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Abstract. This paper describes a method for accurate dense reconstruc-
tion of a complex scene from a small set of high-resolution unorganized
still images taken by a hand-held digital camera. A fully automatic data
processing pipeline is proposed. Highly discriminative features are first
detected in all images. Correspondences are then found in all image pairs
by wide-baseline stereo matching and used in a scene structure and cam-
era reconstruction step that can cope with occlusion and outliers. Image
pairs suitable for dense matching are automatically selected, rectified
and used in dense binocular matching. The dense point cloud obtained
as the union of all pairwise reconstructions is fused by local approxima-
tion using oriented geometric primitives. For texturing, every primitive
is mapped on the image with the best resolution.
The global structure reconstruction in the first step allows us to work
with an unorganized set of images and to avoid error accumulation. By
using object-centered geometric primitives we are able to preserve the
flexibility of the method to describe complex free-form structures, pre-
serve the possibility to build the dense model in an incremental way,
and to retain the possibility to refine the cameras and the dense model
by bundle adjustment. Results are demonstrated on partial models of a
circular church and a Henri de Miller’s sculpture. We observed spatial
resolution in the range of centimeters on objects of about 20 m in size.

1 Introduction

Building geometric representation of a complex scene from a set of views is one
of the classical Computer Vision problems. The task is to obtain a model that (1)
can either be used to generate a novel view for a moving observer or (2) contains
explicit representation of the structure (3D topology and geometry) of the scene.
The focus of this paper is on the latter. We present a method that obtains the 3D
model from a small unordered set of uncalibrated images. This means that the
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camera order, positions and (most of) their intrinsic parameters are not known.
Hence, a method that is capable of joint estimation of the cameras and the scene
structure must be used. This is usually done in two independent steps: a pre-
calibration, which recovers the cameras from a sparse set of features, followed by
scene structure estimation and densification. To increase the accuracy of both
scene structure and the cameras, this can be followed by bundle adjustment.

In this paper we basically follow the cascade: (1) wide-baseline matching,
(2) camera and 3D structure reconstruction, (3) dense matching, (4) 3D model
reconstruction. By splitting the procedure to smaller, explicit blocks, we hope
for achieving good performance by solving a well defined task at every step.
Every such task can then use a different, optimal, prior model of the scene. The
first stage uses discriminative image regions and a strong local planarity model
to establish initial matches that are used in the second stage, where a consistent
set of cameras are searched for under occlusion and outliers. Pinhole camera
model with radial distortion is used. The subsequent matching then focuses
on density and accuracy while minimizing false positives under missing texture
and inaccurate epipolar geometry. The last step first approximates the point
cloud density as a mixture of local kernels which helps maintain the efficiency of
the subsequent processing. Since every stage makes only a small step in image
interpretation, in our future work we will be able to close a feedback loop from
almost every stage and refine the camera parameters and the scene structure
before we commit to final interpretation of scene structure (like a triangulated
model of certain topology).

Our system, described in detail in this paper, differs from other work by:

1. A new method for the reconstruction of the projective structure and the
cameras using a robust and global optimization procedure that does not
require the input images to form a sequence (a known-order image set). This
means that reconstruction errors do not propagate.

2. Using an object-centered model of the local geometry of the scene, which gives
the possibility (1) to process and model images of complex structures, (2) to
grow the model in an incremental way while preserving the accuracy, (3) to
insert high-resolution partial reconstructions into the model, (4) to perform
an efficient iterative refinement (bundle adjustment) in the final accuracy-
increasing step, (5) to impose local spatial coherence, and (6) to effectively
compress the dense point cloud while preserving its ability to model complex
free-form structures.

2 Method

In this section we describe the data processing pipeline. In brief the method
works as follows. The input is a number of photographs of the object to be
reconstructed. Sparse correspondences are searched for across all pairs of views.
A consistent system of cameras is estimated and the cameras are auto-calibrated.
Image pairs suitable for dense matching are selected and rectified and used for
dense matching. 3D points are reconstructed from each image pair and the union
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of the partial reconstructions form a dense point cloud. Local geometric models
called fish-scales are fit to the point cloud and each fish-scale is texture-mapped
from the image with the best resolution and view of that fish-scale.

Input The input is a number of photographs of the object to be reconstructed,
taken with a hand-held compact digital camera. For the method to work well,
there should be image pairs taken with both wide and relatively narrow baseline
among the images. The wide baseline pairs support the numerical stability of
camera auto-calibration. If available, the narrow baseline pairs are more suitable
for dense matching because stronger prior models (like ordering) can be used.

Our method makes it possible to use photographs of different resolution. To
reconstruct the overall 3D structure of the object, overview images are used.
Higher resolution images can be used to blend in parts of the object with fine
geometric details or with texture too poor to suffice for reliable matching at the
lower resolution. Examples of input data obtained under this scheme are shown
in Figs. 1 and 2.

Fig. 1. Input images for the Head Scene

Region matching The first step is to find sparse correspondences across all
images. This is done by matching maximally stable extremal regions (MSERs)
[1] in all possible pairs of views. The epipolar geometry for each image pair
is estimated using LO-RANSAC [2]. Taking only the matches satisfying the
epipolar constraint, we get for every image pair a set of sparse correspondences
with relatively few outliers with respect to the true scene structure. The ability
of the method to handle large changes in scale and brightness is essential, since
we are necessarily dealing with wide baseline photographs of varying resolution.

Suppose the object has two or more parts looking the same. To reduce the risk
that too many matches between similar regions on different parts of the object
would result in a wrong reconstruction of the cameras, it might seem necessary
to forbid matching between images seeing these different parts. However, it is
possible to phase-out most of such image pairs automatically, as described below.

An example of a set of detected MSERs in a wide baseline pair is shown in
Fig. 3.



4 Hugo Cornelius et al.

Fig. 2. Input images for the St. Martin scene. Note that there are narrow-baseline
overview and close-up pairs that are mutually separated by wide baselines

Fig. 3. Maximally stable extremal regions (circles) detected in two wide-baseline pairs

Estimation of a consistent system of cameras Assuming full perspective
camera model, projection of each point Xp visible in camera P

i can be written
in homogeneous representation as λi

px
i
p = P

iXp where λi
p is a non-zero scale

called projective depth. Projections of all points into all images can be gathered
into one large matrix equation M = PX where M is so called rescaled measurement

matrix which contains images of all points rescaled by projective depths, 3m× 4
matrix P contains m camera matrices stacked on top of each other, and a 4 × n

matrix X contains n 3D points. M has one column per 3D point and three rows per
camera. If some point is not visible in some camera, the corresponding entries
in matrix M are unknown. Projective structure, X, and motion, P, can be found
by factorizing this large matrix. We use a modification of method [3] which is
able to deal with both occlusions (missing entries) and outliers. This is necessary
since we want to be able to do full reconstructions of objects of any shape, and
since there may always be outliers among the matched points. Note that the
method does not put any restrictions on image order.

All inliners with respect to the epipolar geometry, i.e. the pair-wise matches
obtained from the region-matching step, can be placed into the M-matrix. In
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the original method [3], the conflicting matches are simply ignored and outliers
removed in a subsequent stage using trifocal tensors. However, this turned out
not to work when there were many image pairs with no mutual overlap. There
will always be some matches between these image pairs and (incorrect) epipolar
geometries (EGs) will be estimated with usually just a few matches satisfying
them. Still, the number of matches may be higher than in some other image
pair with a correct EG but with only a few matches due to small image over-
lap. Therefore, discarding pairs with the number of matches falling below some
threshold does not work. A simple greedy algorithm can overcome this difficulty:
First, matches from the image pair with the most inliers with respect to the EG
are loaded into the M-matrix. Next, matches from the pair with the second largest
number of inliers are loaded etc. This guarantees that more reliable matches are
used first. Each match is checked against the already loaded EGs and if it sat-
isfies them, it is merged into the M-matrix. It turns out that many outliers and
only a few inliers are discarded this way.

Camera auto-calibration The reconstruction obtained in the last step is pro-
jective. To upgrade the projective reconstruction to a metric one, the cameras are
auto-calibrated using the image of the absolute dual quadric [4]. The constraints
used for the calibration are square pixels and zero skew. When more information
about the cameras is available, more constraints can be used. To improve the
quality of the solution, the calibration is followed by bundle adjustment including
a radial distortion model.

Radial distortion correction Since real cameras deviate from the linear pin-
hole model, the images have to be corrected for radial distortion. This is done by
unwarping the images using the radial distortion model estimated in the bundle
adjustment step described above. We use the division model rp = r

1+λ r2 , where
rp is the perfect (undistorted) radius (measured from the distortion center x0),
r the distorted radius and λ the radial distortion parameter. See [5] for the
properties of this model. The reasons for using this model are that it is simple,
performs well and that its inverse has a simple closed form except for at rp = 0.

Image pair rectification Rectification is necessary for an efficient dense match-
ing procedure. After radial distortion rectification described above, the image
pairs that will be used for dense matching are rectified by applying homogra-
phies mapping the epipoles to infinity on the horizontal axis [4]. This approach
does not work if the epipoles are inside the images or too close to the image
borders. Therefore image pairs, for which this is true are excluded from dense
matching in an automatic close-pair selection step just before the rectification.
The area around the epipoles would not provide 3D reconstructions of good ge-
ometric accuracy anyway and linearly rectified image pairs are more suitable for
sub-pixel disparity estimation because of the simplicity of the underlying model
which makes the algorithm faster and numerically better posed.

Dense matching Dense matching is performed as a disparity search along
epipolar lines using Confidently Stable Matching (CSM) [6]. This algorithm as-
sumes that the ordering constraint holds. If it does not, the corresponding part
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of the scene is rejected in the respective image pair. The CSM was used because
is has a very low mismatch rate [7] and is fast. The single important parameter
to CSM, for which a default value cannot be used, is the disparity search range.
We set this parameter to the range of the known disparities of the sparse MSER
matches plus a fixed margin. A typical search range for the overview images in
the St. Martin scene (the church) is ±100 pixels. The algorithm has two more
parameters: α, used to reject insufficient signal-to-noise ratio image data and
β, used for repetitive pattern rejection (see [6]). By construction of the CSM
algorithm none of these is critical nor scene-dependent. These parameters are
both set to default values.

The output from the matching algorithm is one disparity map per image
pair admitted for dense matching (see Fig. 4). By least squares estimation using
an affine distortion model the disparity maps are upgraded to sub-pixel resolu-
tion [8].

Fig. 4. The disparity map for the first two images in the second row in Fig. 2 and
Point clouds for the St. Martin scene (a front and a top view). Only 2% of all points
are shown

Point cloud reconstruction and local aggregation to fish-scales From
the disparity maps the corresponding 3D points are reconstructed. The union of
the points from all disparity maps forms a dense point cloud (see Fig 4).

An efficient way of representing distributions of points is to use fish-scales [9].
Fish-scales are local covariance ellipsoids that are fit to the points. They can be
visualized as small round discs (see the results in Figs. 5, 6 and 7). A collection
of fish-scales approximate the spatial density function of the measurement in 3D
space.

The most important parameter of the fish-scale fitting is the fish-scale size. A
too small value results in a noisy and sparse model and a too large value does not
model fine structures well. The appropriate fish-scale size is found by sampling
the density of the point cloud in the neighborhood of a number of points and
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by grounding the fish-scale size on the median point density. Here we use one
fish-scale size for modeling the overall structure of the object, and a smaller
size for modeling the details reconstructed from the high-resolution images. One
point cloud from the low and one point cloud from the high resolution images
are reconstructed and fish-scales are fit to the two point clouds independently.
The large fish-scales that are close to a small fish-scale are rejected, and the two
results are then fused by their union.

Texturing Texture can easily be mapped on the fish-scales. However, we first
have to decide from which view to get the texture for a certain fish-scale. This
is done by counting the number of points reconstructed from each image pair
within a certain Mahalanobis distance from a fish-scale. The number of points
per view (one view could be used in several image pairs) are counted and by
taking the view with the highest number of points we get the image with the
best resolution and best view of the fish-scale. The method for choosing the best
view for texturing takes one parameter, the distance within which to count the
points.

3 Experiments and Discussion

We have applied our 3D reconstruction method to three different scenes: the
St. Martin rotunda at Vyšehrad in Prague, the sculpture “l’Ecoute” (Listening)
by Henri de Miller in Paris, and the Valbonne church near Nice. Image sizes were
about 1000 × 1400 pixels for the rotunda and the sculpture and 512 × 768 for
the church. The used input images can be seen in Figures 2, 1, and 7.

The images of the St. Martin rotunda were specially acquired for the pur-
pose of 3D reconstruction. Overall images capturing the whole or major parts
of the building were taken in such a way that views from adjacent positions
would have a reasonable overlap. From each shooting position a narrow baseline
image pair was taken. The baselines were about 1 to 1.5 meters. From some of
the positions zoomed-in images of areas with fine geometric structures or poor
texture were taken. For the experiment presented in this article only a subset of
the images taken were used (see Fig. 2). The Head images are not optimal, they
form a simple semicircular sequence (see Fig. 1). The Valbonne images form two
semicircular trajectories (see Fig.7).

For all scenes, the whole procedure was performed fully automatically and
with the same parameters. The only prior knowledge used was which focal
lengths were the same: For the Head scene we knew that the focal length and
principal point were approximately the same for all images. For the St. Mar-
tin scene the focal length and principal point were the same within the narrow
baseline pairs. This information was used when auto-calibrating the cameras.
However, if this knowledge was not used, very similar results were obtained. No
knowledge of internal camera parameters was available for the Valbonne scene.

The region matching could be done for all image pairs and no pairs had to
be manually forbidden. Some matches were always found, although some image
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pairs had no overlap. However, these matches were quite few and our method
for finding the cameras was able to deal with them.

The narrow-baseline pair selection was quite simple: First, all pairs not suit-
able for rectification are forbidden. Next, the image pair with the highest number
of inliers from the MSER matching is chosen. After that the second best pair is
added and so on. When choosing a new pair, we require that at least one of the
images in the pair has not been used before. This way every image is matched
to the best image possible. Although non-optimal, the method gave the desired
result for the St. Martin scene plus one extra pair (7–9) and also a good result
(1–2, 2–3, 3–4, 5–6, 7–8, 9–10) when applied to the Head scene images.

The dense matching was carried out as described above. At least 30 points
per volume of fixed size was required to make a fish-scale. Results for the three
scenes are shown in Figs. 5, 6 and 7.

Fig. 5. The fish-scale model (textured and untextured) for the Head scene

Discussion In all scenes, the models are smooth, and curvature is well captured.
The reconstructions are highly accurate. For example, the pilaster on the apse
of the rotunda is clearly visible in the reconstruction although it is only around
30 cm wide and less than 10 cm on the side and reconstructed from photographs
taken approximately 20 meters away with a one meter baseline. Note also the
thin structures like the ball at the cupola of the church. No jumps are visible on
the boundaries between parts of the object reconstructed from different image
pairs. The low-resolution fish-scales are aggregated from one single point cloud
consisting of the points from all low resolution image pairs. Hence, any possible
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Fig. 6. The fish-scale model for the St. Martin scene. Note the ball at the cupola and
parts of the trees around the church. The first image in the second row is the top view.
Texture is not radiometrically corrected to demonstrate which views contributed

gaps along image borders would be smoothed-out. The blended-in details, on the
other hand, are aggregated independently, from a different (denser) point cloud,
still no gaps are visible on borders between the two fish-scale sets, see the region
around the door in Fig. 6.

The current version of fish-scale rendering has problems to capture thin and
branching structures accurately, the rendering makes them more flat than in the
actual model. This is visible on the ball at the cupola and on the branches of
the surrounding trees.

In our approach we recover only spatial features that have strong support

in data. Computational resources are not wasted to densely explain all—even
weak-texture—data at once as in global optimization methods [10–12]. Fish-
scales reconstructed from low-information patches would not contribute to the
accuracy while increasing the demand for greater computational resources.

The fish-scales are considered as an intermediate 3D model. They capture
local surface, including its orientation very efficiently. This makes them suitable
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Fig. 7. Input images and the fish-scale model for the Valbonne scene. Note that the
walls of the tower are mutually perpendicular

for further camera parameter improvement, jointly with the 3D structure esti-
mation. The result of such an iterative procedure could then be interpreted as a
triangulated surface as, for instance, in [13, 14, 9] or rendered directly as in [15].
Alternatively, the fish-scale model could be used as an initialization to a global
optimization procedure that relies on high-accuracy camera calibration.

Our future work will include full-complexity fusion of partial reconstruc-
tions that requires selection of the best models on the partial model overlap.
High-accuracy fish-scales should have precedence over low-accuracy fish-scales
obtained from coarser-resolution images. Another part to be finished is bundle
adjustment of the fish-scale model. In a final step we would like to densify or
‘extend’ the set of fish-scales by generating hypotheses around boundaries of
the existing fish-scale sets and validate/refine them in the images, as in [16].
This possibility has been studied in [17]. We would also like to improve the close
pair selection algorithm. In a large dataset it takes a very long time to run the
MSER matching between all pairs of views. We study the possibility to avoid
running the matching between all pairs. For example an approach similar to the
one presented in [18] could be used.
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4 Summary and Conclusions

In this work we have shown that given a wide baseline stereo matching algorithm,
an occlusion-robust algorithm for estimating a consistent system of cameras
from pair-wise point correspondences, and a dense stereo-matching algorithm,
it is possible to obtain automatic high-resolution metric 3D reconstructions of
objects of complex shape from a set of photographs. The strong requirement on
the object to be reconstructed is that it must have sufficient texture, since this is
required for the dense matching algorithm and for the geometric accuracy of the
result. The requirements on the images are that among the photographs there
have to be some image pairs suitable for dense matching and some wide baseline
photographs to support the numerical stability of the camera calibration. By
using image pairs of different resolutions it is possible to reconstruct the overall
shape of the object from images with one resolution and to use higher resolution
photographs for important details or poorly textured areas.

For the success of the data processing pipeline we find the following critical:

1. To obtain valid camera reconstructions there must be enough discrimina-
tory regions (like the MSER) for the initial matching. This success is scene-
dependent. Detecting sigle-type discriminatory regions need not suffice if the
scenes are unconstrained in appearance.

2. The camera and scene reconstruction module has to cope with severe occlu-
sion and moderate fraction of outliers in data.

3. Dense matching must produce few mismatches.
4. Surface reconstruction has to cope with complex structures, holes and miss-

ing data, and with a small to moderate fraction of outliers.

All points except for the first are satisfied in the method described here.
For the accuracy of the result the following is not critical but important:

(1) Subpixel disparity estimation. (2) Radial distortion modeling. (3) Accurate
epipolar geometry estimate before dense matching.

In this work we were surprised by the following: (1) The naroweness of the
baseline for dense matching is not detrimental to the accuracy of the final model.
(2) Higher resolution model parts did not require any additional effort to be
blended in seamlessly. (3) It was possible to reconstruct thin structures consis-
tently and with good accuracy, even from many uncalibrated views and even at
the extremities of the scene like the ball at the cupola of the church. (4) Disparity
maps need not be of full density to recover the fish-scale model because holes in
one image pair are usually covered from another pair. (5) The method does not
break if the cameras after the camera reconstruction step are inaccurate, as long
as the epipolar geometry is accurate enough for the dense matching to work.
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7. Kostková, J., Čech, J., Šára, R.: Dense stereomatching algorithm performance for
view prediction and structure reconstruction. In: SCIA. (2003) 101–107

8. Šára, R.: Accurate natural surface reconstruction from polynocular stereo. In:
Proc NATO Adv Res Workshop Confluence of Computer Vision and Computer
Graphics. Number 84 in NATO Science Series, Kluwer (2000) 69–86
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17. Zýka, V., Šára, R.: Polynocular image set consistency for local model verification.
In: OeAGM Workshop. (2000) 81–88

18. Schaffalitzky, F., Zisserman, A.: Multi-view matching for unordered image sets, or
”How do I organize my holiday snaps?”. In: ECCV. (2002) 414–431




