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Abstract. Theoretically and empirically it is clear that a genetic algorithm with 
crossover will outperform a genetic algorithm without crossover in some fitness 
landscapes, and vice versa in other landscapes. Despite an extensive literature 
on the subject, and recent proofs of a principled distinction in the abilities of 
crossover and non-crossover algorithms for a particular theoretical landscape, 
building general intuitions about when and why crossover performs well when 
it does is a different matter. In particular, the proposal that crossover might en-
able the assembly of good building-blocks has been difficult to verify despite 
many attempts at idealized building-block landscapes. Here we show the first 
example of a two-module problem that shows a principled advantage for cross-
over. This allows us to understand building-block assembly under crossover 
quite straightforwardly and build intuition about more general landscape classes 
favoring crossover or disfavoring it. 

1   Introduction 

Theoretically and empirically it is clear that a genetic algorithm [1] with crossover 
will outperform a genetic algorithm without crossover in some fitness landscapes, and 
vice versa in other landscapes [2]. Historically, there has been much debate about 
when crossover will perform well, [3],[4],[5],[6], and, in particular, there has been 
some difficulty, [7],[8], in defining landscapes that exemplify the notion of building-
block assembly, as per the building-block hypothesis [1],[9],[10],[11]. However, 
some analytic results showing a strong advantage for crossover on particular land-
scapes have been derived, [12], and recently, a proof has been provided that, on a 
particular landscape, a crossover algorithm is expected to discover fit genotypes in 
time polynomial in the number of problem variables whereas a mutation hill-climber 
will require exponential time [13]. This distinction has also been shown in a hierar-
chical building-block landscape [14],[15],[16]. However, Jansen’s example [13] is 
not designed to exemplify the intuitive assembly of building-blocks, and the hierar-
chical building-block example [14] is rather complex. There is still much work re-
quired to build intuition about when and why crossover might work well when it 
does, and to understand better how to maximize the possibility of the polynomial 
versus exponential advantage of crossover in cases where it might be available.  



In this paper we introduce a simple abstract fitness landscape that shows a princi-
pled advantage for crossover. More importantly, this landscape is the first to show a 
case where building-block assembly of just two building-blocks is possible under 
crossover but not possible for a mutation-only method. This example enables us to 
see a general principle where parallel discovery of high-fitness schemata is easy but 
sequential discovery of the same schemata is difficult – thus preventing a hill-
climber-like process from succeeding. This landscape includes strong fitness interac-
tions within building-blocks (when compared to the interactions between building-
blocks) which corresponds well with the intuitions proposed by the building-block 
hypothesis. It should be noted however, that the parallel discovery of high-fitness 
schemata requires suitable methods for maintaining population diversity. In [13] 
Jansen systematically removed duplicate genotypes, and our prior work [16] used 
deterministic crowding [17] – both methods assume that genotypic diversity was 
meaningful for maintaining diversity. In this paper we use a simple multi-deme island 
model [18] to maintain diversity. 

The following sections describe our model landscape, algorithms, and simulation 
results.  

2   A Two-Module Fitness Landscape 

We assume a genotype is a vector of 2n binary variables, G=<g1,g2,…,g2n>, and 
define the fitness of a genotype, f(G), as follows: 

 f(G)=R(i,j)(2i+2j)     (1) 

where i is the number of 1s in the first half of the genotype, (i.e. {g1,g2,…,gn}),  and j 
is the number of 1s in the second half of the genotype (i.e. {gn+1,gn+2,…,g2n}), and R(i,j) 
returns a value drawn uniformly in the range (0.5,1] for each pair i and j – (these 
values may be re-drawn to create different instances of the problem, but remain fixed 
throughout a given simulation run). This function can be interpreted as a function 
over the number of ‘good mutations’ in each of two genes each consisting of n nu-
cleotide sites. The ‘good mutations’ being the 1s at each site, and the two genes corre-
sponding to the left and right halves of the genotype (Fig. 1.).  

 
 
 
 
 

Fig. 1. A genotype is divided into two genes, left and right, and the number of 1s in each half is 
counted. 

 
The good ‘alleles’ for each gene then are the all-1s configurations for the corre-

sponding half of the genotype. The terms 2i and 2j simply create a landscape that has 
very strong synergy between sites within genes and additive fitness effects for sites in 
different genes. The effect of these two terms is depicted in Fig. 2. (left). R(i,j) then 
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defines a fixed array of ‘noise’ (Fig. 2. center). The product of these components, as 
defined by Equation 1, creates the landscape depicted in Fig. 2. (right). 
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Fig. 2. Landscape defined by Eq. 1 and its component terms. Left) 2i+2j. Center) R(i,j). Right) 
R(i,j)(2i+2j).  

 

2.1   Motivations   

The motivation for this function is as follows. It defines two obvious building-blocks 
– the all-1 alleles of each gene – where each building-block is easy to find starting 
from a random genotype. This is true because 1-mutations are strongly rewarded 
within each gene and these fitness contributions are strong enough to overcome the 
random noise in the landscape. However, having found a good allele for one gene it 
becomes difficult to find the good allele for the other gene as the noise in the fitness 
function prevents progress along the ridges. This prevents an optimization process 
from accumulating the good alleles for the two genes sequentially. A hill-climbing 
process, for example, will become stuck on some local peak on either of the two 
ridges shown in Fig. 2 (right) (although the i=j diagonal is monotonically increasing 
in fitness, the stronger fitness gradients pull the search process away from the diago-
nal toward the ridges). In contrast, a process that can find good alleles in parallel 
would be able to find both alleles easily – and subsequent crossover between an indi-
vidual having the good allele for gene 1 with an individual having the good allele for 
gene 2 may create a single individual that has the good alleles for both genes. Such a 
cross creates a new individual at the intersection of these two ridges, and this inter-
section necessarily corresponds to the highest fitness genotypes because this is where 
both additive components, i.e. 2i and 2j, are maximized. 

As mentioned, the only additional complication concerns maintenance of diversity 
in the population so as to allow a reasonable likelihood that some individuals can find 
the good allele for gene 1 whilst some other individuals can find the good allele for 
gene 2. For this purpose we utilize a multi-deme, or subdivided, population model 
described in the next section. It is fitting that some requirement for diversity, as seen 
in prior models also, should be part of our requirements to see a benefit for crossover. 
Without significant diversity in the population, variation from crossover is not inter-



estingly different from variation from spontaneous point mutations, as we will dis-
cuss. 

2   Algorithm Models 

In the following simulations we use a genetic algorithm [1] with and without cross-
over, or sexual recombination, to illustrate the different search behaviors afforded by 
crossover and non-crossover mechanisms. To afford a meaningful comparison we 
will use a subdivided population in both cases – this will show that increased diver-
sity alone is not sufficient for success in this landscape. We use island migration [18] 
between sub-populations – i.e. equal probability of migration between all subpopula-
tions symmetrically. Each sub-population creates a new generation by fitness propor-
tionate selection (with replacement), [18],[19],[1]. The crossover method uses one-
point crossover, where for each pair of parents an inter-local position is chosen at 
random and the sites to the left of this position are copied from parent one, and the 
sites to the right are copied from parent two. In both the crossover and non-crossover 
methods, new individuals are subject to a small amount of point mutation – assigning 
a new random allele at each site with a small probability. For our purposes here we 
are not interested in the complications arising from loss of fit genotypes through ge-
netic drift. Accordingly we use a small amount of elitism – i.e. we retain one copy of 
the fittest individual in each deme from the prior generation without modification. 
This is not essential to see the effect shown – it is merely used so that we know that 
the effect applies even when populations have no problem retaining high-fitness 
genotypes under mutation and stochastic selection, even when the populations are 
small. The use of elitism ensures that each deme performs at least as well as a muta-
tion hill-climber (with a small overhead for the size of the deme). In fact, in the simu-
lations that follow each deme behaves very much like a hill-climber, having a highly 
converged population, and algorithmically, could logically be replaced by a hill-
climber. Crossover between individuals in the same deme is therefore more or less 
redundant, and it is crossover between a migrant and the individuals of another deme 
that does the interesting variation in the search process. 

3   Simulations and Results 

We used a total population of 400 individuals, subdivided into 20 demes of 20 indi-
viduals each. Migration between demes was such that one individual in each new 
generation in each deme was a migrant from some other randomly selected deme. 
Each individual in each deme is initialized to a random binary string of length 2n. 
Mutation was applied at a rate of 1/2n per site. In the crossover method, one-point 
crossover was applied to all reproduction events. In the following experiments we 
varied n, the number of sites in each gene, and recorded the number of generations 
until the first occurrence of the fittest genotype. Each data point is the average of 30 
runs of the simulation.  



In Fig. 3 we see that the time for the crossover method to find the fittest genotype 
remains low even for large n. Whereas in contrast, the time for the non-crossover 
method increases dramatically with n. Runs that fail to find the peak in the evaluation 
limit of 2000 generations are not plotted. In Figure 3 (right) we can see that this in-
crease for the non-crossover method is approximately exponential in n, as indicated 
by an approximately straight line on a log scale. (The last point on this curve falls off 
from an exponential increase – this is possibly due to the fact that some runs do not 
succeed in 2000 generations with n=50 – the average of those runs that do succeed 
thus appears low since it does not include the evaluations used by runs that failed.) 
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Fig. 3. Left) Results of simulations for a subdivided-population genetic algorithm, on the fit-
ness function defined in Equation 1, with and without crossover. Each point is the mean time to 
reach the peak of the fitness function averaged over 30 independent runs. Error bars show +/- 
one standard deviation. Right) as (left) but shown with log scale on vertical axis. 

3.1   Mutation Rates, Crossover Rates, and the Genetic Map.   

We should not be so much interested in the quantitative times shown in these simula-
tion results – they should be taken merely as an illustration of the qualitative effect 
that is quite expected from the design of the fitness function. Simulations using larger 
and smaller numbers of sub-populations and larger and smaller numbers of individu-
als per sub-populations showed qualitatively similar results. However, if the number 
of populations was reduced too much then occasionally all demes would happen to 
find the high-fitness allele of the same gene – subsequent crossing of migrants among 
these demes thus had no significant effect and the run would fail. Similarly, if the 
migration rate between demes is increased too far then fit migrants from one deme 
will invade other demes and cause the population as a whole to converge before al-
leles for both genes and successful crossing can occur.  

Consideration of higher mutation rates is more interesting. Clearly a population 
that is ‘stuck’ on some local optimum on the ridges of the landscape (corresponding 
to a fit allele for one gene and an arbitrary allele for the other) could escape to the 
highest fitness genotypes through a fortunate combination of point mutations. How-
ever, it should be clear that the expected time for this fortuitous mutation to occur is 
at least exponential in the number of sites that must be modified. An appropriately 
tuned mutation rate may be able to minimize this waiting time. However, since the 



expected distance of a local optimum to the global optimum increases linearly with n, 
a method relying on fortuitous mutations will still show the exponential increase in 
time to the peak observed above for increasing n. Exploratory simulations with larger 
mutation rates agree with this reasoning – for n=60 we found no mutation rate that 
could find the peak of the function in the evaluation limit of 2000 generations. Note 
that the progress of a mutation-only method would be even more difficult if we were 
not using elitism because a higher mutation rate would decrease the ability of a popu-
lation to retain high-fitness genotypes when discovered. 

Variation in the rate of crossover or number of crossover points should also be 
considered. Fig. 5. illustrates the crossover of two individuals, P1 and P2, which have 
good alleles for complementary genes. The resultant offspring, C, must have the same 
bits as both parents at loci where the bits in the parents agree (before mutation is 
applied). Under uniform crossover, [20], where loci are taken from either parent with 
equal probability independently, the loci where the parents disagree may take either 0 
or 1 with 0.5 probability, as indicated by “?”s in Fig. 4. The chances of a recombinant 
offspring produced by uniform crossover having all-1s therefore decreases exponen-
tially with the number of loci where the parents disagree. Since this increases ap-
proximately linearly with n, the expected time for a successful cross under uniform 
crossover increases approximately exponentially with n.  

 
P1   11111111110101001010 
P2   00010100101111111111 
 C   ???1?1??1??1?1??1?1? 

Fig. 4. Crossover of two individuals, P1 and P2, produces some offspring genotype C. 

This can also be understood geometrically. Fig. 5. shows the state of all the demes 
in the subdivided population for no crossover, one-point crossover, and uniform 
crossover. We see that all demes are clustered close to one ridge or the other in the 
left frame (mutation only, no crossover). In Fig. 5. (center) using one-point crossover 
we see that in addition to some demes scattered along the ridges, some demes have 
recombinant individuals that are at the top-right corner of the frame – corresponding 
to the fittest genotypes. In contrast, Fig. 5. (right) using uniform crossover shows a 
few demes that have recombinants produced by crossing individuals from one ridge 
with individuals from the other ridge, but these recombinant genotypes are very 
unlikely to be at the peak. Although a cross that produces the all-1s genotype is pos-
sible under uniform crossover, this is only one of a very large number of possible 
recombinants, increasing exponentially with the number of loci where the parents 
disagree. Accordingly, recombinants that land on the peak are exponentially unlikely, 
and most recombinants land somewhere on the straight line between the two demes of 
the parents in the ixj space. Fig. 5. (right) shows a couple of demes having approxi-
mately half the good mutations from P1 and half the good mutations from P2. These 
geometric considerations illustrate well the principles explained in [21] and [22] with 
respect to the distribution of offspring under crossover. 

Of course, this is again as expected. The benefit of crossover in this model is en-
tirely dependent on the correspondence of the epistatic dependencies and the genetic 
map (the ordering of sites on the chromosome). This agrees with the intuitive notion 



of a building-block as Holland [1] conceived it – i.e. a schema of above average fit-
ness and short defining length (distance between first and last loci of the schema). 
Simulation runs with a randomized genetic map –  i.e. where the subsets of loci used 
to define i and j are random disjoint sets of n sites each, rather than the left and right 
halves of the genotype – show performance similar to that of the non-crossover 
method (Fig. 6.). Similarly, simulations using uniform crossover also show perform-
ance similar to that of the non-crossover method, as expected (Fig. 6.). 
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Fig. 5. Snap-shot of the demes at around 200 generations for three different crossover models. 
In each frame, the horizontal axis is the number of 1s in the first gene and the vertical axis is 
the number of 1s in the second gene – i.e. these axes correspond to i and j in Equation 1, and 
the horizontal plane used in Fig. 2. Each small circle within each frame indicates the genotypes 
of a deme – specifically, it shows the i,j pair for the fittest individual in that deme. Left) A run 
with no crossover. Center) A run with one-point crossover. Right) A run with uniform cross-
over. 
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Fig. 6.  Simulation results for control experiments using uniform crossover and also for one-
point crossover but with a randomized genetic map. Curves for “no crossover” and “with 
crossover (one-point)” are as per Fig. 4. (left) for comparison. 

4   Discussion 

These results should not be overstated. We have not shown a general benefit for 
crossover in genetic algorithms (which would not be a sensible goal in any case [2]), 
but rather a benefit specific to this kind of basic modular or building-block structure. 
This is intended to provide a simple illustration of reasoning that is already well-
known (albeit controversial [23]) in the field. However, although the intuition for this 



kind of building-block assembly is straightforward it is worth discussing why it has 
been difficult to illustrate in previous simple building-block models. 

The Royal Road functions [24], for example, like other concatenated building-
block functions [25], have the property that the evolvability of each building-block is 
insensitive to the configuration of bits in other block partitions. Specifically, the fit-
ness rank-order of schemata in each partition is independent of other partitions… 
Considering a hill-climbing process to start with, we may discard fitness-scaling is-
sues. For a hill-climber then, the evolvability of a high-fitness genotype is controlled 
by the fitness rank-order of different genotypes. This controls the number of muta-
tional pathways from a given genotype to another given genotype of higher fitness, 
for example. When partitions are separable, in this sense of independent fitness rank-
orders for schemata within the partition, it means that: If it is possible for a hill-
climber to find a high-fitness schema in some genetic background then it is possible 
for it to find that high-fitness schema in any genetic background. Accordingly, the 
evolvability of high-fitness schemata in each partition is independent of the configu-
rations in other partitions. This means that there is nothing to prevent an optimization 
process from accumulating beneficial schemata sequentially. Accordingly, if a hill-
climber can find high-fitness schemata in each partition, it can find the fittest geno-
types (having high-fitness schemata in all partitions). In such naïve building-block 
functions the action of crossover is thus not required to find high-fitness genotypes. 

In contrast, in the function we have described here, and in prior functions such as 
Jansen’s ‘gap function’, [13], and Watson’s ‘HIFF’ function [14], the evolvability of 
a fit schema in one partition is strongly dependent on the genetic background. Spe-
cifically, in [13] the fittest genotype consists only of 1-alleles, and from a random 
(low-fitness) genotype, increasing the number of 1-alleles is easy because they are 
individually rewarded. However, when the number of 1-alleles on background loci is 
high, increasing the number of 1-alleles on subsequent loci is not rewarded. Accord-
ingly, it is not possible for a hill-climbing algorithm to accumulate all the 1-alleles 
sequentially. In [14] the situation is a little different. Here the fittest configuration for 
one building-block is equally either all-1s or all-0s given a random genetic back-
ground at a neighboring block. However, when the neighboring block is well-
optimized, one of these fit configurations becomes fitter than the other depending on 
how the neighboring block was solved. This can still be understood as a function that 
prevents sequential accumulation of good schemata by using epistasis such that the 
discovery of the fittest schemata becomes more difficult as other partitions become 
well-optimized. 

The landscape introduced in this paper works via this principle but illustrates the 
idea straightforwardly using two obvious building-blocks. It is the random noise 
component, R(i,j), that prevents the sequential evolution of good schemata: When 
neither gene is well-optimized, the fitness contributions of 1s in either gene are strong 
enough to overcome these random fluctuations in the landscape; But when one of the 
genes is already optimized, the fitness contributions of 1s in the other gene are indi-
vidually relatively insignificant compared to the random fluctuations. This is easily 
seen using the two cross-sections of the fitness landscape shown in Fig. 7. When i=0 
the fitness coefficients for mutations that increase j are reliably informative in leading 



search towards the all-1s allele (although they may be low in magnitude sometimes). 
In contrast, when i=20 increasing j is not reliably correlated with increasing fitness. 

It should be clear that the possibility of combining good building-blocks together 
is available in prior simple building-block landscapes such as [24] and [25]. How-
ever, this operation of crossover is not necessary for finding fit genotypes when it is 
possible to accumulate building-blocks sequentially. This is the observation provided 
by Jones [8] when he applied macro-mutation hill-climbers to concatenated sub-
function problems. It is the relatively subtle manner in which the evolvability of a 
building-block changes with genetic background that is important in the design of the 
function we have shown here. Specifically, the salient properties of this function are 
that there are relatively independent fitness contributions provided for each of the 
building-blocks (with epistasis and the genetic map in good correspondence), but 
additionally, the other important feature is that the discovery of good alleles for these 
partitions becomes more difficult as more partitions become well-optimized. This 
seems not unreasonable in some circumstances – for example, as the number of func-
tioning modules increases, the number of dependencies affecting the evolution of 
subsequent modules also increases, thus making them less evolvable – but it is not 
our intent here to argue for this in general. 
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Fig. 7.  Two cross sections through the landscape defined by Equation 1. One curve shows the 
fitness for different values of j when i=0, the other for different values of j when i=20. 

4   Conclusions 

In this paper we have provided a simple two-module building-block function that 
illustrates a principled advantage for crossover. It is deliberately designed to be easy 
for crossover whilst being difficult for a hill-climber, in a manner that makes the 
simulations easy to predict and understand. In particular, this model exemplifies the 
advantage of crossover from the assembly of individually fit building-blocks as per 
the building-block hypothesis [1],[9],[10],[11]. However, an important characteristic 
of this model is that the sequential discovery of fit building-blocks is prevented – in 
this case, by arbitrary epistatic noise that becomes more important as other genes are 
optimized. This characteristic is analogous to some properties of prior models, 
[13],[14], but notably, it is not part of the original intuition of the building-block 
hypothesis. 

This result helps us to better understand some of the general properties of land-
scapes that may make them amenable to solution by genetic algorithms using cross-



over. It also provides a simple illustration of the dependencies of this advantage on 
the properties of epistatic structure and the genetic map. It is notable that the simple 
form of modularity used here (Fig.1), where genes are constituted by a large number 
of nucleotide sites that are grouped both functionally (with epistasis) and physically 
(by location), is also seen in natural systems where the nucleotides of a gene are 
grouped functionally and physically by virtue of the transcription and translation 
machinery. 
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