
Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October
2004 (submitted).

On Grid Programming and MATLAB*G

Y. M. Teo1,2, Y. Chen2 and X.B. Wang2

1Department of Computer Science, National University of Singapore, Singapore 117543
2Singapore-Massachusetts Institute of Technology Alliance, 4 Engineering Drive 3, Singapore 117576

email: teoym@comp.nus.edu.sg

Abstract
The main goal of grid programming is the study of programming models, tools and
methods that support the effective development of algorithms and applications on
grid. This paper discusses the design and implementation of ALiCE object-oriented
grid programming template (AOPT). ALiCE is a Java-based grid computing
middleware to facilitate the development and deployment of generic grid applications
on heterogeneous shared computing resources. The programming template provides
a distributed shared-memory programming abstraction based on JavaSpaces that
frees the grid application developer from the intricacies of the core layer and the
underlying grid system. AOPT is designed for developing grid applications and as a
programming tool for grid-enabling domain specific software applications such as
MATLAB. In this paper, we discuss the design and implementation of MATLAB*G, a
grid-enabled MATLAB using AOPT. The performance results indicate that for large
matrix sizes MATLAB*G can be a faster alternative to sequential MATLAB.

1 Introduction

Grid computing [7, 12] is an emerging technology that enables the utilization of shared resources
distributed across multiple administrative domains, thereby providing dependable, consistent,
pervasive, and inexpensive access to high-end computational capabilities [10] in a collaborative
environment. These resources can include supercomputers, storage systems, data sources and special
classes of devices. Clustering and using them as a single unified resource forms a networked virtual
supercomputer [11] is popularly known as a computational grid [10]. Grids can be used to provide
computational, data, application, information services, and consequently, knowledge services, to the
end users, which can either be a human or a process.

The main goal of grid programming is the study of programming models, tools and methods that
support the effective development of portable and high-performance algorithms and applications on
grid environments [20]. Grid programming will require capabilities and properties beyond that of
simple sequential programming or even parallel and distributed programming. Besides orchestrating
simple operations over private data structures, or orchestrating multiple operations over shared or
distributed data structures, a grid programmer will have to manage a computation in an environment
that is typically open-ended, heterogeneous and dynamic. A programming model can be present in
many different forms, e.g., a language, a library API, or a tool with extensible functionality. The most
successful programming models will enable both high-performance and the flexible composition and
management of resources.

Grid applications tend to be heterogeneous and dynamic, i.e., they will run on different types of
resources whose configuration may change during run-time. These dynamic configurations could be
motivated by changes in the environment from any available grid resources. Regardless of their cause,
a programming model or tool need to present the heterogeneous resources as a common “look-and-
feel” to the programmer; hiding their differences while allowing the programmer some control over
 1

Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October
2004 (submitted).

each resource type if necessary. To reduce the complexity of grid programming, such transparency
needs to be provided by the run-time system. We discuss the design and implementation of
MATLAB*G, a grid-based MATLAB developed using AOPT.

In [20], Craig and Domenico have reviewed the grid programming models on current tools, issues
and directions. Eight grid programming models have been reviewed and its shortcomings are
discussed. In this paper, we design and implement an object-oriented grid programming template
based on the distributed shared-memory model, JavaSpaces. We focus on how to efficiently develop
portable and high-performance grid applications.

Sun JavaSpaces [17] is a Java-based implementation of the Linda tuplespace concept, in which
tuples are represented as serialized objects. The use of Java allows heterogeneous clients and servers
to interoperate, regardless of their processor architectures and operating systems. The model used by
JavaSpaces views an application as a collection of processes communicating between them by putting
and getting objects into one or more spaces. A space is a shared and persistent object repository that is
accessible via network. The processes use the repository as an exchange mechanism to get
coordinated, instead of communicating directly with each other. The main operations that processes
can do with a space are to put, take and read objects. A programmer that wants to build a space-based
application should design distributed data structures as a set of objects that are stored in one or more
spaces. The new approach that the JavaSpaces programming model gives to the programmer makes
building distributed applications much easier, even when dealing with such dynamic, environments.

Our propose ALiCE Object-oriented grid Programming Template (AOPT) is implemented on
ALiCE (Adaptive scaLable Internet-based Computing Engine), a grid computing core middleware
designed for secure, reliable and efficient execution of distributed applications on any Java-
compatible platform [27, 29]. Our main design goal is to grid application developers with a user-
friendly programming environment that is transparent of low-level grid infrastructure details, thus
enabling them to concentrate solely on the application problems. The middleware encapsulates
services for compute and data grids, resource scheduling and allocation, and facilitates application
development with a straightforward programming template. Using AOPT, we have demonstrated the
ease of programming grid applications [28, 30, 31, 32].

This paper focuses on the use of AOPT as a system programming tool to grid-enabled the
domain-specific application package called MATLAB. Performance results indicate that for large
matrix sizes MATLAB*G can be a faster alternative to sequential MATLAB. The remainder of this
paper is structured as follows. Section 2 introduces ALiCE. Section 3 presents the ALiCE template-
based distributed shared-memory programming model. Section 4 uses the programming template to
implement MATLAB*G. Section 5 presents the performance evaluation of MATLAB*G. Our
concluding remarks are in Section 6.

2 System Design

2.1 Architecture

Several projects, such as Globus [11] and Legion [21], attempt to provide users with the vision of a
single abstract machine for computing by the provision of core/user-level middleware encapsulating
fundamental services for inter-entity communications, task scheduling and management of resources.
Likewise, ALiCE is a portable middleware designed for developing and deploying general-purpose
grid applications and application programming models [29]. However, unlike Globus toolkit which is
a collection of grid tools, ALiCE is a grid system.

The ALiCE grid architecture as shown in Figure 1, comprises of three constituent layers, ALiCE
Core, ALiCE Extensions and ALiCE Applications and Toolkits, built upon a set of Java technologies
and operating on a grid fabric, which encompasses the physical hardware components and networks
within the grid. The ALiCE system is written in Java and implemented using Java technologies
including Sun Microsystems’ JiniTM and JavaSpacesTM [15] for resource discovery services and object
communications within a grid. To support the execution of applications regardless of their
developmental language, ALiCE uses Java Native Interface (JNI) to enable the runtime infrastructure
to invoke non-Java code.

 2

Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October
2004 (submitted).

The ALiCE core layer encompasses the basic services used to develop grids. Compute Grid
Services include algorithms for resource management, discovery and allocation, as well as the
scheduling of compute tasks. Data Grid Services are responsible for the management of data accessed
during computation, locating the target data within the grid and ensuring multiple copy updates where
applicable. The security service is concerned with maintaining the confidentiality of information
within each node and detecting malicious code. Object communication is performed via our Object
Network Communication Architecture (ONTA) that coordinates the transfer of information-
encapsulated objects within the grid. Besides these grid foundation services, a monitoring and
accounting service is also included [29].

The ALiCE extensions layer encompasses the ALiCE runtime support infrastructure for
application execution and provides the user with a distributed-shared memory programming template
for developing grid applications at an abstract level. Runtime support modules are provided for
different programming languages and machine platforms. Advanced data services are also introduced
to enable users to customize the means in which their application will handle data, and this is
especially useful in problems that work on uniquely formatted data, such as data retrieved from
specialized databases and in the physical and life sciences. This is the layer that application
developers will work with.

The ALiCE applications and toolkits layer encompasses the various grid applications and
programming models that are developed using ALiCE programming template and it is the only layer
visible to ALiCE application users [28, 29].

 3

Grid Fabric

JVM, JiniTM, JavaSpacesTM, JNI, RMI

Compute Grid
Services

Data Grid
Services

Monitoring and
Accounting

Object Network
Transport Architecture

Security
Infrastructure

Programming
Template

Runtime
Support

Data Services

Java
Technologies

DES
Key
Search

Ray
Tracer

Satellite
Image
Processing

Biosequence
Comparison

ALiCE
Core

ALiCE
Extensions

ALiCE
Applications
and
Toolkits

Figure 1: ALiCE Grid Architecture

Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October
2004 (submitted).

2.2 Runtime System

The ALiCE runtime system, illustrated in Figure 2, is an integration of the Compute Grid Services
and ONTA components from the ALiCE Core layer in the grid architecture. It adopts a three-tiered
architecture, and consists of the following four main components:
• Consumer. This submits applications to the ALiCE grid system. It can be any machine within the

grid running the ALiCE consumer/producer components. It is responsible for collecting results
for the current application run, returned by the tasks executed at the producers, and is also the
point from which new protocols and new runtime supports can be added to the grid system.

• Resource broker. This is the core of the grid system and deals with resource and process
management. It has a scheduler that performs both application and task scheduling. Application
scheduling helps to ensure that each ALiCE application is able to complete execution in a
reasonable turnaround time, and is not constrained by the workload in the grid where multiple
applications can execute concurrently. Task scheduling coordinates the dissemination of compute
tasks, thereby controlling the utilization of the producers. The default task scheduling algorithm
adopted in ALiCE is eager scheduling [2]. In addition, there are some objective requirements
imposed on ALiCE, since one of its goals is to support execution of applications implemented in
programming languages other than Java. These applications may be platform and library
dependent. The scheduler must therefore select, amongst the producers in the grid, one that runs
the most appropriate platform to execute a given application.

• Producer. This is run on a machine that volunteers its cycles to run ALiCE applications. It
receives tasks from a resource broker in the form of serialized live objects, dynamically loads the
objects and executes the encapsulated tasks. The result of each task is returned to the consumer
that submitted the application. A producer and a consumer can be run concurrently on the same
machine.

• Task Farm Manager. ALiCE applications are initiated by the Task Farm Manager and the tasks
generated are then scheduled by the resource broker and executed by the producers. The task
farm manager is separated from the resource broker for two principal reasons. Firstly, ALiCE
supports non-Java applications that are usually platform-dependent, and the resource broker may
not be situated on a suitable platform to run the task generation codes of these applications.
Secondly, for reasons of security and fault tolerant the execution of alien code submitted by
consumers is isolated from the resource broker. Each task farm manager runs either Java code or
code compiled for the platform that the task farm manager offers.

 Physical System: Heterogeneous Networks and Machines

Task Farm
Manager ProducerConsumer Resource Broker

Object Network Transport Architecture

Java Technologies: Jini & JavaSpaces

Figure 2: ALiCE Runtime System Framework

In a typical scenario, a user launches an ALiCE application at a consumer, which then submits the
application codes to a resource broker in the system. The resource broker directs an application to an
appropriate task farm manager that supports the required programming language and platform. The
task farm manager initiates the application and creates a pool of tasks. Task references are returned to
the resource broker, which schedules the tasks for execution on producers. Results of task execution
are then returned to the consumer for visualization. Connections between the system entities are
established over a LAN if the environment is a cluster grid or an Intranet, and through the Internet if
the grid system is deployed over a WAN.

 4

Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October
2004 (submitted).

2.3 Implementation

ALiCE is scalable and comprises of modular components developed using ubiquitous and easy-to-use
object-based Java technologies, including Jini and JavaSpaces [15], thereby providing for cross-
platform portability, extensibility and scalability. Each ALiCE producer runs a copy of the JVM,
allowing different platforms in the grid to share executables.

Jini defines a runtime infrastructure that unifies all JVMs into a single virtual network, enabling
homogeneous hardware devices to plug in to form decentralized communities. JavaSpaces, a special
service of Jini, is a simple, expressive, and powerful technology with the goal of reducing
development time in building distributed applications. All processes are loosely coupled across the
network, communicating and synchronizing their activities using a persistent object store called a
space. All ALiCE entities communicate through JavaSpaces. To our knowledge, ALiCE is the first
grid-computing project that is developed using Sun’s Java-Jini and JavaSpaces.

ALiCE provides an alternative communications platform using GigaSpaces [14]. GigaSpaces
Synchronization and Coordination Platform is a software infrastructure for information collaboration
platform for Enterprise Distributed Applications and Web Services. The major difference between
JavaSpaces and GigaSpaces is that the former provides a logical distributed-shared memory [16] but
the latter implements distributed-shared memory by coupling together several spaces hosted at
different machines. Our tests show that using GigaSpaces results in better performance and reliability
than JavaSpaces.

3 Grid Programming

Grid environments are characteristically distributed and dynamic [19]. ALiCE sets out to provide an
effective programming model to facilitate the development of grid applications and higher-level
specialized programming models. In the ALiCE paradigm, large computations are decomposed into
smaller tasks that are then distributed among producers in the network to exploit parallelism as best as
possible to achieve a reasonable amount of speedup.

ALiCE adopts the TaskGenerator-ResultCollector programming model. This model comprises of
four main components: TaskGenerator, Task, Result and ResultCollector. The consumer first submits
the application to the grid system in the form of a .jar file encapsulating the application codes. The
TaskGenerator running at a task farm manager machine generates a pool of Tasks belonging to the
application. Subsequently, these Tasks are scheduled for executing by the resource broker and the
producers download the tasks from the task pool. The results of the individual executions at the
producers are returned to the resource broker as Result object. The ResultCollector, initiated at the
consumer to support visualization and monitoring of data collects all Result objects from the resource
broker. For batch job, result objects are collected at the resource broker.

Parallel applications development are written using ALiCE programming template. The template
allows the programmers to transparently exploit the distributed nature of the ALiCE grid, i.e., without
prior knowledge of the underlying technologies for communications, dynamic code linking, etc. The
template abstracts methods for generating tasks and retrieving results in ALiCE, leaving the
programmers with only the task of filling in the task specifications. Figure 3 shows the ALiCE
programming template.

The Java classes comprising the ALiCE programming template are:
a. TaskGenerator. This is run on a task farm manager machine and allows tasks to be generated for

scheduling by the resource broker. It provides a method process that generates tasks for the
application. The programmer merely needs to specify the circumstances under which tasks are to
be generated in the main method.

b. Task. This is run on a producer machine, and it specifies the parallel execution routine at the
producer. The programmer has to fill in only the execute method with the task execution routine.

c. Result. This models a result object that is returned from the execution of a task. It is a generic
object, and can contain as many user-specified attributes and methods, thus permitting the
representation of results in the form of any data structure that are serializable.

d. ResultCollector. This is run on a consumer machine, and handles user data input for an
application and the visualization of results thereafter. It provides a method collectResult that

 5

Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October
2004 (submitted).

retrieves a Result object from the resource broker. The programmer has to specify the
visualization components and control in the collect method.

TaskGenerator Template

import alice.consumer.*;
import alice.data.*;
public class TASKGEN_CLASSNAME extends TaskGenerator {
 public TASKGEN_CLASSNAME() {}
 public void init() {
 //Place your initialisation code here
 }

 /* Main method - entry point */
 public void main(String args[]) {
 // This is where the tasks are generated, usually in a loop

 // This should be called for each task
 TASK_CLASSNAME t = new TASK_CLASSNAME();
 process(t);

 // To open a data file, read and write from/to it
 DataFile f = Data.openFile("file_name",this);
 READ_BUFF = f.read(POSITION, LENGTH);
 f.write(WRITE_BUFF, POSITION, LENGTH);

 // To send/receive an object
 OBJECT_CLASSNAME obj = new OBJECT_CLASSNAME();
 sendObject(obj, "snd_str_id");
 OBJECT_CLASSNAME rcvObj = (OBJECT_CLASSNAME)
 requestObject("rcv_str_id");

 // To receive a string message from the result collector:
 String msg = getStringMessage();
 }
}

Task Template

import alice.consumer.*;
import java.io.*;
public class TASK_CLASSNAME extends Task {
 // Place variables here
 public TASK_CLASSNAME () {
 }

 public Object execute () {
 // This is where you do your computations. The results can be any kind of
 // objects

 // You can generate and send a new task to be produced
 O_TASK_CLASSNAME t = new O_TASK_CLASSNAME();
 process(t);

 // To open a data file, read and write from/to it
 DataFile f = Data.openFile("file_name",this);
 READ_BUFF = f.read(POSITION, LENGTH);
 f.write(WRITE_BUFF, POSITION, LENGTH);

 // To send/receive an object
 OBJECT_CLASSNAME obj = new OBJECT_CLASSNAME();
 sendObject(obj, "snd_str_id");
 OBJECT_CLASSNAME rcvObj =(OBJECT_CLASSNAME)
 requestObject("rcv_str_id");
 }
}

Result Template

import java.io.*;

public class MyResult implements Serializable {
 public DATA_TYPE var;
 public MyResult() {
 var=NULL;
 }
}

ResultCollector Template

import alice.result.*;
public class RESCOL_CLASSNAME extends ResultCollector {
 // Place Variables Here

 public RESCOL_CLASSNAME() {
 }

 public void collect() {
 // Place here the result collection and processing code to obtain
 // number of results ready call
 int resReady = getResultsNoReady()

 // To get a new result call
 RES_CLASSNAME res = (RES_CLASSNAME)collectResult();
 }
}

Figure 3: ALiCE Programming Template

4 MATLAB*G

MATLAB is popular mathematical software that provides an easy-to-use interface for various science
computations. Computation intensive MATLAB applications can benefit from faster execution if
parallelism is provided. With the increasing popularity of distributed computing technology, up to
now, at least twenty-seven parallel MATLABs are available [6].

In this paper we present the design, implementation and experimental results of MATLAB*G, a
grid-based MATLAB on the ALiCE Grid, which exploits distributed matrix computation using task
parallelism and job parallelism. Firstly, we introduce related existing parallel MATLABs which are
classified into different categories according to two criteria: First, whether they provide implicit or
explicit parallelism; second, the method used for inter-processor communication.

4.1 Implicit Parallelism vs. Explicit Parallelism

In order to execute a program which exploits parallelism, the programming language must supply the

 6

Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October
2004 (submitted).

means to identify parallelism, to start and stop parallel executions, and to coordinate the parallel
executions. Thus from the programming language level, the approaches to parallel processing can be
classified into implicit parallelism and explicit parallelism [13]:
• Implicit parallelism allows programmers to write their programs without any concern about the

exploitation of parallelism. Exploitation of parallelism is instead automatically performed by the
compiler or the runtime system. Parallel MATLABs in this category include RTExpress [26],
CONLAB Compiler[4], and MATCH[22]. All of these parallel MATLABs take MATLAB scripts
and compile them into executable code. The advantage is that the parallelism is transparent to the
programmer. However, extracting parallelism implicitly requires much effort for the system
developer.

• Explicit parallelism is characterized by the presence of explicit constructs in the programming
language, aimed at describing the way in which the parallel computation will take place. Most
parallel MATLABs use explicit parallelism, like MATLAB*P [5], MATmarks [23], and DP-
Toolbox [8]. The main advantage of explicit paralleism is its considerable flexibility, which allows
the user to code a wide variety of patterns of execution. However the management of the
parallelism, a quite complex task, is left to the programmer.

MATLAB*P is an explicitly parallel MATLAB designed at MIT. MATLAB*P handles
communication and synchronization for the user and requires the user to explicitly indicate the
matrices which are to be distributed. MATLAB*G is also an explicitly parallel MATLAB and is
similar to MATLAB*P, in that it handles the communication and synchronization details for the user.
However, while users are not required to indicate the matrices to be distributed, they have to explicitly
specify the MATLAB computations to be parallelized.

4.2 Inter-processor Communication

In designing a parallel system, processors must have the ability to communicate with each other in
order to cooperatively complete a task. There are two methods of inter-processor communication,
each suitable for different system architectures:

The first is Distributed Memory Architectures. It employs a scheme in which each processor has
its own memory module. Each component is connected with a high-speed communications network.
Processors communicate with each other over the network. Well-known packages such as MPI [24]
provide a message passing interface between machines. Most parallel MATLABs are built upon
distributed memory architecture, e.g. MATLAB*P, Cornell Multitasking Toolbox for MATLAB, and
Distributed and Parallel Application Toolbox, etc. One advantage of these parallel MATLABs is that
MPI and PVM are mature standards which have been available for several years and offers a high
degree of functionality. However, almost all of these parallel MATLABs exploit standard message
passing interface, which means they can only run on homogenous clusters.

The second is Distributed Shared Memory systems which have two main architectures [9]:
• Shared Virtual Memory (SVM) systems share a single address space, thereby allowing processor

communication through variables stored in the space. For example, MATmarks, an environment
that allows users to run several MATLAB programs in parallel using the shared memory
programming style is built on top of TreadMarks, a virtual SVM which provides a global shared
address space across the different machines on a cluster. The environment extends the MATLAB
language with several primitives to enable shared variables and synchronization primitives.

• Object-based Distributed Shared Memory (DSM): Processes on multiple machines share an
abstract space filled with shared objects. The location and management of the objects is handled
automatically by the runtime system. Any process can invoke any object's methods, regardless of
where the process and object are located. It is the job of the operating system and runtime system
to make the act of invoking work no matter where the process and the object are located. DSM
has a few advantages over SVM: (i) it is more modular and more flexible because accesses are
controlled, and (ii) synchronization and access can be integrated together cleanly.
MATLAB*G is currently the only parallel MATLAB built on object-based DSM. A shared

memory interface is more desirable than a message-passing interface from the application
programmer's viewpoint, as it allows the programmer to focus more on algorithmic development
rather than on managing communication. But such a parallel MATLAB depends on another system
 7

Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October
2004 (submitted).

providing shared memory upon different machines. Furthermore, whether a parallel MATLAB can be
run in a heterogeneous environment depends on whether the DSM supports heterogeneous machines.

4.3 System Design

In MATLAB, a normal matrix addition can be performed as in Figure 4. The first line creates a
10-by-10 matrix A, The second lines creates a 10-by-10 matrix B. The third line creates a 10-by-10
matrix C, and lets it have the value: A+B. To parallelize the matrix addition, a user can write a
MATLAB*G program as shown in Figure 5. The third line creates a 10-by-10 matrix C, performs
parallel matrix addition between A and B, and returns the result to C. From the user’s point of view,
these two programs are equivalent because after execution the resulting matrix C in both programs has
the same value in both programs. However, the executions of these two programs are quite different:
the first program is executed purely inside MATLAB environment, but the second exploits
parallelism provided by MATLAB*G.

T
Distr
gets
A se
retur
into

4.3.1
As

detai

1: A=randn(10,10);
2: B=randn(10,10);
3: C=plus (A, B);

Figure 4 MATLAB Matrix Addition

Figure 6. MATLAB*G Cli

o achieve parallelism, MATLAB*G exploits
ibuted-Shared Memory. User submits job interact
the job, divides it into a number of tasks, sends task
rver always tries to get a task from DSM. After
ns the result to DSM. On the client side, after gett
a complete result and returns it to the user. The syst

8

 The Client
 shown in Figure 3, the client side consists of two
led diagram for the MATLAB*G client architectur

 MATLAB

MGClient

DSM Extension

Client
1: A=randn(10,10);
2: B=randn(10,10);
3: C=mm(‘plus’, 2, A, B);
 Figure 5 MATLAB*G Matrix Addition

ent-Server Architecture

a client-server model using Object-based
ively from MATLAB environment. The client
s into the DSM, and polls DSM for the result.
receiving a task, the server processes it, and
ing all results from servers, it assembles them
em architecture is shown in Figure 6.

components: Extension and MGClient. A more
e is shown in Figure 7.

MGProducer
Link

MATLAB

 Server 1

 MGProducer
Link

MATLAB

 Server 2

 Server n

 MGProducer
Link

MATLAB

Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October
2004 (submitted).

 9

Figure 7. MATLAB*G Client

Extension includes a few MATLAB M files. It provides user interfaces for parallelism and links

MATLAB with MGClient.:
a. ppstart: This is a MATLAB function introduced by MATLAB*G Extension. When the user calls

ppstop(n), n servers are initialized and reserved for future computations.
b. ppstop: This function releases the reservations by a prior ppstart.
c. mm: This function lets the user assign a parallel job. The syntax of mm is: A=mm(‘fname’,

tasknum, matrices). fname is the computation that the user wants to execute, matrices are the
arguments for this computation and tasknum is the task number specified by the user. The user
can decide the task granularity according to the complexity of the computation and the size of
matrices. We anticipate that in the next version, the tasknum argument will be removed and the
task number will be generated by the system automatically according to certain algorithms.
Finally, A is the result of computation.
Another component, MGClient, includes a number of Java classes, and provides two main

functionalities:
a. Communicate with all the servers. MGClient communicates with the servers through DSM; it

does not need to know their locations.
b. Distribute tasks and assemble results. According to the user’s input program, MGClient generates

a number of tasks, which can be executed on the servers. MGClient also has to assemble all
results from servers into one complete and correct result and return it to the user.
MGClient can be invoked only by Extensions, which makes the command set simpler.

Pseudocode for MGClient is shown in Figure 8 below:

Switch of command passed in by Extension:
Case: ppstart

Send ppstart into DSM;
Case: ppstop

Send ppstop into DSM;
Case: mm

Partition matrices;
Marshal message into a number of tasks;
Send tasks into DSM;
Wait for result by polling DSM;
Return result;

Figure 8. MGClient Pseudocode

Besides Extension and MGClient, a running instance of MATLAB is also required on the client
side. This MATLAB session provides a programming environment to the user and thus lets the user
invoke function calls in Extension.

4.3.2 The Servers
As communication latency is quite unpredictable on a grid system, it would be costly to pass data
frequently among the compute nodes. Thus currently only embarrassingly parallel mode of
computation is supported, whereby each server receives a work package, performs computation
without coordination with other servers, and sends results back to the client. The Server consists of
two main components: MGProducer and Link.

MATLAB

Extension

MGClient

 PPSTART PPSTOP MM

Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October
2004 (submitted).

 10

 tasks from DSM. On receiving a ppstart from DSM,
MG

ART message fails, go to 1

 the client

s message
etion of task and send result to the client

MGProducer runs on a server and waits for
Producer starts a MATLAB session at the backend through Link. Similarly, on receiving a ppstop,

MGProducer terminates the MATLAB session. Upon receiving a computation task, MGProducer
performs calculation and sends the result back to DSM. The pseudocode for MGProducer is shown in
Figure 9.

Loop Forever
 If take PPST
 Start MATLAB

e client Acknowledge th
 Loop Forever

sage from Wait for mes
 If message is PPSTOP, then
 Stops MATLAB
 Break
 Else

es Proc
 Acknowledge compl
 End If
 End Loop
End Loop

Figure 9. MGProducer Pseudocode

ink is another component on the server. It is used by MGProducer to start a MATLAB session,
stop

ace is a shared datastore for simple list data structures (tuples) [3]. A simple model is
used

4.4 mplementation

mplemented on the ALiCE Grid.

iCE is illustrated in Figure 10. Shaded boxes are

r to run a MATLAB*G client directly on the

Task, which runs on the Producer;
Tas

L
 a MATLAB session, and execute MATLAB programs. To implement Link, we make use of an

existing Java interface to the MATLAB engine called JMatLink [18].

4.3.3 DSM
A tuplesp
 to access the tuplespace, usually consisting of the operations write, take and read. A tuplespace

provides DSM if every data inside it is an object. In MATLAB*G, communication between
processors is handled through a tuplespace where processors post and read objects. Submatrices are
deposited into space for server nodes to retrieve. The server nodes then perform computations on
submatrices and return the results back to space.

System I

MATLAB*G is written in Java and i

4.4.1 Mapping MATLAB*G onto ALiCE
The mapping from MATLAB*G onto AL
MATLAB*G components. A user submits a job through ALiCE Consumer. In response to the
submission of a job, the ALiCE Resource Broker will instantiate a MATLAB*G Client, and ALiCE
Producers will instantiate MATLAB*G Servers.

4.4.2 ALiCE Program Generated by MATLAB*G
ALiCE does not provide any interface to allow a use
Task Manager or run a MATLAB*G server on a Producer. An application has to be submitted in the
form of an ALiCE Program through the Consumer interface.

An ALiCE program template consists of following elements:
kGenerator, which runs on the Resource Broker; and ResultCollector which runs on the Consumer

to collect the results obtained from the execution of tasks generated by the Task Manager. Thus our
job is just to add MATLAB*G code into proper templates to generate customized ALiCE program
elements.

Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October
2004 (submitted).

 11

Figure 10. Mapping between MATLAB*G and ALiCE components

1) MGTaskGenerator
Besides the client side code, the user’s MATLAB program is also embedded in the Task

Generator template to create MGTaskGenerator. MGTaskGenerator first starts a MATLAB session,
and then initiates n tasks by issuing command ppstart(n) to MATLAB. It then asks MATLAB to run
the user’s MATLAB programs. When finished, it issues a ppstop command to terminate tasks.
MGTaskGenerator sends output it receives from MATLAB to MGResultCollector as the result from
the computation. The pseudocode of MGTaskGenerator is as in Figure 11.

1. Start MATLAB
2. Starts the required number (N) of Tasks
3. Issue “PPSTART(N)” to MATLAB
4. Issue command to MATLAB to run user program
5. Issue “PPSTOP” to MATLAB
6. Stop MATLAB
7. Return result

Figure 11. MGTaskGenerator Pseudocode

2) MGTask

MGTask is created by adding the server side code into ALiCE Task template. Each MGTask
instantiates an MGProducer and runs it. The pseudocode for MATLAB*G Task is as in Figure 12.

1. Instantiates MGProducer
2. Execute the run method in MGProducer

Figure 12. MATLAB*G Task Pseudocode

3) MGResultCollector
MGResultCollector extends the ALiCE Result Collector template. Running on the ALiCE

Resource Broker, it simply waits for the result from JavaSpaces. An ALiCE program is created when
we compile these elements together. The structure of such a program is described in Figure 13.

ALiCE

Producer
MATLAB*G

Server

ALiCE
Consumers

ALiCE

Producer

MATLAB*G

Server
JavaSpaces

ALiCE
Resource
Broker

 ALiCE

Producer
MATLAB*G

Server MATLAB*G
Client

Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October
2004 (submitted).

ALiCE Task Generator Template

 12

Figure 13. Structure for a ALiCE Program generated by MATLAB*G

After an ALiCE program is submitted to ALICE, the system dynamically finds available

resources to join in the parallel computation, and each component is dynamically loaded by various
machines as shown in Figure 14. Shaded boxes are ALiCE program elements for MATLAB*G.

Figure 14. MATLAB*G running on ALiCE

4.4.3 Batch Mode
ALiCE supports two types of applications. Batch applications are non-interactive applications and
involve minimum user intervention. This mode is for executing large jobs. After submitting the
application, the Consumer can disconnect itself and later reconnect for collecting the results. The
result collection mechanism is implemented at the Resource Broker. Interactive applications require
User/Consumer intervention during execution process. In this mode, Users/Consumers can program a
graphical user interface (GUI) to visualize the progress of the execution. Results of executing
individual tasks generated by the Task Manager are returned to the Consumer.

The current MATLAB*G implementation supports batch applications: the user submits a
complete MATLAB program instead of entering commands interactively at a MATLAB environment.
This is accomplished by embedding the MATLAB program into MGTaskGenerater so that it can be
submitted to the ALiCE Resource Broker.

5 Experimental Results

We compare the performance of MATLAB*G with sequential MATLAB on the ALiCE Grid. The
experiments are conducted on ALiCE Grid Cluster with twenty-four nodes connected by 100 Mbps
Ethernet. Four nodes are used, each of which is a PIII 866MHz, 256 MB RAM machine running
Linux 2.4.

The current implementation of MATLAB*G can exploit two forms of parallelism. The first is
task parallelism. When a user wants to perform computation involving matrices, the computation can
be divided into a number of tasks. Each task has the computation name and parameter sub-matrices.
Tasks are sent to space and each producer gets a task from space and performs computation on its
sub-matrices. The number of tasks a matrix computation should be split into is largely influenced by

ALiCE Resource
Broker

ALiCE
Producer

ALiCE Consumer

JavaSpaces

MGTask

MGTask

MGTask

ALiCE
Producer

ALiCE
Producer

MGTaskGenerator

MGResultCollector

 User program MATLAB*G client

ALiCE Task Template
MGTask

MATLAB*G server

MGRCollector

MGTaskGenerator

ALiCE Result Collector Template

Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October
2004 (submitted).

the complexity of the computation. A simple matrix computation (e.g. matrix addition) should be split
into a small number of tasks so that the communication overhead does not dominate the computation
time. Conversely, a complex matrix computation (e.g. computation of eigenvalues) should be split
into a relatively large number of tasks. In general the number of tasks should be larger the number of
Producers for load balancing consideration, as each node in the grid may have different computation
ability and different network latency.

 The second is job parallelism. When there are a number of matrix computations (jobs) to be
executed one after the other, the user can specify for them to be executed in parallel. This will result
in each matrix computation being executed on a single producer.

We perform experiments to discover the performance of the MATLAB*G implementation on
each type of parallelism. Specifically, we measure performance in terms of the time elapsed on the
client side from submission of application to receipt of results.

5.1 Task Parallelism

The designer of MATLAB has previously stated that one reason for not developing a parallel
MATLAB is that it takes much more time to distribute the data than perform the computation because
a matrix that fits into the host’s memory would not be large enough to make efficient use of the
parallel computer [25]. However this is true only for functions provided by MATLAB itself, which
can be performed quite fast by MATLAB. For some MATLAB scripts written by a user, it is possible
that the computation time for a normal size matrix is long enough that we can benefit from doing it in
parallel.

For example, Figure 15 is a simple but compute intensive function that computes for 1000 times
the exponential for each element of a matrix A.

Function result=Exp_1(A)
For (i=1:1000)
exp(A);
End;
Result=A;

Figure 15. A User-defined Matlab Function

We time this program in MATLAB and in MATLAB*G on various input matrix size and

reproduce the results in Figure 16.

0

100

200

300

400

500

600

700

800

900

1000

100*100 500*500 1000*1000 1500*1500 2000*2000

Matrix size

Ti
m

e(
se

c)

MATLAB MATLAB*G

Figure 16. Task Parallelism - Varying Matrix Size

It can be seen that for small matrix size (e.g. 100x100), the elapsed time for sequential MATLAB

is still less than that of MATLAB*G. This phenomenon is attributed to the communication and
partitioning overhead which is much larger than the computation time. However, as matrix size

 13

Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October
2004 (submitted).

increases, the performance of MATLAB*G improves relative to sequential MATLAB, eventually
overtaking it at the cross-point of approximately 500x500.

5.2 Job Parallelism

E = pinv(X) is the pseudo-inverse function provided by MATLAB. If a user has to perform pinv() on a
few matrices, he can perform pinv() on each matrix one by one; alternatively he can parallelize these
jobs as shown in Figure 17.

A1=randn(1000);
A2=randn(1000);
A3=randn(1000);
A4=randn(1000);
E1=pinv(A1);
E2=pinv(A2);
E3=pinv(A3);
E4=pinv(A4);

Figure 17.a. Compute pinv()s Sequentially

A1=randn(1000);
A2=randn(1000);
A3=randn(1000);
A4=randn(1000);
X(1:1000, :)=A1;
X(1001:2000,:)=A2;
X(2001:3000, :)=A3;
X(3001:4000,:)=A4;
Y=mm(‘pinv’, 4, X);
E1=Y(1:1000,:);
E2=Y(1001:2000,:);
E3=Y(2001:3000,:);
E4=Y(3001:4000,:);

Figure 17.b. Compute pinv()s in Parallel

We time for the sequential program as in Figure 17.a and the parallel program as in Figure 17.b

on various matrix sizes and reproduce the results in Figure 18.

0

100

200

300

400

500

600

700

800

100*100 300*300 500*500 700*700 900*900 1100*1100

Matrix size

Ti
m

e(
se

c)

MATLAB MATLAB*G

Figure 18. Job Parallelism - Varying Matrix Size

Once again we see that for small matrix size the elapsed time for sequential MATLAB is still less

than that of MATLAB*G. But as matrix size exceeds 500x500, MATLAB*G outperforms sequential
MATLAB.

6 Conclusion and Further Works

We discussed the design and implementation of the ALiCE object-oriented grid programming
template that supports the distributed-shared memory programming model. We use the grid
programming template as a system programming tool to develop a grid parallel MATLAB called
MATLAB*G. Currently two types of parallelism for matrix computation are implemented: task
parallelism and job parallelism. Performance results show that for large matrix sizes MATLAB*G
can be a faster alternative to sequential MATLAB. Future work includes exploiting MATLAB for-
loop parallelism, one of the most time-consuming computations in many MATLAB programs.

 14

Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October
2004 (submitted).

Optimizations are also required to reduce overheads such as communication latency and matrix
partitioning.

Much work still needs to be done to transform ALiCE into a comprehensive grid computing
infrastructure. We are in the process of integrating new resource scheduling techniques and load-
balancing mechanisms into ALiCE [27]. We have used AOPT as the underlying programming
abstraction to develop domain-specific grid programming environment such as GLAD (Grid Life
sciences Applications Developer) [28]. As part of GLAD, we are developing tools and techniques for
debugging grid applications.

References

1. M. Baker, R. Buyya, and D. Laforenza, Grids and Grid Technologies for Wide-Area Distributed
Computing, International Journal of Software: Practice and Experience (SPE), 32(15), Wiley Press, USA,
November 2002.

2. A. Baratloo, M. Karaul, Z. Kedem and P. Wyckoff, Charlotte: Metacomputing on the Web, Proceedings of
the 9th International Conference on Parallel and Distributed Computing Systems, 1996.

3. N. Carriero, D. Gelernter, “Linda in Context,” CACM 32/4, pp. 444-458, 1984
4. Cornell Multitasking Toolbox for MATLAB. [Online]. Available:

http://www.tc.cornell.edu/Services/Software/CMTM/
5. R. Choy, “MATLAB*P 2.0: Interactive Supercomputing Made Practical.” Master of Science Thesis, EECS,

MIT, Sep 2002.
6. R. Choy, (2003, Oct. 12). Parallel MATLAB Survey [Online]. Available:

http://theory.lcs.mit.edu/~cly/survey.html.
7. D. De Roure, M. A. Baker, N. R. Jennings, and N. R. Shadbolt, The Evolution of the Grid, Research

Agenda, UK National eScience Center, 2002.
8. Distributed and Parallel Application Toolbox (DP-Toolbox). [Online]. Available: http://www-at.e-

technik.uni-rostock.de/dp/
9. DOSMOS project. [Online]. Available: http://www.ens-lyon.fr/~llefevre/DOSMOS/dosmos.html
10. I. Foster, Computational Grids, Morgan Kaufmann Publishers, 1998.
11. I. Foster, and C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit, International Journal of

Supercomputing Applications, 11(2), pp 115-128, 1997.
12. I. Foster, C. Kesselman, and S. Tuecke, The Anatomy of the Grid: Enabling Scalable Virtual Organizations,

International Journal of Supercomputer Applications, 15(3), 2001.
13. Vincent W. Freeh. (1994, Aug). A Comparison of Implicit and Explicit Parallel Programming. Journal of

Parallel and Distributed Computing. [Online].
14. GigaSpaces Platform White Paper, GigaSpaces Technologies, Ltd., February 2002.
15. S. Hupfer, The Nuts and Bolts of Compiling and Running JavaSpaces Programs, Java Developer

Connection, Sun Microsystems, Inc., 2000.
16. A. Itzkovitz, and A. Schuster, Distributed Shared Memory: Bridging the Granularity Gap, Proceedings of

the First ACM Workshop on Software Distributed Shared Memory (WSDSM), Greece, June 1999.
17. JavaSpaceTM Specification, June 27, 1997. [Online]. Available: http://java.sun.com
18. JMatLink. [Online]. Available: http://www.held-mueller.de/JMatLink/index.html
19. Lee, Matsuoka, Talia, Sossman, Karonis, Allen and Thomas, A Grid Programming Primer Programming

Models Working Group, Grid Forum 1, Amsterdam, 2001.
20. C. Lee, and D. Talia, "Grid Programming Models: Current Tools, Issues and Directions", in Grid

Computing: Making the Global Infrastructure a Reality, F. Berman, G. Fox and T. Hey (eds.), Wiley, chap.
21, pp. 555-578, 2003.

21. M. Lewis, and A. Grimshaw, The Core Legion Object Model, Proceedings of the Fifth IEEE International
Symposium on High Performance Distributed Computing, August 1996.

22. MATCH. [Online]. Available: http://www.accelchip.com
23. MATmarks [Online]. Available: http://polaris.cs.uiuc.edu/matmarks/
24. Message Passing Interface. [Online]. Available: http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
25. C. Moler, Why There Isn’t a Parallel Matlab. [Online]. Available:

http://www.mathworks.com/company/newsletter/pdf/spr95cleve.pdf
26. Parallel MATLAB® Development for High Performance Computing, [Online] Available:

http://www.rtexpress.com/isi/rtexpress/

 15

Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October
2004 (submitted).

27. Y.M. Teo, X. Wang, and J.P. Gozali, A Compensation-based Scheduling Scheme for Grid Computing,
Proceedings of the 7th International Conference on High Performance Computing, IEEE Computer Society
Press, Tokyo, Japan, July 2004.

28. Y.M. Teo, X. Wang and Y.K. Ng, GLAD: A System for Developing and Deploying Large-scale
Bioinformatics Grid, Technical Report, Department of Computer Science, National University of Singapore,
2004.

29. Y.M. Teo and X. Wang, ALiCE: A Scalable Runtime Infrastructure for High Performance Grid Computing,
Proceedings of IFIP International Conference on Network and Parallel Computing, Springer-Verlag Lecture
Notes in Computer Science Series, ??, China, October 18-20, 2004 (submitted).

30. Y.M. Teo,Y.K. Ng and X. Wang, Progressive Multiple Biosequence Alignments on the ALiCE Grid,
Proceeding of the 6th International Conference on High Performance Computing for Computational
Science, Springer-Verlag Lecture Notes in Computer Science Series, ??, Spain, June 28-30, 2004.

31. Y.M. Teo, S.C. Tay and J.P. Gozalijo, Geo-rectification of Satellite Images using Grid Computing,
Proceedings of the International Parallel & Distributed Processing Symposium, IEEE Computer Society
Press, Nice, France, April 2003.

32. D.P. Ho, Y.M. Teo, J.P. Gozali, Solving the N-body Problem on the ALiCE Grid System, 7th Asian
Computing Science Conference, Lecture Notes in Computer Science 2250, pp. 87-97, Springer-Verlag,
Hanoi, Vietnam, December 2002.

 16

	The Client
	The Servers
	DSM
	Mapping MATLAB*G onto ALiCE
	ALiCE Program Generated by MATLAB*G
	Batch Mode

