
Engineering Process Coordination based on A Service
Event Notification Model

Jian Cao1, Jie Wang2, Shensheng Zhang1, Minglu Li1, Kincho Law2

1 Department of Computer Science, Shanghai Jiaotong University,
200030, Shanghai, P. R. China

{cao-jian, sszhang, li-ml}@cs.sjtu.edu.cn
2 Department of Civil and Environment Engineering, Stanford University,

Stanford, CA 94305, U.S.A
{jiewang, law}@stanford.edu

Abstract. Due to the complexity and uncertainties, the engineering process re-
quires dynamic collaborations among the heterogeneous systems and human in-
teractions. In this paper, we propose a service event notification model based
on grid service to coordinate different applications and human. The model takes
advantage of the grid infrastructure and reduces the need for ad hoc development
of middleware for supporting process coordination. In this model, an event noti-
fication server composed of a group of grid services can capture events from
other grid services and generate process events. When an event occurs, event no-
tification server decides to whom it should send the event according to an
awareness model that keeps the states of the underlying coordination policies
and business rules. The awareness model and the methodology for building an
event notification system, together with the infrastructure of the notification
server are presented in the paper. An example in applying the model to an engi-
neering project coordination scenario is presented to illustrate the potential ap-
plication of the event notification model.

1 Introduction

For complex and knowledge intensive projects such as engineering/construction and
design/manufacturing, multiple participants residing in different locations often need
to work together throughout the lifecycle of the project. The dynamic nature of project
requirements and the inevitable collaboration among multiple organizations and par-
ticipants pose many challenges from both technological and management perspectives.

The first challenge is the diverse heterogeneous software and hardware environ-
ments that are used in the engineering processes. A fully integration solution impos-
ing on homogeneous software and hardware platforms is infeasible. We need an alter-

native approach that can coordinate heterogeneous applications during the project
lifecycle process.

Grid-based engineering service is a potentially useful technology for process coor-
dination. Grid concepts and technologies were first developed to enable resource
sharing and to support far-flung scientific collaborations [1]. The Open Grid Services
Architecture (OGSA) [2] integrates key Grid technologies with Web services mecha-
nisms [3] to create a distributed system framework.

Another challenge is the coordination of the participants in an engineering project.
Because engineering process is often highly dynamic in nature, it is difficult to lay out
an exact plan detailing all the necessary tasks, their interdependency and interactions.

To address these two challenges, a platform that can support both system coordi-
nation and human coordination is important. Current grid service technology itself
does not support human coordination. However, it does provide a notification mecha-
nism to publish the status of changes in events, which can be forwarded to interested
parties to support human coordination. Thus we propose a Grid service based event
notification model to support engineering process.

This paper is organized as follows. Section 2 defines an awareness model for engi-
neering process. Section 3 discusses how to capture and transform events based on
business requirements for a complex process. Section 4 introduces the event notifica-
tion mechanism. In Section 5, the structure of an event notification server supporting
engineering process coordination is proposed. In Section 6 we provide an example in
building design and construction management to demonstrate the grid-based event
notification approach described in the paper. Section 7 discusses related works and
Section 8 concludes the research and points out some future works.

2 An Awareness Model for Engineering Process

Dourish and Bellotti [4] define awareness as “an understanding of the activities of
others, which provides a context for your own activity.” There are many types of
awareness information that can be provided to a user about other users’ activities [5].
We focus and categorize the awareness information of engineering process into two
main types: (1) Awareness Information related to Project Artifact Sharing, and, (2)
Awareness Information related to Process Logic

We propose to build the awareness model based on the technique of integrated co-
operative process modeling.

2.1 Artifact Structure Model

The artifact itself can be used as a ”shared representation” through which people can
communicate with one another and coordinate their activities.

An engineering artifact can be represented by a hierarchical tree, which is called an
artifact tree. An artifact tree is a triple <C, r, R>, where C is a finite set of components,

Fig.1 Artifact Structure Model

Sub Relationship Direct dependency Relationship

r∈C is the root component, R⊆ C×C such that (c1, c2)∈R if c1∈sub(c2), where sub
denotes the “sub-components of ” relationship)

An artifact type can be defined as <P, A>, where P is a set of parameters that can
characterize this artifact, A is a set of operations to manipulate this artifact. The arti-
facts produced during an engineering process are not independent, and are often
interdependent. That is, if an artifact a depends on another artifact b, whenever b is
changed, a must at least be
checked to ensure consistency
and if necessary, need to be
changed accordingly. Moreover,
the dependency is transitive.

To model an artifact structure,
two relationship types are defined
among the components: they are
the sub relationship and, the
depend relationship, as shown in
Figure 1.

2.2 Process Structure Model

To model a dynamic engineering process, we partition the process model into two
layers. The top layer is a project plan model and the bottom layer represents a library
of workflow models with a set of tasks.

A project is denoted as P=<Tp, Rp, SP, Rdp>, where Tp is the anticipated time sched-
ule of the project, Rpis the organizational property that will be defined in section 2.3,
SP is a set of activities, Rdp are ordering relationships among activities which are de-
fined according to a general project model such as CPM (Critical Path Method).

An activity can be complex or simple. The definition of a complex activity is similar
to a project. A simple activity is denoted as ap=<Ta, Ra, TA>, where Ta is the time scope
defined for the activity, Ra is the organizational property. TA={tap1, tap2, … , taph}, in
which tapi is a task of activity ap and ap is also called the parent of tapi (denoted as ap=
↑(tapi)). A task can be expressed as ta=<at, ct, I, O, Rt>, where at is an operation (de-
fined for artifact type of ct), ct is an artifact, I is the input artifact set of this task, O is
the output set of this task and Rt is the organization property of this task. There are no
ordering relationships defined among the tasks of an activity.

In an artifact structure model, for each operation defined for an artifact type, we
should specify it’s content as:
(1) applications or services that are possibly conducted by a person,
(2) invoking a service by the system automatically, or
(3) workflow models that can fulfill the operation.

The process structure model is shown in Figure 2. A project model consists of ac-
tivities and their relationships and it provides high level ordering constraints for the
entire engineering process. While at the lower level description, tasks are fulfilled by
invoking applications and services by a person or by a structured workflow.

2.3 Organizational Structure Model

A project, activity or task is usually allocated to an organizational unit for execution.
Organizational structure reflects the project process structure and management struc-
ture.

Each participant can be assigned several roles. Team te=<TR, TM, TF> is defined as
a triple, in which TR represents a role set, TM is an actor set, and TF ⊆ TR ×TM repre-
sents the enabled roles of the members TM in team te.

2.4 Resource Model

The resource managed by a notification server includes applications and services.
Applications and services are registered in the notification server. For a public service
in an engineering process, its address and the embedded methods should be regis-
tered so that other applications can find this service.

3 Event Capturing and Transforming

Notification mechanism has been defined in OGSA [2]. An important aspect of this
notification model is the tight integration with service data: a subscription operation is
a request for subsequent “push” delivery of service data.

In addition to capture the notification of grid service, we should capture the context
of the notification, i.e., project name, the operations and the artifact affected. A service
can specify the context information by adding a special service data type as follows:

<complexType name="EventDataType"><sequence>
 <element name=”ProjectName” type=”string”/>

Project Model

Workflow Model

Workflow
Library

Task

Activity

Application Service Service

Fig.2 Process Structure Model

<element name="ArtifactName" type="string"/>
 <element name="OperationName" type="string"/>
 </sequence></complexType>

When a method of this service is invoked, the values of the related service data
elements (EventData) should be set and pushed to the notification sink.

Activities and tasks have different states. When an activity changes from one state
to another, events will be triggered. These events are generated by a process engine
and distributed by the notification server.

The events captured can be transformed into other events according to the busi-
ness requirements. We provide a transformation rule in the following form:

On Event Expression If Condition Then RaiseEvent (e)
An event expression is composed of a set of event filters. A Condition is a con-

junction of the constraints, which define the relationships among parameters of differ-
ent event types. Action RaiseEvent will produce a new event.

4 Event Notification

After an event has been captured, the concerned individuals or applications should be
notified to deal with the event. We assume that each event is related to at least an
artifact or an activity, i.e., in the definitions of an event type, there is an attribute that
indicates at least an artifact or an activity to which this event targets upon. If the event
is related to an artifact c0, then we can find other related artifacts through the depend-
ency relationships among them. Suppose they compose a set C. To receive the neces-
sary notifications for application services of a task, they should be registered at the
notification server regarding the locations where these applications reside. Events
related to the artifact c0 will be broadcasted to these applications if their related arti-
facts are in C.

In order to notify the individuals , who are the task owner of particular tasks, when
events related to artifacts happen, we should find the tasks directly related to these
artifacts and notify the task owners. Because we have defined the input for each task,
it is quite straightforward to find those tasks that are waiting for the events.

5 System Structure of Notification Server

The system architecture based on grid service platform for a notification server is
shown in Figure 3. A user joins an engineering cooperative process through a per-
sonal workspace. In the personal workspace, a user can invoke different applications.
These applications in turn can invoke services that are running in different grid service
containers. A notification server consists of a set of grid services. An event receiver
service is running to gather events from distributed services and it will store all the
events gathered and recorded the events into an event history. Once an application
starts running, it will create an application broker within the notification server. An

application broker monitors the event history and determines whether the server
should notify the application based on the awareness model. Similarly, a personal
broker is created by each personal workspace. A personal broker will also monitor the
event history and notify the personal workspace based on the awareness model. As
for each project, a project service instance will be created. The project service instance
provides methods to be invoked by the personal workspaces, generates the events
and coordinates the tasks according to the process logics. A set of facility services is
also provided by a notification server. These services include modeling service and
management service. A user can revise the project model, initiate a project and manage
the project process through these facility services.

6 A Case Study

We have built a simple demonstration to illustrate the engineering service notification
model. This case example demonstrates a grid based coordination system for facilitat-
ing a building design process. The project manager can define or update process plan
through MS Project software. The process plan can be checked in to a grid repository
service (Figure 4 a). The repository service will generate an event to the notification
server. Notification server sends this event to AutoCAD software, which can be used
to design and display different phases of the facility (Figure 4 b, c).

The distributed coordination framework for this example demonstration is devel-
oped based on Globus Toolkit 3.0. Specific gateways are developed to connect the

Service
Container

Event
History

Integrated
Model

Workflow
Library

User

Event Re-
ceiver

Modeling
Service

Project
Instance

Personal
Workspace

Application Application
Broker

Application
Broker

Container
Service
Instance

Project
Instance

Personal
Broker

Personal
Broker

User

Fig.3 Notification Server Structure based on Grid Service Platform

Management
Service

Personal
Workspace

Application

Container
Service
Instance

software applications into a grid service. For example, we developed gateway plug-ins
for MS Project and AutoCAD using Microsoft’s .NET framework.

7 Related Works

There are many event notification servers [6]. Three representative examples are
CASSIUS, Elvin and Siena [7]. CASSIUS was tailored to provide awareness informa-
tion for groups. Elvin was originally developed to gather events for visualizing distrib-
uted systems, but it evolved later into a multi-purpose event notification system. Siena
emphasized on event notification scalability in distributed environments. Our notifica-
tion server model aims to coordinate and support engineering process in which an
awareness model is designed with built-in knowledge. Another characteristic of our
model is that the notification server is based on service computing paradigm that is
not investigated by other approaches.

A product awareness model, Gossip, was intended to support the development
process [8]. Gossip included a shared composite product model with rules of aware-
ness information. Product object and awareness relation are registered in Gossip. Our
artifact model is similar except our awareness model also includes process sub-model,
organizational sub-model and resource sub-model.

Recently, a white paper describing a method based on a notification mechanism of a
web service has been proposed [9]. The NotificationBroker in that model is conceptu-
ally quite similar to our notification server. However, no detailed descriptions on their
model, nor any implementations guidelines, are provided.

8 Conclusions and Future Work

This paper proposes a solution based on an event notification model of grid services.
Current grid service technology only emphasizes on cooperative computation. The
proposed model extends the grid service to support cooperative work of individual

Fig.4 A Case Study

a b

c

human participants during a complex engineering process. Based on the awareness
model, a notification server can not only broadcast events to the interested parties to
support cooperative work, but also support process control that is important for an
engineering process. Our future work includes developing a notification server to
support more expressive event transformation rules in a dynamic engineering process.

Acknowledgement

This work was performed while the first author was visiting Stanford University. The
authors would like to thank Mr. Jim Cheng for providing the data and the building
model.

References

1. Foster, I., Kesselman, C., The Grid: Blueprint for a New Computing Infrastructure, Mor-
gan Kaufmann (1999)

2. Foster, I., Kesselman, C., Nick, J., Tuecke, S., The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration, Globus Project,
http://www.globus.org/research /papers/ogsa.pdf, (2002)

3. Graham, S., Simeonov, S., Boubez, T., et. al. , Building Web Services with Java: Making
Sense of XML, SOAP, WSDL, and UDDI, SAMS (2001)

4. Dourish, P., Bellotti, V., Awareness and Coordination in Shared Workspaces, Conference
Proceedings of Conference on Computer Supported Cooperative Work, Toronto, Ontario,
Canada, (1992) 107-114

5. Steinfield, C., Jang, C. Y., Pfaff, B., Supporting Virtual Team Collaboration: The Team-
SCOPE System. Proceedings of GROUP Conference, Stockholm, Sweden, (1999) 81-90

6. Cugola, G., Nitto, E., Fuggetta, A., The JEDI Event Based Infrastructure and Its Applica-
tion to the Development of the OPSS WFMS. IEEE Transactions on Software Engineer-
ing, Vol. 27(9) (2001) 827–850

7. Cleidson, R. B., Souza, D., Santhoshi, D., et. al., Supporting Global Software Develop-
ment with Event Notification Servers, Proceedings of the ICSE 2002,
http://citeseer.ist.psu.edu /desouza02 supporting.html, (2002)

8. Farshchia B. A., Gossip: An Awareness Engine for Increasing Product Awareness in
Distributed Development Projects, http:// www.idi.ntnu.no/~ice/publications/caise00.pdf,
(2000)

9. IBM, Publish-Subscribe Notification for Web services, http://www-
106.ibm.com/developerworks/ library/ws-pubsub/ WS-PubSub.pdf, (2004)

