.

A symbolic alphabet I' based on (X, Op) is a finite subset of X x G(Op).
An infinite word ~ in I'“ specifies in a natural way a subset of timed words
tw(y) defined as follows. Let v(i) = (a;,¢;) for each i € N. Let 0 € TX¥ with
o(i) = (bi,t;) for each i € N. Then ¢ € tw(y) iff for each i € N, b, = a;
and 0,7 = g;. We extend the map tw to work on subsets of I in the natural
way. Thus, for L C I'*, we define tw(L) = U'r ¢, tw(7). Finally, we denote the
vocabulary of intervals mentioned in I" by woc(I).

Recall that a Biichi automaton over an alphabet A is a structure A =
(Q,s,—, F) where @ is a finite set of states, s € @ is an initial state, —C
Q x A x @ is the transition relation, and F' C @ is a set of accepting states.
Let @ € A¥. A run of A over « is a map p : N — @ which satisfies: p(0) = s

and p(7) ] p(i + 1) for every ¢ € N. We say p is an accepting run of A on o
if p(i) € F for infinitely many i € N. The set of words accepted by A, denoted
here as Lgym (A) (for the “symbolic” language accepted by A), is defined to be
the set of words in A on which A has an accepting run.

We are now in a position to define an input determined automaton. An
input determined automaton (IDA for short) over an alphabet X and a set of
operators Op, is simply a Biichi automaton over a symbolic alphabet based on
(X, Op). Viewed as a Biichi automaton over a symbolic alphabet I', an input
determined automaton A accepts the language Lgym (A) C I'* which we call
the symbolic language accepted by A. However, we will be more interested in
the timed language accepted by .A: this is denoted L(A) and is defined to be
(L (A)).

To give a concrete illustration of input determined automata, we show how
the event clock automata of [E] can be realized in the above framework. Take
Op to be the set of operators {<,,>, | a € X'}, where the operators <, and
>, essentially record the time since the last a action, and the time to the next



a action. The operator <, (and similarly >,) can be defined here by setting
[<a](o,7) to be

{Iep|3<i:o(j)=a,7@)—7()€l,andVk: j <k <i, o(k) #a}.

As another example which we will use later in the paper, consider the operator
O, related to MTL [[[1f]l. The guard ¢, € I is meant to be true in a word o
at time ¢ iff there is a future instant j labelled a and the distance to it lies in
I —ie. 7(j) — (i) € I. The guard €, € I makes a similar assertion about the
past of o w.r.t. the current position. An input determined automaton based on
these operators can be defined by taking Op = {4, ©, | a € X'}, and where,
for example, [©g](0,4) ={I | 3j >i: o(j) =a, and 7(j) — 7(3) € I}.

We now want to show that the class of timed languages accepted by input
determined automata (for a given choice of X' and Op) is closed under boolean
operations. The notion of a proper symbolic alphabet will play an important role
here and subsequently. A proper symbolic alphabet based on (X, Op) is of the
form I = ¥ x (Op — 2%) where 7 is a finite subset of Zg. An element of I' is thus
of the form (a, h), where the set of intervals specified by h(A) is interpreted as the
exact subset of intervals in 4woc(I") which are satisfied by A. This is formalised
in the following definition of twp for a proper symbolic alphabet I'. Let v € I'*
with v(i) = (a4, hi). Let 0 € TX* with o(i) = (b, ;). Then o € twp(y) iff for
each i € N: b; = a; and for each A € Op, h;(A) = [A](o,i) N woe(T).

Let I" be a proper symbolic alphabet based on (X, Op). Then a Biichi au-
tomaton A over I', which we call a proper IDA over (X, Op), determines a timed
language over X' given by tw(Lgym (A)).

The class of timed languages defined by IDA’s and proper IDA’s over (X, Op)
coincide. An IDA over a symbolic alphabet I" can be converted to an equivalent
one (in terms of the timed language they define) over a proper symbolic alphabet
I = X x(0p — 2%°¢(I), Firstly, each transition label (a, ¢) in I" can be written
in a disjunctive normal form (¢1 A -+ A ¢i), with each ¢; being a conjunction of
literals I € A or (I € A). Thus each transition labelled (a, g) can be replaced
by a set of transitions labelled (a, ¢;), one for each i. Now each transition labelled
(a, ¢), with ¢ a conjunct guard, can be replaced by a set of transitions (a, h), one
for each h “consistent” with c: i.e. h should satisfy the condition that if I € A is
one of the conjuncts in ¢ then I € h(A), and if =(I € A) is one of the conjuncts
in ¢ then I ¢ h(A). In the other direction, to go from a proper IDA to an IDA,
a label (a, h) of a proper symbolic alphabet can be replaced by the guard

A CA Tea A —(I € A)).
A€Op Ieh(A) I€ivoc(I')—h(A)
The following property of proper symbolic alphabets will play a crucial role.

Lemma 1. Let I' be a proper symbolic alphabet based on X. Then for any o €
TX% there is a unique symbolic word v in I'* such that o € twr (7).

Proof. Let o(i) = (a4, t;). Then the only possible symbolic word v we can use
must be given by (i) = (a;, h;), where h;(A) = [A](o,7) N woc(I). O



In the light of lemma El, going from a symbolic alphabet to a proper one
can be viewed as a step towards determinising the automaton with respect to
its timed language. From here one can simply use classical automata theoretic
techniques to determinise the automaton w.r.t. its symbolic language. (Of course,
since we deal with infinite words we will need to go from a Biichi to a Muller or
Rabin acceptance condition [[[]).

Theorem 1. The class of IDA’s over (X, Op) are effectively closed under the
boolean operations of union, intersection, and complement.

Proof. Tt is sufficient to address union and complementation. Given automata A
and B over symbolic alphabets I" and A respectively, we can simply construct an
automaton over I' U A which accepts the union of the two symbolic languages.
For complementing the timed language of A, we can go over to an equivalent
proper IDA A’ over a proper symbolic alphabet I/, and now simply complement
the symbolic language accepted by A’ to get an automaton C. It is easy to
verify, using the uniqueness property of proper alphabets given in Lemma m,
that L(C) = TX* — L(A’). In the constructions above we have made use of the
closure properties of w-regular languages [@] a

3 A logical characterisation of IDA’s

We now show that input determined automata admit a natural characterisation
via a timed MSO in the spirit of [E] Recall that for an alphabet A, Biichi’s
monadic second order logic (denoted here by MSO(A)) is given as follows:

pr=Qu(r) [zeX [z<y|-p]|(pVe)|3rp|IXe.

The logic is interpreted over a word o € A%, along with an interpretation I
which assigns individual variables x a position in « (i.e. an ¢ € N), and to set
variables X a set of positions S C N. The relation < is interpreted as the usual
ordering of natural numbers, and the predicate @, (one for each a € A) as the
set of positions in « labelled a.

The formal semantics of the logic is given below. For an interpretation I
we use the notation I[i/x] to denote the interpretation which sends z to i and
agrees with I on all other variables. Similarly, I[S/X] denotes the modification
of I which maps the set variable X to a subset S of N. Later we will also use
the notation [i/z] to denote the interpretation with sends z to i when the rest
of the interpretation is irrelevant.

a,TE Qu(z) iff a(l(z)) = a.

a,lE=xe X iff I(z)€l(X).

a,lEz<y iff I(z)<I(y).

a,T=3xp iff there exists ¢ € N such that o,1[i/z] | ¢.
a, I =3Xe iff there exists S C N such that o,I[S/X] = ¢.



For a sentence ¢ (i.e. a formula without free variables) in MSO(A) we set
L(p) = {0 € A¥ | 0 = ¢}. Biichi’s result then states that a language L C A% is
accepted by a Biichi automaton over A iff L = L(yp) for a sentence ¢ in MSO(A).

We define a timed MSO called TMSO(X, Op), parameterised by the alphabet
X’ and set of input determined operators Op, whose syntax is given by:

pu=Qu(x) [ IT€A(@) [zeX [z<y|-p]|(pVe)|Irp|IXe.

In the predicate “I € A(z)”, I is an interval in Zg, A € Op, and z is a variable.
The logic is interpreted in a similar manner to MSO, except that models are
now timed words over X. In particular, for a timed word o = («, 7), we have:

o, lE Qu.(z) iff a(l(z)) =a
o lE=Te A(x)iff T € [A](o,I(x)).

Given a sentence ¢ in TMSO(X) we define L(p) = {0 € TX¥ | 0 = ¢}.

Theorem 2. A timed language L C TXY is accepted by an input determined
automaton over (X, Op) iff L = L(p) for some sentence ¢ in TMSO(X, Op).

Proof. Given an IDA A over (X, Op) we can give a TMSO sentence ¢ which
describes the existence of an accepting run of A on a timed word. Following [[LF],
for A= (Q,qo,—, F) with Q@ = {qo,...qn}, we can take ¢ to be the sentence

3Xo---3X, (0€ Xo A A\Va(z € X; = ~(x € X))
i#j
(%) A Vz \/ (xeX; A (z+1)€X; NQu(z)Ng)

(a,g)
qi — 4j

A \/ Vedy(x <y Ay € X;)).
¢ EF

Here ¢’ denotes the formula obtained by replacing each I € Ain g by I € A(x).
Further, “0 € X,” abbreviates Va (zero(z) = = € Xo) where zero(z) in turn
stands for -3y(y < x). Similarly £+1 € X; can be expressed via Vy(succs(y) =
y € X;), where succy(y) is the formula z <y A —3z(z <z A z<y).

In the converse direction we take the route used in [ﬂ] as it will be useful in
the sequel. Let ¢ be a formula in TMSO(X, Op), and let I" be a proper symbolic
alphabet with the same interval vocabulary as ¢. We give a way of translating
¢ to a formula t-s(¢) in MSO(I") in such a way that the timed languages are
preserved. The translation t-s is done with respect to I" and simply replaces each
occurrence of

Qa(z) by V'  Qum(x) and € Ax) by \/ Qam ().

(b,h)ET, b=a (a,h)E€T, IER(A)

The translation preserves the timed models of a formula ¢ in the following sense:



Lemma 2. Let o € TX¥, v € I'Y, and o € twr(7y). Let 1 be an interpretation
for variables. Then o,1 = ¢ iff 7,1 | t-s(p). O

The lemma is easy to prove using induction on the structure of the formula ¢
and making use of the properties of proper symbolic alphabets. From the lemma
it immediately follows now that for a sentence ¢ in TMSO(X, Op), we have
L(p) = twr(L(t-s(g))), and this is the sense in which the translation preserves
timed languages.

We can now argue the converse direction of Theorem E using this translation
and factoring through Biichi’s theorem. Let ¢ be a sentence in TMSO(X, Op)
and let » = t-s(¢). Then by Biichi’s theorem we have an automaton A over
I" which recognises exactly L(®). Thus A is our required proper IDA since
L(A) = twr(Loym(A)) = twr(L(3)) = L(p). 0

4 An expressively complete timed LTL

In this section we identify a natural, expressively complete, timed temporal logic
based on input determined operators. The logic is denoted TLTL(X, Op), pa-
rameterised by the alphabet X and set of input determined operators Op. The
formulas of TLTL(X, Op) are given by:

0= a|lcA|O0|0O0|(0UO) | (0S6) | -0 (0V0).

Here we require @ € X, I € g, and A € Op. The models for TLTL(X, Op)
formulas are timed words over X. Let 0 € TX%, with ¢ = (o, 7), and let ¢ € N.
Then the satisfaction relation o, = ¢ is given by

oilEa iff a(i)=a

oilEITeAiff Iel[A](o,1i)

oiE=00 iff oi+1E0

oiE=00 iff i>0ando,i—1F6

oiEOUn iff 3k>i:okEnandVj:i<j<k, ojE¥0
o,i=0Sy ff Jk<i:okEnandVj:k<j<i, ojE0

We define L(0) = {oc € TX¥ | 0,0 = ¢}.

Let us denote by TFO(X, Op) the first-order fragment of TMSO(X, Op) (i.e.
the fragment we get by disallowing quantification over set variables). The logics
TLTL and TFO are expressively equivalent in the following sense:

Theorem 3. A timed language L C TX* is definable by a TLTL(X, Op) for-
mula 0 iff it is definable by a sentence ¢ in TFO(X, Op).

Proof. Given a TLTL(X, Op) formula 6 we can associate an TFO(X, Op) formula
© which has a single free variable z, and satisfies the property that o, = 0 iff
o, [i/z] E . This can be done in a straightforward inductive manner as follows.
For the atomic formulas @ and I € A we can take ¢ to be Q,(z) and I € A(x)



respectively. In the inductive step, assuming we have already translated 6 and n
into ¢ and v respectively, we can translate U7 into

Fy(z <y AYPly/a) AVz((x < 2 A2 <y) = plz/z])).

Here 9[y/x] denotes the standard renaming of the free variable z to y in . The
remaining modalities are handled in a similar way, and we can verify that if ¢
is the above translation of § then 0,7 = 0 iff o,[i/z] = . It also follows that
0,0 satisfies ¢ iff o satisfies the sentence ¢g given by Vz(zero(x) = ¢). Hence
we have that L(0) = L(po).

In the converse direction a more transparent proof is obtained by factoring
through Kamp’s result for classical LTL. Recall that the syntax of LTL(A) is
given by:

0= a| 08| 060| (U | (0S0)| -0 |(0V0)

where a € A. The semantics is given in a similar manner to TLTL, except that
models are words in A¥. In particular the satisfaction relation a,i = 6 for the
atomic formula a is given by: 0,7 = a iff a(i) = a. Let FO(A) denote the first-
order fragment of MSO(A). Then the result due to Kamp [[L0] states that:

Theorem 4 ([[Ld]). LTL(A) is expressively equivalent to FO(A). O

Consider now a proper symbolic alphabet I" based on (X, Op). We can define
a timed language preserving translation of an LTL(I") formula 6 to a formula

~

s-t(f) in TLTL(X, Op). In the translation s-t we replace subformulas (a, h) by

an N\ (\ Tea A -(I € A)).

A€Op Ieh(A) I€ivoc(I)—h(A)
It is easy to argue along the lines of Lemma [|| that

Lemma 3. Let 0 € TX% and v € I'* with o € twp(v). Then o,i = s-t(8) iff
= 0. O
Hence we have L(s-t(8)) = twp(L()).

We can now translate a sentence ¢ in TFO(X, Op) to an equivalent TLTL(X, Op)
formula 6 as follows. Let I" be the proper symbolic alphabet based on (X, Op)
with the same interval vocabulary as ¢. Let ¢ be the FO(I") formula t-s(¢). Note
that the translation s-¢ preserves first-orderness and hence @ belongs to FO(I').
Now by Theorem @, we have a formula 6 in LTL(I") which is equivalent to ». We
now use the translation t-s on the formula 6 to get a TLTL(X, Op) formula 6.
0 is our required TLTL(X, Op) formula. Observe that firstly L(6) = tw(L(f))
by the property of the translation s-¢. Next, by Kamp’s theorem we have that
L(0) = L(p) and hence twr(L(0)) = twpr(L(p)). But by the property of the
translation ¢-s applied to ¢, we have twr(L(9)) = L(p), and hence we can con-
clude that L(¢) = L(6). This completes the proof of Theorem [}, O



We point out here that the past temporal operators of @ (“previous”) and
S (“since”) can be dropped from our logic without affecting the expressiveness
of the logic. This follows since it is shown in [E] that Theorem E holds for the
future fragment of LTL. The reason we retain the past operators is because they
are needed when we consider a recursive version of the logic in Section E

5 Recursive input determined automata

We now consider “recursive” input determined operators. The main motivation
is to increase the expressive power of our automata, as well as to characterise the
expressiveness of recursive temporal logics which occur naturally in the real-time
setting.

To introduce recursion in our operators, we need to consider parameterised
(or recursive) input determined operators. These operators, which we continue to
denote by A, have a semantic function [A] : (2Y x TX% x N) — 2%¢, whose first
argument is a subset of positions X. Thus A with the parameter X determines
an input determined operator of the type introduced earlier, whose semantic
function is given by the map (o,i7) — [A](X,0,4). The set of positions X will
typically be specified by a temporal logic formula or a “floating” automaton, in
the sense that given a timed word o, the formula (resp. automaton) will identify
a set of positions in o where the formula is satisfied (resp. automaton accepts).
These ideas will soon be made more precise.

We first recall the idea of a “floating” automaton introduced in [[f]. These
are automata which accept pairs of the form (o,4) with o a timed word, and ¢ a
position (i.e. ¢ € N). We will represent a “floating” word (o,7) as a timed word
over X' x {0,1}. Thus a timed word v over X' x {0, 1} represents the floating word
(0,1), iff v = (o, B, 7), with 5 € {0,1}* with a single 1 in the i-th position, and
o = (a,7). We use fw to denote the (partial) map which given a timed word v
over X x {0,1} returns the floating word (o,7) corresponding to v, and extend
it to apply to timed languages over X' x {0, 1} in the natural way.

Let Op be a set of input determined operators w.r.t. X. Then a floating IDA
over (X, Op) is an IDA over (X x {0,1}, Op), where the set of operators Op’
w.r.t. X x {0,1} is defined to be {A’ | A € Op}, with the semantics

[4(o",4) = [Al(o,9),

where ¢’ is a timed word over X' x {0,1}, with ¢/ = (o, 3,7) and o = (o, 7).
Thus the operator A’ simply ignores the {0,1} component of ¢’ and behaves like
A on the XY component. A floating IDA B accepts the floating timed language
LY (B) = fu(L(B)).

We now give a more precise definition of recursive input determined au-
tomata, denoted rec-IDA, and their floating counterparts frec-IDA. Let Rop be
a finite set of recursive input determined operators. Then the class of rec-IDA’s
over (X, Rop), and the timed languages they accept, are defined as follows.

— Every IDA A over X' that uses only the guard T is a rec-IDA over (X, Rop),
and accepts the timed language L(A).



Similarly, every floating IDA B over X~ which uses only the guard T is a
frec-IDA over (X, Rop), and accepts the floating language Lf(B).

— Let C be a finite collection of frec-IDA’s over (X, Rop). Let Op be the set
of input determined operators {Ag | A € Rop, B € C}, where the seman-
tic function of each Ap is given as follows. Let pos(c, B) denote the set of
positions i such that (o,4) € L¥(B). Then [Ag](0,i) = [A](pos(a, B), 7, 1).
Then any IDA A over (X, Op) is a rec-IDA over (X, Rop), and accepts the
timed language L(A) (defined in Section ).

Similarly every floating IDA B over (X, Op) is a frec-IDA over (X, Rop), and
accepts the floating language L7 (B).

Recursive automata fall into a natural “level” based on the level of nesting
of operators they use. A rec-IDA is of level 0 if the only guard it uses is T.
Similarly a frec-IDA is of level 0, if the only guard it uses is T. A rec-IDA is of
level (i+1) if it uses an operator Ag, with A € Rop and B a frec-IDA of level
i, and no operator A, with A" € Rop and C of level greater than ¢. A similar
definition of level applies to frec-IDA’s.

As an example consider the level 1 rec-IDA A over the alphabet {a, b} below.
The floating automaton B accepts a floating word (o,4) iff the position 4 is
labelled b and the previous and next positions are labelled a. The recursive
input determined operator < is defined formally in Sec. E The rec-IDA A thus
recognises the set of timed words o over {a, b} which begin with an a and have
an occurrence of b — with a’s on its left and right — exactly 1 time unit later.

O (e,0), T (a,0), TO

A: QOMO B: _,O ©

Theorem 5. The class of rec-IDA’s over (X, Rop) is closed under boolean op-
erations. In fact, for each i, the class of level i rec-IDA’s is closed under boolean
operations.

(6,1), T

O O

Proof. Let A and A’ be two rec-IDA’s of level 7. Let Op be the union of operators
used in A and A’. Then both A and A’ are IDA’s over (X, Op), and hence by
Theorem [I| there exists an IDA B over (X, Op) which accepts L(A) U L(A’).
Similarly there exists an IDA C over (X, Op), which accepts the language T X% —
L(A). Notice that B and C use the same set of operators Op, and hence are also
level ¢ automata. a

We note that IDA’s over (X, Op) are a special case of level 1 rec-IDA’s over
(X, Rop), where the set of recursive operators Rop is taken to be {A" | A € Op}
with [A'](X,0,i) = [A](0,4). Thus each guard I € A in an IDA over (X, Op)
can be replaced by the guard I € A}, for any “dummy” level 0 frec-IDA B.

6 MSO characterisation of rec-IDA’s

We now introduce a recursive version of TMSO which will characterise the class
of timed languages defined by rec-IDA’s. The logic is parameterised by an al-



phabet X and set of recursive input determined operators Rop, and denoted
rec-TMSO(X, Rop). The syntax of the logic is given by

pu=Qa(z) | I €Ay(x) |[reX [z <y|-p|(pVe)|Irp|IXe.

In the predicate I € Ay (z), wehave I € Zg, A € Rop, and ¢ arec-TMSO(X, Rop)
formula with a single free variable z.

The logic is interpreted over timed words in T X“. Its semantics is similar
to TMSO except for the predicate “I € Ay(x)” which is defined inductively
as follows. If ¢ is a formula which uses no A predicates, then the satisfaction
relation 0,1 |= 4 is defined as for TMSO. Inductively, assuming the semantics of
1 has already been defined, Ay is interpreted as an input determined operator
as follows. Let pos(o, 1) denote the set of interpretations for z that make v true
in the timed word o — i.e. pos(o,v) = {i | 0,[i/z] = v¢}. Then

[[Aw]](o—a Z) = [[A]] (pOS (Ja 1/})a g, Z)
Thus we have
o lE=TIe Ay(z) iff I e [A](pos(o,v),0,1(z)).

Note that the variable z, which is free in %, is not free in the formula I €
Ay (z). A sentence ¢ in rec-TMSO(X, Rop) defines the language L(¢) = {0 |=
¢}, and a rec-TMSO(X, Rop) formula v with one free variable z defines a floating
language L/ (¢) = {0,i | 0,[i/2] = ¥}.

We note that each rec-TMSO (X, Rop) formula ¢ can be viewed as a TMSO(X, Op)
formula, for a suitably defined set of input determined operators Op. We say an
operator Ay has a top-level occurrence in ¢ if there is an occurrence of Ay in
¢ which is not in the scope of any A’ operator. We can now take Op to be the
set of all top-level operators Ay in ¢.

Analogous to the notion of level for rec-IDA’s we can define the level of an
rec-TMSO formula . The level of ¢ is 0, if ¢ uses no A predicates. ¢ has level
i+ 1 if it uses a predicate of the form I € Ay (z) with ¢ a level ¢ formula, and
no predicate of the form I € A (x) with ¢ of level greater than i.

As an example the level 1 sentence ¢ below defines the same timed language
as the level 1 rec-IDA A defined in Section f. We can take ¢ to be Vz(zero(z) =
(Qalz) A ([1,1] € Oy(x)))), where 9 is the level 0 formula Qp(2) A Qa(z — 1) A
Qa(z +1).

Theorem 6. L C TXY is accepted by a rec-IDA over (X, Rop) iff L is definable
by a rec-TMSO(X, Rop) sentence.

In fact, we will show that for each 7, the class of rec-IDA’s of level ¢ correspond
to the sentences of rec-TMSO(X, Rop) of level i. But first it will be useful to
state a characterisation of floating languages along the lines of Theorem E

Theorem 7. Let L be a a floating language over 5. Then L = LY (B) for some
floating IDA over (X, Op) iff L = L (v), for some TMSO(X, Op) formula 1
with one free variable.



Proof. Let B be a floating IDA over (X, Op). Keeping in mind that B runs over
the alphabet X' x {0, 1}, we define a formula 1) with one free variable z as follows.
¢ is the formula ¢ given in the proof of Theorem [}, except for the clause (*)
which we replace by

AVz((x =2) = \/ (xeX; N (z4+1)€X; NQu(z)Ng)

Na#z)= \/ @eXiA (@+1)eX; AQa(z)Ag)).

((@,0),9)
q9i — 4

The formula 1 satisfies (o,4) € Lf(B) iff o, [i/2] |= .

In the converse direction, let ¢(m,n) denote a TMSO(X, Op) formula with
free variables z1,...,Zm, X1 ...X,. An interpretation I for these variables is
encoded (along with o) as a timed word over X' x {0,1}*". We extend the
definition of a floating IDA to an IDA which works over such an alphabet, where,
in particular, the A operators apply only to the ' component of the timed word.
Then we can inductively associate with ¢(m,n) a floating IDA B over X' x {0, 1}
such that Lf(B) = L (). In the inductive step for 3X,,((m,n)) we make use
of the fact that the class of languages accepted by floating IDA’s over (X, Op)
are closed under the restricted renaming operation required in this case. The
reader is referred to [ff] for a similar argument. O

Returning now to the proof of Theorem E, we use induction on the level of
automata and formulas to argue that

1. L C TX¥ is accepted by a level i rec-IDA over (X, Rop) iff L is definable by
a level ¢ rec-TMSO(X, Rop) sentence . And

2. A floating language L over X' is accepted by a level i frec-IDA over (X, Rop)
iff L is definable by a level i rec-TMSO(X, Rop) formula ¢ with one free
variable.

For the base case we consider level 0 automata and sentences. Since level 0
automata only make use of the guard T, they are simply Biichi automata over
JJ. Similarly, level 0 sentences don’t use any A predicates and hence they are
simply MSO(X') sentences. By Biichi’s theorem, we have that level 0 automata
and sentences are expressively equivalent.

For the base case for the second part of the claim, given a level 0 floating
automaton B we can apply the construction in the proof of Theorem ﬁ to get a
TMSO(X) formula ¢ with one free variable. Since the construction preserves the
guards used, ¢ has no A operators, and hence is a level 0 rec-TMSO(X, Rop)
formula. Conversely, for a level 0 formula @ we can apply the construction of
Theorem [] to obtain a floating automaton B such that Lf(B) = L/(¢). The
construction preserves the A operators used, and hence B is a level 0 automaton.

Turning now to the induction step, let A be a level ¢ + 1 automaton over
(X, Rop). Let Op be the set of top-level A operators in 4. Now since A is an



IDA over (X, Op), by Theorem [}, we have a TMSO(X, Op) sentence ¢ such
that L(A) = L(p). Now for each Ap in Op, B is of level i or lower, and by our
induction hypothesis there is a corresponding rec-TMSO(X, Rop) formula ¢ with
one free variable, of the same level as B, with Lf(B) = L/ (1). Hence for each Ag
we have a semantically equivalent operator A. This is because L (B) = Lf(¢)),
which implies pos(o, B) = pos(o,1), which in turn implies [Ag] = [Ay]. We
can now simply replace each occurrence of Ag in ¢ to get an equivalent sentence
¢" which is in rec-TMSO(X, Rop). Further, by construction it follows that ¢’ is
also of level 7 + 1.

Conversely, let ¢ be a level i 4+ 1 sentence in rec-TMSO(X, Rop). Let Op be
the set of top level A operators in . Then ¢ is a TMSO(X, Op) sentence, and
hence by Theorem P we have an equivalent input determined automaton A over
(X, Op). Once again, for each Ay in Op, the formula 1) is of level i or lower, and
hence by induction hypothesis we have a frec-IDA B over (X, Rop), of the same
level as 1, and accepting the same floating language. The operators A, and
Ap are now equivalent, and we can replace each Ay in A by the corresponding
Ap to get a language equivalent input determined automaton. This automaton
is now the required level i + 1 rec-IDA over (X, Rop) which accepts the same
language as L(p).

The induction step for part E is proved similarly, making use of Theorem ﬂ
and the induction hypothesis. This completes the proof of Theorem E a

7 Expressive completeness of rec-TLTL

We now define a recursive timed temporal logic along the lines of [E] The logic
is similar to the logic TLTL defined in Sec. @ It is parameterised by an al-
phabet Y and a set of recursive input determined operators Rop, and denoted
rec-TLTL(X, Rop). The syntax of the logic is given by

0= al|IelAy| 00|00 OUO) | (056)] -0 (6V0),

where a € X, and A € Rop.

The logic is interpreted over timed words in a similar manner to TLTL. The
predicate I € Ay is interpreted as follows. If 8 does not use a A predicate, then
the satisfaction relation o,¢ |= 6 is defined as for TLTL. Inductively assuming
the semantics of a rec-TLTL(X, Rop) formula 6 has been defined, and setting
pos(c,0) = {i € N | 0,1 | 6}, the operator Ay is interpreted as an input
determined operator with the semantic function

[A6](0,7) = [A](pos(c,0),0,1).

The satisfaction relation o,i = I € Ay is then defined as in TLTL.

Once again, since Ay behaves like an input determined operator, each rec-TLTL(X, Rop)
formula is also a TLTL(X, Op) formula, for an appropriately chosen set of input
determined operators Op, containing operators of the form Ag. A rec-TLTL(X, Rop)
formula 6 naturally defines both a timed language L(0) = {o € TX¥ | 0,0 | 6}
and a floating language Lf(0) = {(0,4) | 0,7 = 0}.



As an example, the formula a A ([1, 1] € ©p) where § = b A Oa A Oa, restates
the property expressed by the rec-TMSO formula in Sec. E

Let us denote by rec-TFO(X, Rop) the first-order fragment of the logic rec-TMSO (X, Rop).
Then we have the following expressive completeness result:

Theorem 8. rec-TLTL(X, Rop) is expressively equivalent to rec-TFO(X, Rop).

Proof. As before we show that formulas in the logics are equivalent level-wise
(the level of a rec-TLTL formula being defined analogous to rec-TMSO). We
show by induction on 7 that

1. A timed language L C TX% is definable by a level ¢ rec-TLTL(X, Rop)
formula iff it is definable by a level i rec-TFO(X, Rop) sentence.

2. A floating timed language over X' is definable by a level i rec-TLTL(X, Rop)
formula iff it is definable by a level i rec-TFO(X, Rop) formula with one free
variable.

The base case for part ﬂ follows from Theorem E, since level 0 formulas are
simply untimed LTL(X) and FO(X) formulas. For the base case for part [}, a level
0 rec-TLTL(X, Rop) formula € can be translated to a level 0 rec-TFO(X, Rop)
formula v with one free variable z using the translation given in the proof of
Theorem . The formula 1+ satisfies o,[i/z] | ¢ iff 0,7 = 6. The converse
direction follows immediately from the following version of Kamp’s result:

Theorem 9 ([[L{]). For any FO(A) formula v with one free variable z, there
is a LTL(A) formula 0 s.t. for each o € AY andi €N, o, [i/z] =¥ iff a,i = 0.

Turning now to the induction step, let 6 be a level i + 1 rec-TLTL(X, Rop)
formula. Let Op be the set of top-level A operators used in 6. Then 0 is a
TLTL(X, Op) formula, and hence by Theorem E we have an equivalent TFO(X, Op)
sentence ¢ (i.e. with L(f) = L(y)). Now each operator in Op is of the form A,
where 7 is a level i or less rec-TLTL(X, Rop) formula, and hence by the induc-
tion hypothesis we have an equivalent rec-TFO(X, Rop) formula 1) with one free
variable, such that L/ (n) = Lf (¢). It now follows that the input determined op-
erators A, and A, are semantically equivalent, and hence we can replace each
A, by Ay in ¢ to get an equivalent rec-TFO(X, Rop) sentence ¢'. By construc-
tion, the sentence ¢’ is also of level ¢ + 1. The converse direction is argued in a
very similar manner, once again factoring through Theorem E

For part B, a level i + 1 rec-TLTL(X, Rop) formula 0 is a TLTL(X, Op)
formula, for the set of operators Op defined above. Now using the translation
given in the proof of Theorem E we obtain a TFO(X, Op) formula ¢ with a
one free variable, satisfying L () = L (1). Again, by the induction hypothesis,
we can replace each A, in Op with an equivalent Ay, to get an equivalent
rec-TFO(X, Rop) with the required properties.

In the converse direction, let 1 be a level i+ 1 rec-TFO(X, Rop) formula with
one free variable z. Let Op be set of top-level A operators in t. Then ) is also a
formula in TFO(X, Op). Let I' be the proper symbolic alphabet induced by .
Then we can use the translation ¢-s (cf. Sec ) on ¢ (w.r.t. I') to get a formula



’L//J\ in FO(I") with one free variable z which preserves timed models. By Kamp’s
theorem above, we have an equivalent LTL(I") formula 0 which preserves the
floating language accepted. Finally we can apply the translation s-t on 0 to get
a TLTL(X, Op) formula 6 which preserves timed models (cf. Sec. [f). The formula
0 satisfies the property that L/ () = L (v)).

Now using the induction hypothesis each operator A, in 6 can be replaced by
an equivalent A, operator, with n a TLTL(X, Op) formula, to get an equivalent
level i + 1 rec-TLT L(%, Rop) formula #’. This ends the proof of Theorem . O

8 Expressive completeness of MITL

As an application of the results in this paper we show that the logic MITL
introduced in [ﬂ] is expressively equivalent to rec-TFO for a suitably defined set
of recursive input determined operators. We point out here that this result is
shown for the pointwise semantics of MITL given below. We begin with the logic
MTL(X) which has the following syntax [H]:

0= a| 00|00 (0U0) | (05:0) | -0 | (0V6).

Here I is an interval in Zg. When I is restricted to be non-singular (i.e. not of the
form [r,7]) then we get the logic MITL(X'). The logic is interpreted over timed
words in T'X* similarly to TLTL. The modalities U; and S; are interpreted as
follows, for a timed word o = (a, 7).

oiEUmMitIk>i: ok lEn17k)—71@)€l,andVj: i<j<k, o,jE06
oiE0Smit Ik <i:okkEnt@)—7k el, andVj: k<j<i, o,jFE0.

We first observe that MTL(XY) is expressively equivalent to its sublogic
MTL®(X) in which the modalities U; and S; are replaced by the modalities U,
S, &1 and 97, where U and S are as usual and ¢70 = TU;0 and ©;0 = T.576.
This is because the formula §U;n (and dually 8S1n) can be translated as follows.
Here )’ denotes either a ‘|’ or ¢)’ interval bracket.

O A Dp,ay (U0 A On)) if I = la,b)
O A Op,q (OU (O AOn)) if I = (a,b)
Sm A (0Un) if I =10,b)
Sm A (U0 A On)) if T =(0,b).

,a>0
a >

)

U =

Next we consider the logic rec-TLTL(3, {<, ©}) where the semantics of the
recursive input determined operators ¢ and € are given below (as usual o €
TX% with 0 = (a, 7)).

[C(X,0,i) ={I€Tg|FjeX: j>i andr;—7 €}
[©](X,0,i)={I€Typ|3jeX: j<i, and 7, —7; € [}.

The logic MTL® (%) is clearly expressively equivalent to rec-TLTL(X, {<,©})
since the predicates &0 and I € Og are equivalent. Using Theorem |§ we can
now conclude that



Theorem 10. MTL(X) is expressively equivalent to rec-TFO(X,{<O,©}).

Let rec-TFO. denote the restriction of rec-TFO to non-singular intervals.
Then since the translation of MTL to MTL® does not introduce any singular
intervals, and the constructions in Theorem E preserve the interval vocabulary of
the formulas, we conclude that the logics MITL(X) and rec-TFOx(X, {<C,©})
are expressively equivalent.
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