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Abstract 
The main goal of grid programming is the study of programming models, tools and 
methods that support the effective development of algorithms and applications on 
grid. This paper discusses the design and implementation of ALiCE object-oriented 
grid programming template (AOPT). ALiCE is a Java-based grid computing 
middleware to facilitate the development and deployment of generic grid applications 
on heterogeneous shared computing resources. The programming template provides 
a distributed shared-memory programming abstraction based on JavaSpaces that 
frees the grid application developer from the intricacies of the core layer and the 
underlying grid system.  AOPT is designed for developing grid applications and as a 
programming tool for grid-enabling domain specific software applications such as 
MATLAB.  In this paper, we discuss the design and implementation of MATLAB*G, a 
grid-enabled MATLAB using AOPT. The performance results indicate that for large 
matrix sizes MATLAB*G can be a faster alternative to sequential MATLAB. 

 

1 Introduction 

Grid computing [7, 12] is an emerging technology that enables the utilization of shared resources 
distributed across multiple administrative domains, thereby providing dependable, consistent, 
pervasive, and inexpensive access to high-end computational capabilities [10] in a collaborative 
environment. These resources can include supercomputers, storage systems, data sources and special 
classes of devices. Clustering and using them as a single unified resource forms a networked virtual 
supercomputer [11] is popularly known as a computational grid [10]. Grids can be used to provide 
computational, data, application, information services, and consequently, knowledge services, to the 
end users, which can either be a human or a process.  

The main goal of grid programming is the study of programming models, tools and methods that 
support the effective development of portable and high-performance algorithms and applications on 
grid environments [20]. Grid programming will require capabilities and properties beyond that of 
simple sequential programming or even parallel and distributed programming. Besides orchestrating 
simple operations over private data structures, or orchestrating multiple operations over shared or 
distributed data structures, a grid programmer will have to manage a computation in an environment 
that is typically open-ended, heterogeneous and dynamic. A programming model can be present in 
many different forms, e.g., a language, a library API, or a tool with extensible functionality. The most 
successful programming models will enable both high-performance and the flexible composition and 
management of resources.  

Grid applications tend to be heterogeneous and dynamic, i.e., they will run on different types of 
resources whose configuration may change during run-time. These dynamic configurations could be 
motivated by changes in the environment from any available grid resources. Regardless of their cause, 
a programming model or tool need to present the heterogeneous resources as a common “look-and-
feel” to the programmer; hiding their differences while allowing the programmer some control over 
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each resource type if necessary. To reduce the complexity of grid programming, such transparency 
needs to be provided by the run-time system. We discuss the design and implementation of 
MATLAB*G, a grid-based MATLAB developed using AOPT. 

In [20], Craig and Domenico have reviewed the grid programming models on current tools, issues 
and directions. Eight grid programming models have been reviewed and its shortcomings are 
discussed. In this paper, we design and implement an object-oriented grid programming template 
based on the distributed shared-memory model, JavaSpaces. We focus on how to efficiently develop 
portable and high-performance grid applications. 

Sun JavaSpaces [17] is a Java-based implementation of the Linda tuplespace concept, in which 
tuples are represented as serialized objects. The use of Java allows heterogeneous clients and servers 
to interoperate, regardless of their processor architectures and operating systems. The model used by 
JavaSpaces views an application as a collection of processes communicating between them by putting 
and getting objects into one or more spaces. A space is a shared and persistent object repository that is 
accessible via network. The processes use the repository as an exchange mechanism to get 
coordinated, instead of communicating directly with each other. The main operations that processes 
can do with a space are to put, take and read objects. A programmer that wants to build a space-based 
application should design distributed data structures as a set of objects that are stored in one or more 
spaces. The new approach that the JavaSpaces programming model gives to the programmer makes 
building distributed applications much easier, even when dealing with such dynamic, environments.  

Our propose ALiCE Object-oriented grid Programming Template (AOPT) is implemented on 
ALiCE (Adaptive scaLable Internet-based Computing Engine), a grid computing core middleware 
designed for secure, reliable and efficient execution of distributed applications on any Java-
compatible platform [27, 29]. Our main design goal is to grid application developers with a user-
friendly programming environment that is transparent of low-level grid infrastructure details, thus 
enabling them to concentrate solely on the application problems. The middleware encapsulates 
services for compute and data grids, resource scheduling and allocation, and facilitates application 
development with a straightforward programming template. Using AOPT, we have demonstrated the 
ease of programming grid applications [28, 30, 31, 32].   

This paper focuses on the use of AOPT as a system programming tool to grid-enabled the 
domain-specific application package called MATLAB. Performance results indicate that for large 
matrix sizes MATLAB*G can be a faster alternative to sequential MATLAB. The remainder of this 
paper is structured as follows. Section 2 introduces ALiCE. Section 3 presents the ALiCE template-
based distributed shared-memory programming model. Section 4 uses the programming template to 
implement MATLAB*G. Section 5 presents the performance evaluation of MATLAB*G. Our 
concluding remarks are in Section 6. 

2 System Design 

2.1 Architecture 

Several projects, such as Globus [11] and Legion [21], attempt to provide users with the vision of a 
single abstract machine for computing by the provision of core/user-level middleware encapsulating 
fundamental services for inter-entity communications, task scheduling and management of resources. 
Likewise, ALiCE is a portable middleware designed for developing and deploying general-purpose 
grid applications and application programming models [29 ]. However, unlike Globus toolkit which is 
a collection of grid tools, ALiCE is a grid system. 

The ALiCE grid architecture as shown in Figure 1, comprises of three constituent layers, ALiCE 
Core, ALiCE Extensions and ALiCE Applications and Toolkits, built upon a set of Java technologies 
and operating on a grid fabric, which encompasses the physical hardware components and networks 
within the grid. The ALiCE system is written in Java and implemented using Java technologies 
including Sun Microsystems’ JiniTM and JavaSpacesTM [15] for resource discovery services and object 
communications within a grid. To support the execution of applications regardless of their 
developmental language, ALiCE uses Java Native Interface (JNI) to enable the runtime infrastructure 
to invoke non-Java code. 
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The ALiCE core layer encompasses the basic services used to develop grids.  Compute Grid 
Services include algorithms for resource management, discovery and allocation, as well as the 
scheduling of compute tasks. Data Grid Services are responsible for the management of data accessed 
during computation, locating the target data within the grid and ensuring multiple copy updates where 
applicable. The security service is concerned with maintaining the confidentiality of information 
within each node and detecting malicious code. Object communication is performed via our Object 
Network Communication Architecture (ONTA) that coordinates the transfer of information-
encapsulated objects within the grid. Besides these grid foundation services, a monitoring and 
accounting service is also included [29].  

The ALiCE extensions layer encompasses the ALiCE runtime support infrastructure for 
application execution and provides the user with a distributed-shared memory programming template 
for developing grid applications at an abstract level.  Runtime support modules are provided for 
different programming languages and machine platforms.  Advanced data services are also introduced 
to enable users to customize the means in which their application will handle data, and this is 
especially useful in problems that work on uniquely formatted data, such as data retrieved from 
specialized databases and in the physical and life sciences. This is the layer that application 
developers will work with. 

The ALiCE applications and toolkits layer encompasses the various grid applications and 
programming models that are developed using ALiCE programming template and it is the only layer 
visible to ALiCE application users [28, 29]. 
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Figure 1:  ALiCE Grid Architecture 

 
 



Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference 
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October 
2004 (submitted). 

2.2 Runtime System 

The ALiCE runtime system, illustrated in Figure 2, is an integration of the Compute Grid Services 
and ONTA components from the ALiCE Core layer in the grid architecture. It adopts a three-tiered 
architecture, and consists of the following four main components: 
• Consumer. This submits applications to the ALiCE grid system. It can be any machine within the 

grid running the ALiCE consumer/producer components.  It is responsible for collecting results 
for the current application run, returned by the tasks executed at the producers, and is also the 
point from which new protocols and new runtime supports can be added to the grid system. 

• Resource broker. This is the core of the grid system and deals with resource and process 
management. It has a scheduler that performs both application and task scheduling. Application 
scheduling helps to ensure that each ALiCE application is able to complete execution in a 
reasonable turnaround time, and is not constrained by the workload in the grid where multiple 
applications can execute concurrently. Task scheduling coordinates the dissemination of compute 
tasks, thereby controlling the utilization of the producers. The default task scheduling algorithm 
adopted in ALiCE is eager scheduling [2]. In addition, there are some objective requirements 
imposed on ALiCE, since one of its goals is to support execution of applications implemented in 
programming languages other than Java. These applications may be platform and library 
dependent. The scheduler must therefore select, amongst the producers in the grid, one that runs 
the most appropriate platform to execute a given application. 

• Producer. This is run on a machine that volunteers its cycles to run ALiCE applications. It 
receives tasks from a resource broker in the form of serialized live objects, dynamically loads the 
objects and executes the encapsulated tasks. The result of each task is returned to the consumer 
that submitted the application. A producer and a consumer can be run concurrently on the same 
machine. 

• Task Farm Manager.  ALiCE applications are initiated by the Task Farm Manager and the tasks 
generated are then scheduled by the resource broker and executed by the producers.  The task 
farm manager is separated from the resource broker for two principal reasons.  Firstly, ALiCE 
supports non-Java applications that are usually platform-dependent, and the resource broker may 
not be situated on a suitable platform to run the task generation codes of these applications. 
Secondly, for reasons of security and fault tolerant the execution of alien code submitted by 
consumers is isolated from the resource broker.  Each task farm manager runs either Java code or 
code compiled for the platform that the task farm manager offers. 

 

 

 

 

 Physical System: Heterogeneous Networks and Machines 

Task Farm 
Manager ProducerConsumer Resource Broker

Object Network Transport Architecture 

Java Technologies: Jini & JavaSpaces 

Figure 2:  ALiCE Runtime System Framework 

In a typical scenario, a user launches an ALiCE application at a consumer, which then submits the 
application codes to a resource broker in the system.  The resource broker directs an application to an 
appropriate task farm manager that supports the required programming language and platform.  The 
task farm manager initiates the application and creates a pool of tasks.  Task references are returned to 
the resource broker, which schedules the tasks for execution on producers.  Results of task execution 
are then returned to the consumer for visualization. Connections between the system entities are 
established over a LAN if the environment is a cluster grid or an Intranet, and through the Internet if 
the grid system is deployed over a WAN.  
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2.3 Implementation 

ALiCE is scalable and comprises of modular components developed using ubiquitous and easy-to-use 
object-based Java technologies, including Jini and JavaSpaces [15], thereby providing for cross-
platform portability, extensibility and scalability. Each ALiCE producer runs a copy of the JVM, 
allowing different platforms in the grid to share executables. 

Jini defines a runtime infrastructure that unifies all JVMs into a single virtual network, enabling 
homogeneous hardware devices to plug in to form decentralized communities. JavaSpaces, a special 
service of Jini, is a simple, expressive, and powerful technology with the goal of reducing 
development time in building distributed applications. All processes are loosely coupled across the 
network, communicating and synchronizing their activities using a persistent object store called a 
space. All ALiCE entities communicate through JavaSpaces. To our knowledge, ALiCE is the first 
grid-computing project that is developed using Sun’s Java-Jini and JavaSpaces.   

ALiCE provides an alternative communications platform using GigaSpaces [14]. GigaSpaces 
Synchronization and Coordination Platform is a software infrastructure for information collaboration 
platform for Enterprise Distributed Applications and Web Services. The major difference between 
JavaSpaces and GigaSpaces is that the former provides a logical distributed-shared memory [16] but 
the latter implements distributed-shared memory by coupling together several spaces hosted at 
different machines. Our tests show that using GigaSpaces results in better performance and reliability 
than JavaSpaces. 

3 Grid Programming  

Grid environments are characteristically distributed and dynamic [19].  ALiCE sets out to provide an 
effective programming model to facilitate the development of grid applications and higher-level 
specialized programming models. In the ALiCE paradigm, large computations are decomposed into 
smaller tasks that are then distributed among producers in the network to exploit parallelism as best as 
possible to achieve a reasonable amount of speedup.  

ALiCE adopts the TaskGenerator-ResultCollector programming model. This model comprises of 
four main components: TaskGenerator, Task, Result and ResultCollector.  The consumer first submits 
the application to the grid system in the form of a .jar file encapsulating the application codes. The 
TaskGenerator running at a task farm manager machine generates a pool of Tasks belonging to the 
application.  Subsequently, these Tasks are scheduled for executing by the resource broker and the 
producers download the tasks from the task pool.  The results of the individual executions at the 
producers are returned to the resource broker as Result object.  The ResultCollector, initiated at the 
consumer to support visualization and monitoring of data collects all Result objects from the resource 
broker. For batch job, result objects are collected at the resource broker. 

Parallel applications development are written using ALiCE programming template. The template 
allows the programmers to transparently exploit the distributed nature of the ALiCE grid, i.e., without 
prior knowledge of the underlying technologies for communications, dynamic code linking, etc.  The 
template abstracts methods for generating tasks and retrieving results in ALiCE, leaving the 
programmers with only the task of filling in the task specifications. Figure 3 shows the ALiCE 
programming template.  

The Java classes comprising the ALiCE programming template are: 
a. TaskGenerator. This is run on a task farm manager machine and allows tasks to be generated for 

scheduling by the resource broker. It provides a method process that generates tasks for the 
application. The programmer merely needs to specify the circumstances under which tasks are to 
be generated in the main method. 

b. Task. This is run on a producer machine, and it specifies the parallel execution routine at the 
producer. The programmer has to fill in only the execute method with the task execution routine. 

c. Result. This models a result object that is returned from the execution of a task. It is a generic 
object, and can contain as many user-specified attributes and methods, thus permitting the 
representation of results in the form of any data structure that are serializable. 

d. ResultCollector. This is run on a consumer machine, and handles user data input for an 
application and the visualization of results thereafter. It provides a method collectResult that 
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retrieves a Result object from the resource broker. The programmer has to specify the 
visualization components and control in the collect method. 

 
TaskGenerator Template 

 
import alice.consumer.*; 
import alice.data.*; 
public class TASKGEN_CLASSNAME extends TaskGenerator { 
    public TASKGEN_CLASSNAME() {} 
    public void init() { 
        //Place your initialisation code here 
    } 
 
    /* Main method - entry point */ 
    public void main(String args[]) { 
      // This is where the tasks are generated, usually in a loop 
 
      // This should be called for each task 
      TASK_CLASSNAME t = new TASK_CLASSNAME(); 
      process(t); 
 
      // To open a data file, read and write from/to it 
      DataFile f = Data.openFile("file_name",this); 
      READ_BUFF = f.read(POSITION, LENGTH); 
     f.write( WRITE_BUFF, POSITION, LENGTH); 
 
      // To send/receive an object 
      OBJECT_CLASSNAME obj = new  OBJECT_CLASSNAME(); 
      sendObject(obj, "snd_str_id"); 
      OBJECT_CLASSNAME rcvObj = (OBJECT_CLASSNAME)  
                                                             requestObject("rcv_str_id"); 
 
      // To receive a string message from the result collector: 
     String msg = getStringMessage(); 
   } 
} 

Task Template 
 

import alice.consumer.*; 
import java.io.*; 
public class TASK_CLASSNAME extends Task { 
   // Place variables here 
   public TASK_CLASSNAME () { 
   } 
 
   public Object execute () { 
      // This is where you do your computations. The results can be any kind of  
      // objects 
 
      // You can generate and send a new task to be produced 
      O_TASK_CLASSNAME t = new O_TASK_CLASSNAME(); 
      process(t); 
 
      // To open a data file, read and write from/to it 
      DataFile f = Data.openFile("file_name",this); 
      READ_BUFF = f.read(POSITION, LENGTH); 
      f.write( WRITE_BUFF, POSITION, LENGTH); 
 
      // To send/receive an object 
      OBJECT_CLASSNAME obj = new OBJECT_CLASSNAME(); 
      sendObject(obj, "snd_str_id"); 
      OBJECT_CLASSNAME rcvObj =(OBJECT_CLASSNAME)  
                                                               requestObject("rcv_str_id"); 
   } 
} 
 

Result Template 
 
import java.io.*; 
 
public class MyResult implements Serializable { 
    public DATA_TYPE var; 
    public MyResult() { 
        var=NULL; 
    } 
} 
 

ResultCollector Template 
 
import alice.result.*; 
public class RESCOL_CLASSNAME extends ResultCollector { 
    // Place Variables Here 
 
    public RESCOL_CLASSNAME() { 
    } 
 
    public void collect() { 
       // Place here the result collection and processing code to obtain  
       // number of results ready call 
       int resReady = getResultsNoReady() 
 
        // To get a new result call 
       RES_CLASSNAME res = (RES_CLASSNAME)collectResult(); 
    } 
} 
 

Figure 3:  ALiCE Programming Template 

4 MATLAB*G  

MATLAB is popular mathematical software that provides an easy-to-use interface for various science 
computations. Computation intensive MATLAB applications can benefit from faster execution if 
parallelism is provided. With the increasing popularity of distributed computing technology, up to 
now, at least twenty-seven parallel MATLABs are available [6]. 

In this paper we present the design, implementation and experimental results of MATLAB*G, a 
grid-based MATLAB on the ALiCE Grid, which exploits distributed matrix computation using task 
parallelism and job parallelism. Firstly, we introduce related existing parallel MATLABs which are 
classified into different categories according to two criteria: First, whether they provide implicit or 
explicit parallelism; second, the method used for inter-processor communication. 

4.1 Implicit Parallelism vs. Explicit Parallelism 

In order to execute a program which exploits parallelism, the programming language must supply the 

 6
 
 



Y.M. Teo, Y. Chen and X.B. Wang, On Grid Programming and MATLAB*G, Proceedings of 3rd International Conference 
on Grid and Cooperative Computing, pp. xx, Springer Verlag Lecture Notes in Computer Science, Wuhan, China, October 
2004 (submitted). 

means to identify parallelism, to start and stop parallel executions, and to coordinate the parallel 
executions. Thus from the programming language level, the approaches to parallel processing can be 
classified into implicit parallelism and explicit parallelism [13]: 
• Implicit parallelism allows programmers to write their programs without any concern about the 

exploitation of parallelism. Exploitation of parallelism is instead automatically performed by the 
compiler or the runtime system. Parallel MATLABs in this category include RTExpress [26], 
CONLAB Compiler[4], and MATCH[22]. All of these parallel MATLABs take MATLAB scripts 
and compile them into executable code. The advantage is that the parallelism is transparent to the 
programmer. However, extracting parallelism implicitly requires much effort for the system 
developer.   

• Explicit parallelism is characterized by the presence of explicit constructs in the programming 
language, aimed at describing the way in which the parallel computation will take place. Most 
parallel MATLABs use explicit parallelism, like MATLAB*P [5], MATmarks [23], and DP-
Toolbox [8]. The main advantage of explicit paralleism is its considerable flexibility, which allows 
the user to code a wide variety of patterns of execution. However  the management of the 
parallelism, a quite complex task, is left to the programmer.  

MATLAB*P is an explicitly parallel MATLAB designed at MIT. MATLAB*P handles 
communication and synchronization for the user and requires the user to explicitly indicate the 
matrices which are to be distributed. MATLAB*G is also an explicitly parallel MATLAB and is 
similar to MATLAB*P, in that it handles the communication and synchronization details for the user. 
However, while users are not required to indicate the matrices to be distributed, they have to explicitly 
specify the MATLAB computations to be parallelized. 

4.2 Inter-processor Communication 

In designing a parallel system, processors must have the ability to communicate with each other in 
order to cooperatively complete a task. There are two methods of inter-processor communication, 
each suitable for different system architectures: 

The first is Distributed Memory Architectures. It employs a scheme in which each processor has 
its own memory module. Each component is connected with a high-speed communications network. 
Processors communicate with each other over the network. Well-known packages such as MPI [24] 
provide a message passing interface between machines. Most parallel MATLABs are built upon 
distributed memory architecture, e.g. MATLAB*P, Cornell Multitasking Toolbox for MATLAB, and 
Distributed and Parallel Application Toolbox, etc. One advantage of these parallel MATLABs is that 
MPI and PVM are mature standards which have been available for several years and offers a high 
degree of functionality. However, almost all of these parallel MATLABs exploit standard message 
passing interface, which means they can only run on homogenous clusters. 

The second is Distributed Shared Memory systems which have two main architectures [9]: 
• Shared Virtual Memory (SVM) systems share a single address space, thereby allowing processor 

communication through variables stored in the space. For example, MATmarks, an environment 
that allows users to run several MATLAB programs in parallel using the shared memory 
programming style is built on top of TreadMarks, a virtual SVM which provides a global shared 
address space across the different machines on a cluster. The environment extends the MATLAB 
language with several primitives to enable shared variables and synchronization primitives. 

• Object-based Distributed Shared Memory (DSM): Processes on multiple machines share an 
abstract space filled with shared objects. The location and management of the objects is handled 
automatically by the runtime system. Any process can invoke any object's methods, regardless of 
where the process and object are located. It is the job of the operating system and runtime system 
to make the act of invoking work no matter where the process and the object are located. DSM 
has a few advantages over SVM: (i) it is more modular and more flexible because accesses are 
controlled, and (ii) synchronization and access can be integrated together cleanly.  
MATLAB*G is currently the only parallel MATLAB built on object-based DSM. A shared 

memory interface is more desirable than a message-passing interface from the application 
programmer's viewpoint, as it allows the programmer to focus more on algorithmic development 
rather than on managing communication. But such a parallel MATLAB depends on another system 
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providing shared memory upon different machines. Furthermore, whether a parallel MATLAB can be 
run in a heterogeneous environment depends on whether the DSM supports heterogeneous machines.  

4.3 System Design 

In MATLAB, a normal matrix addition can be performed as in Figure 4. The first line creates a 
10-by-10 matrix A, The second lines creates a 10-by-10 matrix B. The third line creates a 10-by-10 
matrix C, and lets it have the value: A+B. To parallelize the matrix addition, a user can write a 
MATLAB*G program as shown in Figure 5. The third line creates a 10-by-10 matrix C, performs 
parallel matrix addition between A and B, and returns the result to C. From the user’s point of view, 
these two programs are equivalent because after execution the resulting matrix C in both programs has 
the same value in both programs. However, the executions of these two programs are quite different: 
the first program is executed purely inside MATLAB environment, but the second exploits 
parallelism provided by MATLAB*G.  
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Figure 7.  MATLAB*G Client 

 
Extension includes a few MATLAB M files.  It provides user interfaces for parallelism and links 

MATLAB with MGClient.: 
a. ppstart: This is a MATLAB function introduced by MATLAB*G Extension. When the user calls 

ppstop(n), n servers are initialized and reserved for future computations. 
b. ppstop: This function  releases the reservations by a prior ppstart. 
c. mm: This function lets the user assign a parallel job. The syntax of mm is: A=mm(‘fname’, 

tasknum, matrices). fname is the computation that the user wants to execute, matrices are the 
arguments for this computation and  tasknum is the task number specified by the user. The user 
can decide the task granularity according to the complexity of the computation and the size of 
matrices. We anticipate that in the next version, the tasknum argument will be removed and the 
task number will be generated by the system automatically according to certain algorithms. 
Finally, A is the result of computation.  
Another component, MGClient, includes a number of Java classes, and provides two main 

functionalities: 
a. Communicate with all the servers. MGClient communicates with the servers through DSM; it 

does not need to know their locations. 
b. Distribute tasks and assemble results. According to the user’s input program, MGClient generates 

a number of tasks, which can be executed on the servers. MGClient also has to assemble all 
results from servers into one complete and correct result and return it to the user. 
MGClient can be invoked only by Extensions, which makes the command set simpler. 

Pseudocode for MGClient is shown in Figure 8 below: 
 

Switch of command passed in by Extension: 
Case: ppstart 

Send ppstart into DSM; 
Case: ppstop 

Send ppstop into DSM; 
Case: mm 

Partition matrices; 
Marshal message into a number of tasks; 
Send tasks into DSM; 
Wait for result by polling DSM; 
Return result; 

Figure 8.   MGClient Pseudocode 
 

Besides Extension and MGClient, a running instance of MATLAB is also required on the client 
side. This MATLAB session provides a programming environment to the user and thus lets the user 
invoke function calls in Extension. 

4.3.2 The Servers 
As communication latency is quite unpredictable on a grid system, it would be costly to pass data 
frequently among the compute nodes.  Thus currently only embarrassingly parallel mode of 
computation is supported, whereby each server receives a work package, performs computation 
without coordination with other servers, and sends results back to the client. The Server consists of 
two main components: MGProducer and Link. 
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 tasks from DSM.  On receiving a ppstart from DSM, 
MG

ART message fails, go to 1 

 the client 

s message 
etion of task and send result to the client 

MGProducer runs on a server and waits for
Producer starts a MATLAB session at the backend through Link. Similarly, on receiving a ppstop, 

MGProducer terminates the MATLAB session. Upon receiving a computation task, MGProducer 
performs calculation and sends the result back to DSM. The pseudocode for MGProducer is shown in 
Figure 9. 

 
Loop Forever 
  If take PPST
  Start MATLAB 

e client   Acknowledge th
  Loop Forever 

sage from    Wait for mes
    If message is PPSTOP, then  
       Stops MATLAB 
       Break 
    Else  

es       Proc
       Acknowledge compl
    End If 
  End Loop 
End Loop 

Figure 9.  MGProducer Pseudocode 
 

ink is another component on the server.  It is used by MGProducer to start a MATLAB session, 
stop

ace is a shared datastore for simple list data structures (tuples) [3]. A simple model is 
used

4.4 mplementation 

mplemented on the ALiCE Grid.  

 
iCE is illustrated in Figure 10. Shaded boxes are 

r to run a MATLAB*G client directly on the 

Task, which runs on the Producer; 
Tas

L
 a MATLAB session, and execute MATLAB programs. To implement Link, we make use of an 

existing Java interface to the MATLAB engine called JMatLink [18].  

4.3.3 DSM 
A tuplesp
 to access the tuplespace, usually consisting of the operations write, take and read. A tuplespace 

provides DSM if every data inside it is an object. In MATLAB*G, communication between 
processors is handled through a tuplespace where processors post and read objects. Submatrices are 
deposited into space for server nodes to retrieve. The server nodes then perform computations on 
submatrices and return the results back to space. 

 

System I

MATLAB*G is written in Java and i

4.4.1 Mapping MATLAB*G onto ALiCE  
The mapping from MATLAB*G onto AL
MATLAB*G components. A user submits a job through ALiCE Consumer. In response to the 
submission of a job, the ALiCE Resource Broker will instantiate a MATLAB*G Client, and ALiCE 
Producers will instantiate MATLAB*G Servers. 

4.4.2 ALiCE Program Generated by MATLAB*G 
ALiCE does not provide any interface to allow a use
Task Manager or run a MATLAB*G server on a Producer.  An application has to be submitted in the 
form of an ALiCE Program through the Consumer interface.  

An ALiCE program template consists of following elements: 
kGenerator, which runs on the Resource Broker; and ResultCollector which runs on the Consumer 

to collect the results obtained from the execution of tasks generated by the Task Manager. Thus our 
job is just to add MATLAB*G code into proper templates to generate customized ALiCE program 
elements.   
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Figure 10.  Mapping between MATLAB*G and ALiCE components 

 
 

1) MGTaskGenerator 
Besides the client side code, the user’s MATLAB program is also embedded in the Task 

Generator template to create MGTaskGenerator. MGTaskGenerator first starts a MATLAB session, 
and then initiates n tasks by issuing command ppstart(n) to MATLAB. It then asks MATLAB to run 
the user’s MATLAB programs. When finished, it issues a ppstop command to terminate tasks.  
MGTaskGenerator sends output it receives from MATLAB to MGResultCollector as the result from 
the computation. The pseudocode of MGTaskGenerator is as in Figure 11. 

 
 

1. Start MATLAB 
2. Starts the required number (N) of Tasks 
3. Issue “PPSTART(N)” to MATLAB 
4. Issue command to MATLAB to run user program 
5. Issue “PPSTOP” to MATLAB 
6. Stop MATLAB 
7. Return result 

Figure 11.  MGTaskGenerator Pseudocode 
 

 
2) MGTask 

MGTask is created by adding the server side code into ALiCE Task template. Each MGTask 
instantiates an MGProducer and runs it.  The pseudocode for MATLAB*G Task is as in Figure 12. 

 
1. Instantiates MGProducer 
2. Execute the run method in MGProducer 

Figure 12.  MATLAB*G Task Pseudocode 
 
 

3) MGResultCollector 
MGResultCollector extends the ALiCE Result Collector template. Running on the ALiCE 

Resource Broker, it simply waits for the result from JavaSpaces. An ALiCE program is created when 
we compile these elements together. The structure of such a program is described in Figure 13. 

 
 

  
ALiCE 

Producer
MATLAB*G 

Server 
 

ALiCE 
Consumers 

 
ALiCE 

Producer

 
MATLAB*G 

Server 
JavaSpaces 

ALiCE 
Resource 
Broker 

  
 ALiCE 

Producer
MATLAB*G 

Server MATLAB*G 
Client 
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Figure 13.  Structure for a ALiCE Program generated by MATLAB*G 

 
After an ALiCE program is submitted to ALICE, the system dynamically finds available 

resources to join in the parallel computation, and each component is dynamically loaded by various 
machines as shown in Figure 14. Shaded boxes are ALiCE program elements for MATLAB*G. 

 
Figure 14.  MATLAB*G running on ALiCE 

4.4.3 Batch Mode 
ALiCE supports two types of applications. Batch applications are non-interactive applications and 
involve minimum user intervention. This mode is for executing large jobs. After submitting the 
application, the Consumer can disconnect itself and later reconnect for collecting the results. The 
result collection mechanism is implemented at the Resource Broker. Interactive applications require 
User/Consumer intervention during execution process. In this mode, Users/Consumers can program a 
graphical user interface (GUI) to visualize the progress of the execution. Results of executing 
individual tasks generated by the Task Manager are returned to the Consumer.  

The current MATLAB*G implementation supports batch applications: the user submits a 
complete MATLAB program instead of entering commands interactively at a MATLAB environment. 
This is accomplished by embedding the MATLAB program into MGTaskGenerater so that it can be 
submitted to the ALiCE Resource Broker. 

5 Experimental Results 

We compare the performance of MATLAB*G with sequential MATLAB on the ALiCE Grid. The 
experiments are conducted on ALiCE Grid Cluster with twenty-four nodes connected by 100 Mbps 
Ethernet. Four nodes are used, each of which is a PIII 866MHz, 256 MB RAM machine running 
Linux 2.4. 

The current implementation of MATLAB*G can exploit two forms of parallelism. The first is 
task parallelism. When a user wants to perform computation involving matrices, the computation can 
be divided into a number of tasks. Each task has the computation name and parameter sub-matrices. 
Tasks are sent to space and each producer gets a task from space and performs computation on its 
sub-matrices. The number of tasks a matrix computation should be split into is largely influenced by 

ALiCE Resource 
Broker 

ALiCE 
Producer

ALiCE Consumer 

JavaSpaces 

 
MGTask 

 
MGTask 

 
MGTask 

ALiCE 
Producer

ALiCE 
Producer

MGTaskGenerator

MGResultCollector

    User program  MATLAB*G client
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the complexity of the computation. A simple matrix computation (e.g. matrix addition) should be split 
into a small number of tasks so that the communication overhead does not dominate the computation 
time. Conversely, a complex matrix computation (e.g. computation of eigenvalues) should be split 
into a relatively large number of tasks. In general the number of tasks should be larger the number of 
Producers for load balancing consideration, as each node in the grid may have different computation 
ability and different network latency. 

 The second is job parallelism. When there are a number of matrix computations (jobs) to be 
executed one after the other, the user can specify for them to be executed in parallel. This will result 
in each matrix computation being executed on a single producer. 

We perform experiments to discover the performance of the MATLAB*G implementation on 
each type of parallelism. Specifically, we measure performance in terms of the time elapsed on the 
client side from submission of application to receipt of results. 

5.1 Task Parallelism 

The designer of MATLAB has previously stated that one reason for not developing a parallel 
MATLAB is that it takes much more time to distribute the data than perform the computation because 
a matrix that fits into the host’s memory would not be large enough to make efficient use of the 
parallel computer [25]. However this is true only for functions provided by MATLAB itself, which 
can be performed quite fast by MATLAB. For some MATLAB scripts written by a user, it is possible 
that the computation time for a normal size matrix is long enough that we can benefit from doing it in 
parallel.   

For example, Figure 15 is a simple but compute intensive function that computes for 1000 times 
the exponential for each element of a matrix A. 
 

Function result=Exp_1(A) 
For (i=1:1000) 
exp(A); 
End; 
Result=A; 

Figure 15.  A User-defined Matlab Function 
 
We time this program in MATLAB and in MATLAB*G on various input matrix size and 

reproduce the results in Figure 16. 
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Figure 16.   Task Parallelism - Varying Matrix Size 

 
It can be seen that for small matrix size (e.g. 100x100), the elapsed time for sequential MATLAB 

is still less than that of MATLAB*G. This phenomenon is attributed to the communication and 
partitioning overhead which is much larger than the computation time. However, as matrix size 
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increases, the performance of MATLAB*G improves relative to sequential MATLAB, eventually 
overtaking it at the cross-point of approximately 500x500.  

5.2 Job Parallelism 

E = pinv(X) is the pseudo-inverse function provided by MATLAB. If a user has to perform pinv() on a 
few matrices, he can perform pinv() on each matrix one by one; alternatively he can parallelize these 
jobs as shown in Figure 17. 

A1=randn(1000); 
A2=randn(1000); 
A3=randn(1000); 
A4=randn(1000); 
E1=pinv(A1); 
E2=pinv(A2); 
E3=pinv(A3); 
E4=pinv(A4); 

 
 
 
 
 
 
Figure 17.a.  Compute pinv()s Sequentially 

A1=randn(1000); 
A2=randn(1000); 
A3=randn(1000); 
A4=randn(1000); 
X(1:1000, :)=A1; 
X(1001:2000,:)=A2; 
X(2001:3000, :)=A3; 
X(3001:4000,:)=A4; 
Y=mm(‘pinv’, 4, X); 
E1=Y(1:1000,:); 
E2=Y(1001:2000,:); 
E3=Y(2001:3000,:); 
E4=Y(3001:4000,:); 

 
Figure 17.b.  Compute pinv()s in Parallel 

 
We time for the sequential program as in Figure 17.a and the parallel program as in Figure 17.b 

on various matrix sizes and reproduce the results in Figure 18. 
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Figure 18.  Job Parallelism - Varying Matrix Size 

 
Once again we see that for small matrix size the elapsed time for sequential MATLAB is still less 

than that of MATLAB*G. But as matrix size exceeds 500x500, MATLAB*G outperforms sequential 
MATLAB.  

6 Conclusion and Further Works 

We discussed the design and implementation of the ALiCE object-oriented grid programming 
template that supports the distributed-shared memory programming model. We use the grid 
programming template as a system programming tool to develop a grid parallel MATLAB called 
MATLAB*G. Currently two types of parallelism for matrix computation are implemented: task 
parallelism and job parallelism. Performance results show that for large matrix sizes MATLAB*G 
can be a faster alternative to sequential MATLAB. Future work includes exploiting MATLAB for-
loop parallelism, one of the most time-consuming computations in many MATLAB programs. 
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Optimizations are also required to reduce overheads such as communication latency and matrix 
partitioning. 

Much work still needs to be done to transform ALiCE into a comprehensive grid computing 
infrastructure. We are in the process of integrating new resource scheduling techniques and load-
balancing mechanisms into ALiCE [27]. We have used AOPT as the underlying programming 
abstraction to develop domain-specific grid programming environment such as GLAD (Grid Life 
sciences Applications Developer) [28].  As part of GLAD, we are developing tools and techniques for 
debugging grid applications. 
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