Skip to main content

A Neuroevolutionary Approach to Emergent Task Decomposition

  • Conference paper
Book cover Parallel Problem Solving from Nature - PPSN VIII (PPSN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3242))

Included in the following conference series:

Abstract

A scalable architecture to facilitate emergent (self-organized) task decomposition using neural networks and evolutionary algorithms is presented. Various control system architectures are compared for a collective robotics (3 × 3 tiling pattern formation) task where emergent behaviours and effective task -decomposition techniques are necessary to solve the task. We show that bigger, more modular network architectures that exploit emergent task decomposition strategies can evolve faster and outperform comparably smaller non emergent neural networks for this task. Much like biological nervous systems, larger Emergent Task Decomposition Networks appear to evolve faster than comparable smaller networks. Unlike reinforcement learning techniques, only a global fitness function is specified, requiring limited supervision, and self-organized task decomposition is achieved through competition and specialization. The results are derived from computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballard, D.H.: Cortical Connections and parallel processing. The Behavioural and Brain Sciences 9, 279–284 (1986)

    Google Scholar 

  2. Darwen, P., Yao, X.: Speciation as automatic categorical modularization. IEEE Transactions on Evolutionary Computation 1(2), 101–108 (1997)

    Article  Google Scholar 

  3. Deneubourg, J.-L.: Application de l’ordre par fluctuations ‘a la description de certaines ’etapes de la construction du nid chez les termites. Insectes Sociaux, 117–130 (1977)

    Google Scholar 

  4. Dorigo, M., Colombetti, M.: Robot Shaping: Developing autonomous agents through learning. Artificial Intelligence 71, 321–370 (1994)

    Article  Google Scholar 

  5. Gecshwind, N., Galaburda, A.M.: Cereberal Lateralization: Biological Mechanisms, Associations, and Pathology. MIT Press, Associations (1987)

    Google Scholar 

  6. Gomez, F., Miikkulainen, R.: Solving Non-Markovian Control Tasks with Neuroevolution. In: Proc. of the Int. Joint Conf. on Artificial Intelligence (1999)

    Google Scholar 

  7. Gomez, F., Miikkulainen, R.: Active Guidance for a Finless Rocket using Neuroevolution. In: The Proc. of Genetic and Evolutionary Comp. Conf. (2003)

    Google Scholar 

  8. Jacobs, R., Jordan, M., Barto, A.: Task decomposition through competition in a modular connectionist architecture. Cognitive Science 15, 219–250 (1991)

    Article  Google Scholar 

  9. Kube, R., Zhang, H.: Collective Robotics Intelligence: From Social Insects to robots. In: Proc. Of Simulation of Adaptive Behavior, pp. 460–468 (1992)

    Google Scholar 

  10. Liu, Y., Yao, X., Higuchi, T.: Evolutionary Ensembles with Negative Correlation Learning. IEEE Transactions on Evolutionary Computation 4(4), 380–387 (2000)

    Article  Google Scholar 

  11. Nolfi, S.: Using Emergent modularity to develop control systems for mobile robots. Adaptive Behaviour 5(3), 343–363 (1997)

    Article  Google Scholar 

  12. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines, pp. 13–15. MIT Press, Cambridge (2000)

    Google Scholar 

  13. Stone, P., Veloso, M.: Layered Learning. In: Proc. of 11th European Conf. on Machine Learning, pp. 369–381 (2000)

    Google Scholar 

  14. Thangavelautham, J., Barfoot, T., D’Eleuterio, G.M.T.: Coevolving Communication and Cooperation for Lattice formation Tasks. In: Adv. in ALife: Proc. Of 7th European Conf. on ALife, pp. 857–864 (2003)

    Google Scholar 

  15. Whiteson, S., et al.: Evolving Keep-away Soccer Players through Task Decomposition. In: The Proc. of Genetic and Evolutionary Comp. Conf. (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thangavelautham, J., D’Eleuterio, G.M.T. (2004). A Neuroevolutionary Approach to Emergent Task Decomposition. In: Yao, X., et al. Parallel Problem Solving from Nature - PPSN VIII. PPSN 2004. Lecture Notes in Computer Science, vol 3242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30217-9_100

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30217-9_100

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23092-2

  • Online ISBN: 978-3-540-30217-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics