Development of Semantic Web Services
at the Knowledge Level

Asuncién Gémez-Pérez', Rafael Gonzélez-Cabero', and Manuel Lama’

'Departamento de Inteligencia Artificial, Facultad de Informatica.
Campus de Montegancedo s/n, Universidad Politécnica de Madrid.
28660 Boadilla del Monte, Madrid. Spain.
asun@fi.upm.es, rgonza@delicias.dia.fi.upm.es
*Departamento de Electrénica e Computacién, Facultad de Fisica.
Campus Universitario Sur s/n, Universidade de Santiago de Compostela.
15782 Santiago de Compostela, A Coruiia.
lama@dec.usc.es

Abstract. Web Services are interfaces to a collection of operations that are
network-accessible through standardized XML messaging, and whose features
are described using standard XML-based languages. Semantic Web Services
(SWS) describe semantically the internal structure and the functional/non-
functional capabilities of the services, facilitating the design and evaluation of
SWSs based on that semantic description of the features of the services. To en-
able users to design and compose SWSs at the knowledge level, the ODE SWS
framework has been proposed. That framework uses problem-solving methods
to describe the functional and structural features of the SWSs. In this work, we
present a description of the ODE SWS environment as an implementation of the
ODE SWS framework. Specially, we focus on the description of the capabilities
of the SWSDesigner, the tool of the ODE SWS environment that enables users
to design graphically SWSs through different but complementary views of the
services.

1 Introduction

Web Services (WSs) are interfaces that describe a collection of operations that are
network-accessible through standardized Web protocols, and whose features are de-
scribed using a standard XML-based language ([1,2]). These features are the follow-
ing: (1) communication features describe the protocols required to invoke the service
execution; (2) descriptive features detail the e-commerce properties; (3) functional
features that specify the capabilities, enabling thus for an external invoking agent to
determine whether the service execution can obtain the requested results; and (4)
structural features describing the internal structure of a composite service, that is,
which are its structural components and how those components are combined among
them to execute the service.

In this context, the Semantic Web [3] has risen as a Web evolution where the in-
formation would be directly machine-readable to enable software agents to access to
it. Following this approach, Web Services in the Semantic Web, so-called Semantic

L.-J. Zhang and M. Jeckle (Eds.): ECOWS 2004, LNCS 3250, pp. 72-86, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Development of Semantic Web Services at the Knowledge Level 73

Web Services (SWSs), must be described using an ontology that is expressed in a
semantically enriched markup language [4]. This semantic description will facilitate
external agents to understand both the functionality and the internal structure of the
services to be able to discover, compose, and invoke SWSs [5]. The markup language
could be OWL [6], but it must be combined with WS standard languages to be able to
use the current infrastructure of the WS [7]. Following this approach, the OWL-S [8]
specification (formerly DAML-S [9]) has been proposed to describe services in a
semantic manner, using OWL in combination with WSDL [10] and SOAP [11].

However, as a previous step to the specification of SWS in a semantic Web-
oriented language, the SWS should be designed at a knowledge or conceptual level
[12] to avoid inconsistencies or errors among the services that constitute the SWS. In
this context, SWS design consists in specifying the descriptive, functional, and struc-
tural features of a service. Currently, there are some proposals to edit/design SWSs,
but the main drawback of these available editing tools is that they operate at the repre-
sentation level, so the following problems may arise:

— These tools are language-dependent, like the WSMO Editor [13], this means that:
(1) SWSs designed with these tools are less reusable, because the design can be
constrained with the chosen language characteristics, meaning that the basic sepa-
ration between design-implementation phases is broken; and (2) the designs are
more prone to inconsistencies or errors that designs at the knowledge level.

— Many tools that claim to be SWSs editors are not actually more than mere ontology
editors, like the widespread option of OWL-S development with the OWL plug-in
for Protegé-2000 [14]. This option not only suffers from all the problems enumer-
ated above, but also adds the problem of working with an ontology instantiation,
not with a SWS-like structure.

To solve those drawbacks, we have proposed a framework, called ODE SWS [15], for
design of SWSs at knowledge and independent-language level. This framework is
based on: (1) a stack of ontologies that describe explicitly the different features of a
SWS; (2) a set of axioms used to check the consistency and correctness of the ontol-
ogy instances, and, thus, of the service represented by the ontologies; and (3) the
assumption that a SWS is modeled as a problem-solving method (PSM) that describes
how the service is decomposed into its components, and which is the control of the
reasoning process to execute the service.

In this paper, we describe the architecture of ODE SWS for design of SWSs, and
specially, we focus on the capabilities of SWSDesigner, a tool that is the user inter-
face of ODE SWS. SWSDesigner uses PSM-alike views for describing the SWSs and,
the service is designed thus by filling the SWS definition; specifying its associated
task (interaction and logic diagrams); creating the overall task hierarchy (decomposi-
tion diagram); building both the associated method internal dataflow (knowledge flow
diagram) and the coordination of the execution of its subtasks (control flow diagram).

This paper is structured as follows: in the following section the ODE SWS frame-
work is presented; then, we show the functionalities of the environment that imple-
ments the ODE SWS framework: its architecture and current modules are described,
paying special attention to the SWSDesigner graphical editor. Finally, we summarize
the main contributions of the paper.

74 A. Gémez-Pérez, R. Gonzalez-Cabero, and M. Lama

2 ODE SWS Framework

The aim of designing SWSs is making explicit the features previously mentioned and
specially each one of its structural components, guaranteeing the correctness of the
proposed design, and avoiding the inconsistencies. For that, we will need to perform
inferences about the service features to determine whether the proposed design is
correct. This means that the service features (and the service itself) should be explic-
itly and semantically described, and, for it, the use of ontologies seems to be the most
appropriate solution. This approach has been also followed by other authors [8], who
use a semantic-enriched markup language to create an ontology (OWL-S) that de-
scribes the service features.

UDDI OWL-S WSDL/SOAP
(publishing) (description)

SWS Ontology
(DAMLS-Based)

PSM Description Ontology
(UPML-Based)

Programming Ontology

Knowledge Representation Ontology
(WebODE KR)

Data Types Ontology
(XSD-Based)

Fig. 1. Ontology set identified in the ODE SWS framework [15] to SWS design. These ontolo-
gies have been developed based on well-known specifications and de facto standards

Figure 1 shows the stack of ontologies proposed in the ODE SWS framework [15,23]
to describe all the features of a SWS (and the service itself). To construct these on-
tologies well-known specifications or de facto standards have been used. This will
favor the interoperability of the ODE SWS framework with applications or solutions
constructed following one of those specifications.

Problem-Solving Method Ontology

Problem-Solving Methods (PSM) [16,17] are knowledge components reusable among
different, but related, domains and tasks. The Unified Problem-solving Method Lan-
guage (UPML) [18] is a de facto standard that describes the components of a PSM as:
(1) tasks, they describe the operation to be solved in the execution of a method that
solves such task, specifying the input/output parameters and the pre/post-conditions
(competence) required to be applicable (this description is independent of the method
used for solving the task); (2) methods, elements that detail the control of the reason-
ing process to achieve a task; and (3) adapters [19] specify mappings among the

Development of Semantic Web Services at the Knowledge Level 75

knowledge components of a PSM. The adapters are used to achieve the reusability at
the knowledge level, since they bridge the gap between the general description of a
PSM and the particular domain where it is applied.

Based on the UPML specification we have created a PSM ontology that enhances
the description of the UPML elements. Some additions or differences are: new rela-
tionships between tasks and methods are defined, a set of program elements to specify
the control flow of a composite method are defined, we define a combination of them
that allow us to derive several basic workflow-like patterns [20,21], like sequence or
exclusive and multiple choice, the domain ontology is managed in a different manner.

OWL-S

Ontology Semantic Web
Service
supports I I described By
l presents
‘ Grounding [Profile | Model
PSM hasTask hasMethod
Ontology

describesProfile describesMethod|

Knowledge element

N

inputElement

[

‘ Adapter | Task solves
usesFormula 1o Corhrock
Composite|
Ontology method
element lecomposedBy
Primitive | |
method

Fig. 2. Semantic Web Service ontology and its relationship with the PSM description ontology,
where tasks will be used to represent the functional features of a SWS, and methods to describe
the internal structure and control flow of that service [15]

Semantic Web Service Ontology

As Figure 2 shows, SWS ontology replicates the upper-level concepts of the OWL-S
ontology, so we consider: (1) profile contains all the descriptive and functional fea-
tures, and it is establishes a relationship with a task of the PSM ontology; (2) model
deals with the internal structure of the service, which will be executed by a method
that defines an operational description to solve the task related to the functional fea-
tures of the service; and (3) grounding, which specifies the access protocol and the
necessary message exchanges to invoke the service.

76 A. Gémez-Pérez, R. Gonzalez-Cabero, and M. Lama

2.1 Framework for SWS Design and Composition

The proposed framework for SWS [15] design and composition is directly based on
the stack of ontologies that describe the features of a SWS. The ODE SWS frame-
work details how to create a SWS with the capabilities required by an external agent
or user. The main elements of the framework are (Figure 3):

1. Instance model. Design of SWSs means to instantiate all the ontologies that de-
scribe what a service is: the domain ontology used by the service is instantiated in
both data types and knowledge representation ontology, whereas the service fea-
tures are instances of both PSM and SWS ontologies. The whole instances consti-
tute a model that specifies the SWS at the knowledge level.

2. Checking model. Once the instance model has been created, it is necessary to guar-
antee that the ontology instances do not present inconsistencies among them. De-
sign rules will be needed to check this, particularly when ontology instances have
been created automatically.

3. Translate model. Although a service is modeled at the knowledge level, it must be
specified in a SWS-oriented language to enable programs and external agents to
access to its capabilities.

This framework enables the (semi) automatic composition of SWSs using (1) PSM
refiners and bridges to adapt the PSM ontology instances to the required capabilities
of the new service; and (2) design rules to reject both PSM and SWS ontology in-
stances that present errors or inconsistencies among them. Design rules are used to
reduce the service candidates combined to obtain the new service.

inference translation
(WebODE) (WebODE)

instance
model

!

ODE SWS
(graphic interface)

Fig. 3. Framework for design and composition of SWSs based on the ontologies that describe
the service features

Development of Semantic Web Services at the Knowledge Level 77

3 ODE SWS Environment

Following the ODE SWS framework, a highly modularized, scalable and dynamic
environment for development of SWSs called ODE SWS [22,23] has been imple-
mented. Its architecture and functionalities will be thoroughly explained in the forth-
coming sections.

3.1 ODE SWS Architecture

The architecture of the ODE SWS, as Figure 4 shows, is composed of three main
layers, which reflect the layers introduced in a software design [24]:

Presentation Layer. This layer is about how to handle the interaction between the
user and the software system. This layer is entirely composed by the SWSDesigner
graphical editor that manages a graphical model (SWSGM) of the SWS. Its main
functionalities are: (1) the appropriate management and representation of the model;
(2) graphical processing of all the possible interactions among the elements that com-
pose such model; and (3) the management of the graphical elements of the ODE SWS
environment. Any other functionality is delegated to the appropriate ODE SWS mod-
ules of the domain layer.

|1 Presentation
Laver
" 0DESWS
SWSDesigner
N i e i
¥
y h 4 SW§
SWS SWs Workspace S
X oo SWS
Ontologies [*® Mappings Translator Domain
Manager Manager t Faver
[[SWS vy
Instance
Creator
'y
¥ ¥ ¥ ¥
|1 Data Source
Layver
" WebODE '

Fig. 4. Software architecture of the ODE SWS environment for the development of Semantic
Web Services

78 A. Gémez-Pérez, R. Gonzalez-Cabero, and M. Lama

Domain Layer. This layer contains all the components that work in the domain of the
ODE SWS application (i.e., SWSs), and, consequently, most of ODE SWS modules
will be located in this layer. SWSDesigner directly will invoke the execution of the
ODE SWS modules to support the execution of an operation needed to guarantee a
correct design of the service. The intended functionalities of each of these compo-
nents are:

— SWSOntologiesManager. The purpose of this module is both to offer a uniform
manner for accessing to ontologies implemented in different languages, and to en-
able ODE SWS to access to different repositories of ontologies. Therefore, this
module guarantees the language and technology independence for the ontologies
managed in the development of the service. Currently this module can manage ei-
ther ontologies implemented in RDF(S), DAML+OIL and OWL, or ontologies
stored in the WebODE platform [25]. Note that this module is part of the domain
layer because the ontologies that it manages are stored in the source repository.

— SWSMappingsManager. The objective of this module is to manage mappings,
which will be (semi) automatically defined between the elements of the task on-
tologies and the elements of the method and domain ontologies.

— SWSWorkspace. While the user is developing a SWS, an incomplete (even incon-
sistent) service may be stored and managed. This module performs these activities,
enabling thus the store and recovery of ongoing SWSs.

— SWSinstanceCreator. This module creates the instances of the stack of ontologies
that describe the SWSs from the graphical representation of the service generated
by the SWSDesigner.

— SWSTranslator. This module implements the translation model of the framework.
Once the SWS has been modeled at the knowledge level, it must be translated to a
SWS-oriented language to enable other programs or agents to understand its capa-
bilities. So, once the SWS has been created using SWSDesigner, the user asks for a
list of available translators. After that, this module receives which is the selected
translator, the desired output format, and the graphical representation model of the
SWS to be translated. SWSTranslator generates the translation and, additionally, it
incorporates information about the different problems that may have arisen during
the translation process. Note that it may use its own inner translators or even exter-
nal translation services, as it does with the export services of the WebODE plat-
form. At present, the translation to OWL-S and WSDL are available.

Data Source Layer. In this layer, other applications act on behalf of the ODE SWS
environment to provide support for operations do not implemented in the environ-
ment. For the ODE SWS environment, this layer will be just composed by the We-
bODE platform, which will provide services for the management and access to the
ontologies used in the development of the SWSs.

3.2 SWSDesigner

SWSDesigner is a graphical editor based on the assumption that the design and devel-
opment of a service should be performed from different, but complementary, points of
view. In the ODE SWS framework, as we have already stated, a service is described
instantiating a set of ontologies that describe all the SWS features. Taking this into

Development of Semantic Web Services at the Knowledge Level 79

account, SWSDesigner provides a user-friendly graphical interface with which the
user is completely unaware of the instantiation of the SWS ontologies. In this way, we
achieve the following objectives: (1) the service is defined at a high level of abstrac-
tion using PSMs to model the service features. This modelling enhances the quality of
the design, eases its evaluation and validation processes, and favours its reuse; and (2)
this design process is far more simple and less error prone than manipulating directly
instances of the different description ontologies.

As stated in the ODE SWS framework section, a service has its own descriptive
(non-functional) properties that are described by a task, whereas the description of
how this task (and the service) is supposed to be carried out is specified by a method.
As we will see, all this information can be gathered from the different views that the
SWSDesigner manages. To illustrate the functionalities of this tool, in the following
sections we will define a service for selling movie tickets.

Service Definition Panel. The service definition panel includes several kinds of in-
formation related to the declarative (or non-functional) service features and the prop-
erties of the providers. It includes (see Figure 5):

— Service definitions. The information of the service contained in its definition will
include: (1) information needed for the identification and description of the service
(i.e., name, description and URL); (2) descriptive features that will detail its e-
commerce properties (i.e., geographical location, commerce classification, service
provider, etc.); and (3) a summary table of services that contains information about
all the services in a condensed view.

— Provider definitions. The provider forms include information such as: (1) informa-
tion necessary for the identification and description of the provider (i.e. name, de-
scription); (2) descriptive features that detail its e-commerce properties (its geo-
graphical radius and code, and its commerce classification); (3) the contact persons
that can be assigned (and the ones that have been already assigned) to the provid-
ers, including all the contact data (name, phone, e-mail, fax, etc.); and (4) summary
table of providers that contains information about all the providers in a compacted
manner.

Furthermore, in the service definition panel, the description of the functionality (in-
put/output data) and the competence of the task associated with the service is intro-
duced. This description is achieved with two diagrams:

— Interaction diagram. In this diagram the input and output roles of the task are de-
fined. A role is an ontology element (concept or attribute), and it can be easily in-
serted into the diagram by just dragging-and-dropping them from the ontology tree.
Once it has been deployed, an edge between the role and the task can be created;
depending on the direction of this connection, the role is an input or an output of
the task. Unassigned roles are allowed.

— Logic diagram. In this diagram, the pre/post-conditions (competence) required by a
task to be applicable, and the effects of the execution of such task in the state of the
world are set. All these logical conditions are represented as different kinds of cells
of the graph, with edges going from the condition toward the task in the case of
pre-conditions, and with connections from the task to the cells when effects and
post-conditions are introduced.

80 A. Gémez-Pérez, R. Gonzalez-Cabero, and M. Lama

["x Cinema | | T Definition || & Decompasition | <% Knowletge Flaw |, Contral Flow |
[® cancepts © Senice | @ Provider |
Ticket
O ciy
® CreditCard Mew Service
Theater Hame: FindCinzma URL: v diafi.upm, esiodesws findeinema
O seat Description: Service usedtofindthe theater b QualkyRating: | |
® Timetable
¢ B movie | Apply Changes Reating Service: Geo-Radius: Madrid
© stienceiction
@ western Geo-Code: ES-MAD
@ Thriler
@ Drams ‘ Unda chenges |
@ comedy
Provider| Ginesa_w [Task| Task_Findcinema -]
‘ Delete Service |
Category name | Taxonom | walue | Code |
Cammercial and Entertainme. . [UNSPSC Theater 30221007
Service | Category | Provider | Geooraphical Radius| Guality | Access Point] |
BuyMovieTicket Commercial and Entertainment Structurss Cinesa Madrid http /. dlia.... |4
FindCinerna Cormercial and Entertainment Structures Cinesa Madric http:fikew. dia....
BuyTicket Personal credit agencies
Iﬁ pecifyPaymenthet.. Personal credit agencies BBV Spain
o CheckCreditCard Personal credit agencies BBV Spain
D year SelectSeat Commercial and Entertainment Structures Cinesa ES
it CheckTimeTable
D drector ChangeSeat4ssign... Commercial and Entertainment Structures Cinesa Masdriet http: M. dia... [+
T
-
= ion Diagram L = Logic Diagram

Fig. 5. Service definition panel with the descriptive and functional features of FindCinema

In the Figure 5, the service definition panel of the SWS FindCinema is shown. All the
descriptive information of the service can be introduced here. The task information is
introduced in the interaction diagram, indicating that the Task_FindCinema task re-
ceives two input roles: Movie_0, which is an instance of the concept Movie, and
City_0, which is an instance of the concept City. The output is an instance of the con-
cept Theater. These elements have been dragged-and-dropped from the ontology
trees; one of them shows the concepts, and the other shows the attributes of each
concept. Note that this ontology could be other ontology different of the domain on-
tology. As it will be explained, mappings between domain ontology elements and the
inputs/outputs of the task are set in the knowledge flow diagram.

Decomposition Diagram. The decomposition diagram enables the user to specify the

task hierarchy, that is, how the defined tasks are related to each other. This diagram

will be synchronized with the task tree, which will be visible for every SWSDesigner
view in the top right corner of the screen. There will be two possible representation
options:

— A task can be decomposed by a method in one or more subtasks. This view allows
user to specify the subtasks in which a task is decomposed by a composite method
that solves such task. This kind of relations is represented as an edge from the
subtasks to the task.

— A task specialises another task. In this case, the user will have to introduce an
adapter, more precisely a task-refiner, among the implied tasks. The properties of
the task-refiner could be edited by the user after its inclusion in the diagram.

Development of Semantic Web Services at the Knowledge Level 81

([Defintion | 4+ Decompasition | Knowledge Flow_ | ¢ Control Flowe | |[“g Methods Tree |
D i 78 Tasks Tree
T Task_BuyMovieTicket YN ||| [Tasks

— @ D Task_BuyMovieTicket
& @ © Task_BuyTicket

= @ Task_CommitPayment:
aQ & Task_SpecifyPaymentMe
& Method_BuyMovieTicket h

etoble
@ @ Task_Findinema
@ Task FindCinemas

{ask_FindCinema

Task_CheckTimetable

Task_FindCinemas P Task_CheckCreditCard ask_CommitPaymen YWl R AT e)
(f) Theater_0
® title_0

@ ciey_o

Task_SpecifyPaymentMethod

Task_SpecifySgatPreferences Task_ChangeSgatAssignment

Fig. 6. Decomposition diagram for the Task_BuyMovieTicket task that describes the functional
features of a given SWS

Figure 6 shows the overall task hierarchy for the selling movie ticket example. Thus,
to solve the composite task Task_BuyTicket, the tasks Task_CheckCreditCard,
Task_CommitPayment, and Task_SpecifyPaymentMethod might need to be accom-
plished. In the right corner of the screen, the task tree is shown. It allows the access to
the tasks in the other views. Note that this view does not impose any order of execu-
tion at all; it is set in the control flow diagram.

Knowledge Flow Diagram. The knowledge flow diagram shows the data flow
among the tasks in which a given composite method has been decomposed. It relates
(1) the inputs/outputs of a method to the inputs/outputs of its various component sub-
tasks; (2) the inputs/outputs of a subtasks of a given method with the inputs/outputs of
the other subtasks of such method; and (3) the domain ontology to the method and
tasks. Therefore, there will be three basic elements: roles, tasks and edges. Tasks can
be placed easily, just dragging-and-dropping them into the graph from the tasks tree.
The management of roles and edges must be made more carefully. Roles will wrap an
ontology element, and can be inserted into the diagram by just dragging-and-dropping
them from the ontology tree. Depending on different possible combinations, three
plausible scenarios are distinguished:

— Unassigned Roles. When a role is isolated, that is, there are no connections either
going out from it or pointing at it, the role does not affect the model at all. This
kind of roles is allowed just for user convenience.

— Inner Roles. This situation occurs when a role is input of a task and at least output
of another task. It might be viewed as an inner message between elements inside
the method. Here, a domain-task bridge, which maps the ontology element
wrapped by the role with the input/output of the affected tasks, is created.

— External Roles. These roles are either inputs or outputs of a task, but not inputs of a
task and outputs of another tasks. Therefore, these roles must be provided to the
method, if it is going to be invoked, because it is not a data flow between tasks, but
these roles are related to output and output messages from or towards the method.

82 A. Gémez-Pérez, R. Gonzalez-Cabero, and M. Lama

Two adapters are created in this situation thus, a domain-task bridge (as in the case
of the inner role) and a domain-method bridge.
To ease the management of the different kind of roles and the different mappings that
may appear, the knowledge flow diagram offers two useful tools:

— Summary diagram. This diagram is automatically updated each time a user does
some kind of manipulation in the knowledge flow diagram (a role is inserted, an
edge is removed, etc.). It shows just the external roles, allowing the special and
separate handling of them.

— Mapping generator. When a user creates an edge from a role to a task (or vice
versa), an adapter between this role and a role of the task interaction diagram is
created. The role of the interaction diagram origin or destination of this binary re-
lation must be directly asked via interface to the user. The mapping generator will
obtain automatically the plausible candidates.

% Cinema | r@Deﬁni{inn | & Decomposition | 73 Knowledge Flow [, Control Flow |
@ city
53]
© seat 2 ——
@ 2 —
S
© western izl

Concepts X Method_BuyMovieTicket r’ x Method_FindCinema r’ x Method_SelectSeat r % Method_BuyTicket
@ credicard
@ B Movie e
® Thriler

I Fle Service Ontology
© Ticket
UserCreditCard
® scienceFiction
® Drams

@ Comedy

Task_CheckTimetable Y

Mavie

D || mETy T e Timetable .
-2 | L AL
@ director = UserCreditCard Task_SelectSeat JREEN

lgename Rols
Remove

type:CraditCard type Seat

Fig. 7. Knowledge flow diagram for the composite method Method_BuyMovieTicket that shows
the input/output interaction among the sub-tasks of the method

The knowledge flow diagram of the method Method BuyMovieTicket is shown in
Figure 7. The roles of this diagram are linked to the method (and domain) ontology
elements, and each connection with a task has a mapping, a domain-task bridge be-
tween a domain element and a task input or output role. For example, in Figure 5 we
have shown the interaction diagram of the task Task_FindCinema. Its output was
Theater_0, an instance of the concept Theater. In the knowledge flow of the method
Method_BuyMovieTicket, let us introduce an edge between the role Theater and the

Development of Semantic Web Services at the Knowledge Level 83

task Task_FindCinema. In that case, as Figure 8 shows, the Mappings generator will
offer the candidate list (the output role Theater_0) and the user could create a new
interaction diagram role to map with the role Theater. We choose Theater_0, and a
domain-task bridge is created. It will map the Theater concept of the domain ontology
with the Theater concept of the ontology that was used to create the task definition.

Mappings Generator x|

Select a task role to map with

& Theater_0 M
Theater_0
Theater s ‘

Task_FindCinema m

Fig. 8. The Mapping generator that presents the candidate list of possible mappings to be se-
lected by the user

Control Flow Diagram. The control flow diagram is part of the method definition
that solves the task related to the service. In this view, the user specifies the flow
control of a method, where its sub-tasks are combined with programming structures to
obtain a description of the service execution. In other words, this diagram describes
how a composite method uses its sub-tasks in order to achieve its capability. The set
of program elements that can be introduced in the control flow diagram are: (1) con-
dition, depending on a logical condition, the true or false branch is chosen; (2) condi-
tional loop, the true branch is executed till a determined boolean expression is false;
(3) split, a new thread of execution is created for each output branch; and (4) join,
synchronize or serialize various input execution tasks to one same output.

= | o ition | 23 Flow | *; Control Flow | g Wethods Tree

x Method_BuyTicket || x |Method_SelectSeat || x [Method_BuyMavieTicket | T4 Tasks Tree |

2 D Tasks

Pl & @ Task_BuyMovisTickst
ﬂ @ @ Task_BuyTicket
E o s s s) Task_CommitPayment
I Q) Task_SpecifyPaymenthet|
E . - = - & Task_CheckcreditCard
| @ @ Task_selectseat
E i Task_Changeseatassignn

&) Task_SpecifySeatPrefersy
@ Task_CheckTimatable

@ @ Task_FindCinema
D Task_Findcinemas

Task_CheckCreditCard §

L L : :
- Hew Condition S

L L L ¥ . . L Hew Task

T | O newTak |
R iask_CommitPayment Y0 I . 5 | 4 new Conditionalloop |

T A Hew split @ Task_BuyTickst
L L L L L L 1 @ ewion L () ReservedSsat

() UserCreditCard

() Seat

Fig. 9. Control flow diagram for the method that will solve the Task_BuyTicket task associated
with a given service

84 A. Gémez-Pérez, R. Gonzalez-Cabero, and M. Lama

Figure 9 shows the control flow diagram of the method Method_BuyTicket. First, the
details of the payment are set. The next step is to check whether the credit card can
afford this payment or not. If it is possible, this credit card must be charged.

Once the user has designed the service following all the complementary views pro-
vided by the SWSDesigner, it is necessary to translate that service from the graphical
representation into a semantic-oriented language such as OWL-S or WSMO. To en-
able this translation, the SWSDesigner invokes the SWSInstanceCreator execution,
which uses the graphical model of the SWS to create the instances of the SWS de-
scription ontologies. Then, the SWSTranslator is invoked to translate these instances
into the language selected by the user (currently OWL-S). Figure 10 shows the OWL-
S specification of the service BuyMovieTicket that has been automatically generated
by the SWSTranslator.

| e servics ontology

X Cinema |

ﬂEDeﬁnninn r ,'E Decomposition r E Knowledye Flow I/fa Control Flow

Se?”;‘?"kt:t H [x [Method_BuyMovieTicket | x Method_BuyTicket |
ic
gé‘:‘;’ditcm 73 OWLS Export Dialog % =
@ Theater Process | Service | Profile | Grounding | WSDL |
© seat JArocess: AtomicFracess
® Timetable <process:UnConditionaloutput rdf: about="http: fke dia. fi.upm, es/odeswsiBuyMovieTicket Task_BuyMovieTicketProcess, owl# Seat_0_Task_BuyMovieT|
[© rMovie <process:parameter Type rdf resource="http://domainOntologyMamespace# Seat”/ >
@ scienceF «jprocess: UnConditionalOukput=

<process:CompositePracess rdf:about="http: ke, dia.Fi.upm. esfodesws(BuyMovieTicket Task_BuyMovieTicketProcess. owl# Task_BuyMovieTicket">
@ western =process:hasOutput rdf:resource="http: {fkw.dia. i, upm, s fodesws BuyMovieTicket Task_BLyMovieTicketProcess, owl#Seat_0_Task_BuyMovieTicket_|
@ Thriler <processisametalusss
@ Drama <rdf:List>
@ Comedy <rdf First >
<process YalueOf =
<process:theParameter >http: | fkw.dia, fi.upm. esfodesws/BuyMovieTicket Task_BuyMovieTicketProcess,owl#SelectedSeat_Task_BuyTicket_Input
<process:atProcess shttp: ke, dia. Fi.upm.esjodesws BuyMovieTicket Task_BuyMovieTicketPraocess, ovwl#Task_BuyTickst</pracess atProcesss
<jprocessi¥alus0f =
<frdf:first>
< frdf:List>
<fprocess:samevalues >
=process:samevalues>
<rdfilist>
<rdfifirst
<process valueOf >
<process:atProcess =http: [fke. dia.Fi.upm.esfodesws/BuyMavieTicket Task_BuyMovieTicketProcess. owl#Task_FindCinema-<jprocess:atProcess=

Movie =process:theParameter =http:jkw.dia.Fi.upm.esjodesws BuyMovieTicket Task_BuyMovieTicketProcess.owl#Theater_0_Task_FindCinema_Cutpu

@ vear <.ipru_cess:\u'a\ueOF>
@ title <frdf:first>
i <rdfirests
@ drector <rdfiList>
<rdfifirst>

<pracess¥alusOf >
=process:theParameter =http:/ ke, dia fi.upm.esfodesws/BuyMovieTicket Task_BuyMavieTicketProcess,owl#Mavie Taview_Task_CheckTimetabl
<process:atProcess=http: ik, dia.fi.upm.es/odeswsBuyMaovieTicket Task_BuyMovieTicketProcess. owl#Task_CheckTimetable </process: atPro
<fprocess:valueOf »
<frdf:first>
<rdf
A [

Fig. 10. OWL-S specification of the service BuyMovieTicket. The SWSTranslator automati-
cally generates this specification through the SWSDesigner

4 Conclusions

Current tools that enable users to design SWSs depend on the capabilities of repre-
sentation and reasoning of a specific SWS-oriented language. Those tools are con-

Development of Semantic Web Services at the Knowledge Level 85

strained by the language expressiveness; the service must be designed using the capa-
bilities provided by the language in which will be expressed. Furthermore, users usu-
ally introduce both errors and inconsistencies, which could be minimized using tools
that operate at the knowledge level.

Consequently, to solve these problems, in this paper we claim to design SWSs at
the knowledge level, and to provide tools to facilitate the design SWSs in a language-
independent manner. For it, we have developed the ODE SWS conceptual framework
and the environment that supports such framework. Using the graphical interface of
the ODE SWS environment, called SWSDesigner, users can introduce in an easy
manner the descriptive and functional features of the service, as well as, the internal
components and how those components are coordinated among themselves to execute
the SWS. Once the service is completely designed, and following the ODE SWS
framework, it will be checked to detect inconsistencies and/or errors that could be
present in the user design. If they are not detected, user will select the language (cur-
rently WSDL and OWL-S are supported) in which the SWS will be expressed.

Acknowledgements. Authors would like to thank the Esperonto project (IST-2001-
34373) for their financial support in carrying out this work.

References

1. Kreger, H.: Web Services Conceptual Architecture (WSCA 1.0). IBM Software Group.
http://www.ibm.com/software/solutions/webservices/pdf/WSCA.pdf (2001)

2. Curbera, F., Nagy, W.A., Weerawana, S.: Web Service: Why and How?. Proceedings of
the OOPSLA-2001 Workshop on Object-Oriented Services. Tampa, Florida (2001)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American. 284
(2001) 34-43

4. Mcllraith, S.A., Son, T.C., Zeng, H.: Semantic Web Services. IEEE Intelligent Systems. 16
(2001) 46-53

5. Hendler, J.: Agents and the Semantic Web. IEEE Intelligent Systems. 16 (2001) 30-37

6. Dean, M., Schreiber, G. (eds.): OWL Web Ontology Language Reference. W3C Candidate
Recommendation. http://www.w3c.org/TR/owl-ref (2004)

7. Sollazo, T., Handshuch, S., Staab, S., and Frank, M.: Semantic Web Service Architecture —
Evolving Web Service Standards toward the Semantic Web. Proceedings of the 15" Inter-
national FLAIRS Conference. Pensacola, Florida (2002)

8. The OWL Services Coalition: OWL-S 1.0 Release: Semantic Markup for Web Services.
http://www.daml.org/services/owl-s/1.0/owl-s.pdf (2004)

9. Ankolenkar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D.L., Mcllraith, S.A., Nara-
yanan, S., Paolucci, M., Payne, T., Sycara, K., Zeng, H.: DAML-S: Web Service Descrip-
tion for the Semantic Web. Proceedings of the First International Semantic Web Confer-
ence. Sardinia, Italy (2002) 348-363

10. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Service Description
Language (WSDL) 1.1. http://www.w3c.org/TR/2001/NOTE-wsdl-20010315 (2001)

11. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.F., Thatte,
S., Winer, D.: Simple Object Access Protocol (SOAP) Version 1.1.
http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508 (2000)

12. Newell, A.: The Knowledge Level. Artificial Intelligence. 18 (1982) 87-127

86

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

A. Gémez-Pérez, R. Gonzalez-Cabero, and M. Lama

Lausen, H., Felderer, M., Roman, D. (eds.): Web Service Modeling Ontology (WSMO)
Editor. http://www.wsmo.org/2004/d9/v01 (2004)

Noy, N., Fergerson, R-W., and Musen, M.A.: The knowledge model of Protégé-2000:
Combining interoperability and flexibility. Proceedings of the 12" International Conference
in Knowledge Engineering and Knowledge Management (EKAW’00). Lecture Notes in
Artificial Intelligence, Vol. 1937. Juan Les Pins, Francia (2000) 17-32

Goémez-Pérez, A., Gonzilez-Cabero, R., Lama, M.: A Framework for Design and Compo-
sition of Semantic Web Services. Proceedings of the AAAI Spring Symposium on Seman-
tic Web Services. AAAI Press, Stanford, California (2004) 113-121

Benjamins, V.R., Fensel, D.: Special Issue on Problem-Solving Methods. International
Journal of Human-Computer Studies. 49 (1998) 305-313

Motta, E.: Reusable Components for Knowledge Mdelling. IOS Press, Amsterdam, The
Netherlands (1999)

Fensel, D., Motta, E., van Harmelen, F., Benjamins, V.R., Crubezy, M., Decker, S., Gas-
pari, M., Groenboom, R., Grosso, W., Musen, M.A., Plaza, E., Schreiber, G., Studer, R.,
Wielinga, B.: The Unified Problem-Solving Method Development Language UPML.
Knowledge and Information System. 5 (2003) 81-131

Fensel, D.: The Tower-of-Adapter Method for Developing and Reusing Problem-Solving
Methods. Proceedings of the 10" Knowledge, Modeling and Management Workshop. Lec-
ture Notes in Computer Science, Vol. 1319. Springer-Verlag, Berlin Heidelberg (1997) 97—
112

van der Aalst, W.P., van Hee, K.: Workflow magament — Models, Methods, and Systems.
MIT Press. Cambridge, Massachusetts (2002)

van der Aalst, W.P., ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow pat-
terns. Distributed and Parallel Databases. 14 (2003) 5-51

Corcho, O., Ferndndez-Lopez, M., Gomez-Pérez, A., Lama, M.: An Environment for De-
velopment of Semantic Web Services. Proceedings of the IJICAI-2003 Workshop on On-
tologies and Distributed Systems. http://CEUR-ORG.com/Vol-71. Acapulco, México
(2003) 13-20

Corcho O., Fernandez-Lépez, M., Gémez-Pérez, A., Lama, M.: ODE SWS: A Semantic
Web Service Development Environment. Proceedings of the VLDB-2003 Workshop on
Semantic Web and Databases. Berlin, Germany (2003) 203-216

Fowler, M.: Patterns of Enterprise Application Architecture. Addison Wesley (2003)
Arpirez, J.C., Corcho, O., Fernandez-Lépez, M., Gémez-Pérez, A.: WebODE in a Nutshell.
Al Magazine. 24 (2003) 37-48

	1 Introduction
	2 ODE SWS Framework
	Problem-Solving Method Ontology
	Semantic Web Service Ontology
	2.1 Framework for SWS Design and Composition

	3 ODE SWS Environment
	3.1 ODE SWS Architecture
	3.2 SWSDesigner

	4 Conclusions
	Acknowledgements. Authors would like to thank the Esperonto project (IST-2001-34373) for their financial support in carrying out this work.
	References

