Skip to main content

Combination of Nonlinear Terms in Interval Constraint Satisfaction Techniques

  • Conference paper
Artificial Intelligence and Symbolic Computation (AISC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3249))

  • 276 Accesses

Abstract

Nonlinear constraint systems can be solved by combining consistency techniques and search. In this approach, the search space is reduced using local reasoning on constraints. However, local computations may lead to slow convergences. In order to handle this problem, we introduce a symbolic technique to combine nonlinear constraints. Such redundant constraints are further simplified according to the precision of interval computations. As a consequence, constraint reasoning becomes tighter and the solving process faster. The efficiency of this approach is shown using experimental results from a prototype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benhamou, F., Granvilliers, L.: Automatic Generation of Numerical Redundancies for Non-Linear Constraint Solving. Reliable Computing 3(3), 335–344 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benhamou, F., McAllester, D., Van Hentenryck, P.: CLP(Intervals) Revisited. In: Bruynooghe, M. (ed.) Proceedings of International Symposium on Logic Programming, Ithaca, USA, pp. 124–138. MIT Press, Cambridge (1994)

    Google Scholar 

  3. Bockmayr, A., Weispfenning, V.: Solving Numerical Constraints. In: Handbook of Automated Reasoning, pp. 753–842. Elsevier Science Publishers, Amsterdam (2001)

    Google Scholar 

  4. Borovansky, P., Kirchner, C., Kirchner, H., Moreau, P.-E.: ELAN from a rewriting logic point of view. Theoretical Computer Science 285(2), 155–185 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buchberger, B.: Gröbner Bases: an Algorithmic Method in Polynomial Ideal Theory. In: Bose, N.K. (ed.) Multidimensional Systems Theory, pp. 184–232. D. Reidel Publishing Company, Dordrecht (1985)

    Google Scholar 

  6. Granvilliers, L.: On the Combination of Interval Constraint Solvers. Reliable Computing 7(6), 467–483 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Granvilliers, L., Benhamou, F.: Progress in the Solving of a Circuit Design Problem. Journal of Global Optimization 20(2), 155–168 (2001)

    Article  MathSciNet  Google Scholar 

  8. Granvilliers, L., Monfroy, E., Benhamou, F.: Symbolic-Interval Cooperation in Constraint Programming. In: Villard, G. (ed.) Proceedings of International Symposium on Symbolic and Algebraic Computation, pp. 150–166. ACM Press, New York (2001)

    Google Scholar 

  9. Hickey, T.J., Ju, Q., Van Emden, M.H.: Interval Arithmetic: From Principles to Implementation. Journal of the Association for Computing Machinery 48(5), 1038–1068 (2001)

    Google Scholar 

  10. Institute of Electrical and Electronics Engineers. IEEE Standard for Binary Floating-Point Arithmetic, 1985. IEEE Std 754-1985, Reaffirmed (1990)

    Google Scholar 

  11. Kearfott, R.B., Novoa, M.: Intbis: A Portable Interval Newton/Bisection Package. ACM Transactions on Mathematical Software 2(16), 152–157 (1990)

    Article  Google Scholar 

  12. Lhomme, O.: Consistency Techniques for Numeric CSPs. In: Bajcsy, R. (ed.) Proceedings of International Joint Conference on Artificial Intelligence, pp. 232–238. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  13. Mackworth, A.K.: Consistency in Networks of Relations. Artificial Intelligence 8(1), 99–118 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  14. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  15. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing Unconstrained Optimization Software. ACM Transactions on Mathematical Software 7(1), 17–41 (1981)

    Article  MATH  Google Scholar 

  16. Van Emden, M.H.: Algorithmic Power from Declarative Use of Redundant Constraints. Constraints 4(4), 363–381 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: a Modeling Language for Global Optimization. MIT Press, Cambridge (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Granvilliers, L., Ouabiba, M. (2004). Combination of Nonlinear Terms in Interval Constraint Satisfaction Techniques. In: Buchberger, B., Campbell, J. (eds) Artificial Intelligence and Symbolic Computation. AISC 2004. Lecture Notes in Computer Science(), vol 3249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30210-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30210-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23212-4

  • Online ISBN: 978-3-540-30210-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics