
Constructing Dynamic Optimization Test

Problems Using the Multi-objective

Optimization Concept

Yaochu Jin and Bernhard Sendhoff

Honda Research Institute Europe
63073 Offenbach/Main, Germany

yaochu.jin@honda-ri.de

Abstract. Dynamic optimization using evolutionary algorithms is re-
ceiving increasing interests. However, typical test functions for compar-
ing the performance of various dynamic optimization algorithms still
lack. This paper suggests a method for constructing dynamic optimiza-
tion test problems using multi-objective optimization (MOO) concepts.
By aggregating different objectives of an MOO problem and changing
the weights dynamically, we are able to construct dynamic single ob-
jective and multi-objective test problems systematically. The proposed
method is computationally efficient, easily tunable and functionally pow-
erful. This is mainly due to the fact that the proposed method associates
dynamic optimization with multi-objective optimization and thus the
rich MOO test problems can easily be adapted to dynamic optimization
test functions.

1 Introduction

Solving dynamic optimization problems using evolutionary algorithms has re-
ceived increasing interest in the recent years [4]. One of the important reasons
for this increasing interest is that many real-world optimization problems are
not stationary. To solve dynamic optimization problems, the optimizer, e.g. an
evolutionary algorithm, must be able to adapt itself during optimization to track
the moving optimum (peak).

A few methods have been proposed to deal with dynamic optimization prob-
lems using evolutionary algorithms. Generally three measures can be taken to
enhance the ability of evolutionary algorithms for tracking moving optima:

1. Maintain population diversity by inserting randomly generated individuals
[14], niching [6], or reformulating the fitness function considering the age of
individuals [12] or the entropy of the population [20].

2. Memorize the past using redundant coding [13, 9], explicit memory [22, 19],
or multiple populations [26, 24, 5, 23].

3. Adapt the strategy parameters of the evolutionary algorithms [7, 15]. How-
ever, conventional self-adaptation can have negative influences if no partic-
ular attention is paid to the dynamics of the optimums [2, 25].
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To benchmark different algorithms for dynamic optimization, it is thus nec-
essary to have a number of test functions. So far, there is a relatively small
number of test functions available, most of which are very specific [4]. Not much
work has been done to generate dynamic optimization test problems with a few
exceptions [21, 3]. As pointed out in [21, 3], a feasible dynamic optimization test
problem generator should be easy to implement, computationally efficient, and
flexible enough to change the type of dynamics of the optimum.

This paper proposes a novel method for constructing dynamic optimization
test problems by borrowing concepts from multi-objective optimization. The
basic idea is to construct dynamic optimization problems by aggregating dif-
ferent stationary objectives using dynamically changing weights, which is di-
rectly inspired from the dynamic weighted aggregation method for solving multi-
objective optimization problems [16, 17]. We will show that the method is easy
to implement, readily tunable and is capable of generating almost any type of
dynamic optimization problems that have been discussed so far [21].

In the following section, different types of dynamic optimization problems will
be discussed briefly. A method for generating dynamic optimization problems
based on multi-objective optimization is then suggested and typical examples
are given in Section 3. In Section 4, behaviors of evolution strategies on tracking
different types of dynamic problems are presented. A brief discussion about the
relationship between dynamic optimization, multi-objective optimization and
multi-modal optimization is provided in Section 5.

2 Types of Dynamic Problems

In most typical dynamic optimization problems, the location of the optimum
moves deterministically or stochastically during optimization. Other cases in
which the representation or constraints are changed during optimization, such
as dynamic scheduling problems [4] will not be considered in this paper. In
general, dynamic optimization problems with a moving optimum can be divided
into the following types:

1. The location of the optimum moves linearly in parameter space with time.
(MP1)

2. The location of the optimum moves nonlinearly in parameter space with
time. (MP2)

3. The location of the optimum oscillates periodically among a given number
of points in parameter space deterministically. (MP3)

4. The location of the optimum moves randomly in the parameter space with
time. (MP4)

It should be pointed out that for problem types MP1 and MP2, the changes
can also be periodic. Besides, depending on the speed of changes, changes may
occur generation-wise or within a generation. In the former case, the optimum
is supposed to be static within one generation, in other words, the objective
function for each individual is the same. In the latter case, the objective function
for each individual can be different.



3 MOO-Based Dynamic Test Problems Generator

3.1 Multi-objective Optimization and Dynamic Weighted

Aggregation

Consider the following multi-objective optimization problem:

minx∈S(f1(x), ..., fm(x)), (1)

subject to the following unequality and equality constraints:

gi(x) ≥ 0, i = 1, ..., p (2)

hj(x) = 0, j = 1, ..., q (3)

where x is the design vector, S is the set of all feasible solutions,m is the number
of objectives, p and q are the number of unequality and equality constraints.

It is well known that for such MOO problems, a single solution that can
simultaneously minimize all objectives often does not exist. Rather, there exists
a set of solutions (denoted as P?) that are Pareto-optimal. Thus, the Pareto
front (denoted as PF?) is defined as follows:

PF? = {f(x) = (f1(x), ..., fk(x))|x ∈ P
?}. (4)

A Pareto front can be convex, concave or partially convex and partially concave.
A Pareto front (PF?) is said to be convex if and only if ∀u,v ∈ PF?,∀λ ∈
(0, 1),∃w ∈ PF? : λ||u|| + (1 − λ)||v|| ≥ ||w||. By contrast, a Pareto front
is said to be concave if and only if ∀u,v ∈ PF?,∀λ ∈ (0, 1),∃w ∈ PF? :
λ||u||+ (1− λ)||v|| ≤ ||w||.

Solving MOO problems using evolutionary algorithms has shown to be very
successful. Readers interested in this topic are referred to [10, 8] for further de-
tails.

A traditional and conceptually straightforward way of solving the MOO prob-
lem in equation (1) is to aggregate the objectives into a single scalar function
and then to minimize the aggregated function:

minF (x) =

m
∑

i=1

wifi(x), (5)

where 0 ≤ wi ≤ 1, i = 1, ...,m, and
∑m

i=1
wi = 1. In this way, an MOO problem

is reduced to a single objective one when the weights are fixed.
The conventional weighted aggregation (CWA) formulation of the MOO has

many important features. First, it has been shown that for every Pareto-optimal
solution of a convex problem, there exists a positive weight such that this solution
is an optimum of F (x). Thus, if the Pareto front is convex, each Pareto optimal
solution can be obtained by specifying a corresponding weight. However, multiple
runs have to be conducted to obtain multiple solutions. Second, solutions located
in the concave region of the Pareto front can not be obtained. Third, for a set of



evenly distributed weights, the obtained Pareto optimal solutions may or may
not distribute evenly in parameter space 1. If evenly distributed Pareto solutions
are obtained, the MOO problem is termed as uniform. Otherwise, it is called
non-uniform.

These features are often known as the main drawback of the CWA approach
to MOO. However, it has also been shown that these weaknesses can be fixed if
the weights are changed dynamically during optimization using evolutionary al-
gorithms, which is termed as the dynamic weighted aggregation (DWA) method
[16, 17] A further analysis of the method shows that the success of the DWA, as
well as other local search strategies for MOO can very likely be attributed to
the connectedness and regularity of Pareto optimal solutions [18].

3.2 Generating Dynamic Single Objective Test Problems

Inspired from the DWA method for solving MOO problems, we find that chang-
ing the weights in equation (5) also provides a very efficient approach to generat-
ing dynamic optimization test problems. For simplicity, we assume the number
of objective is 2, thus equation (5) becomes:

F (x) = wf1(x) + (1− w)f2(x), (6)

where 0 ≤ w ≤ 1. Obviously, by changing the weight w, we can construct all
dynamic optimization problems discussed in Section 2 very conveniently.

1. If w changes linearly and if the MOO problem has a uniform and convex
Pareto front, the optimum of F (x) in equation (6) moves linearly (MP1).

2. If w changes linearly, and if the Pareto front of the MOO problem is non-
uniform but convex, the optimum of F (x) moves nonlinearly (MP2).

3. If w changes nonlinearly, and if the Pareto front of the MOO problem is
uniform but convex, the optimum of F (x) moves nonlinearly (MP2).

4. If w switches between a few fixed values periodically and if the Pareto front
is convex, the optimum of F (x) oscillates among the different points. If the
Pareto front is concave, the optimum oscillates between two different points,
which are the minimum of f1 and f2 respectively. (MP3)

5. If the weights changes randomly, and if the Pareto front is convex, then the
optimum of F (x) moves randomly.(MP4)

A few additional remarks can be made on the above method for generat-
ing dynamic optimization test problems. First, both the peak location and the
peak height may be changeable. Second, if the weight changes periodically, the
optimum of F (x) also moves periodically. The speed of the movement can be
adjusted by the change speed of w. Third, the change can be made generation by

1 Usually, uniformity is defined with respect to the Pareto optimal solutions in objec-
tive space. However, we are more concerned with the movement of the optimum in
parameter space in generating dynamic problems. Therefore, the uniformity in this
paper refers to the distribution of the Pareto optimal solutions in parameter space.



generation, or within a generation. In the latter case, the optimum moves before
one generation is finished. Finally, the above method can be easily extended to
generating dynamic multi-objective optimization problems. For example, given
a stationary three-objective problem, it is possible to generate a two-objective
problem with a moving Pareto front.

3.3 Generating Dynamic Multi-objective Test Problems

The method for generating dynamic single objective optimization based on dy-
namic weighted aggregation can easily be extended to generating dynamic multi-
objective optimization test problems. Consider the following three-objective op-
timization problem:

minimize (f1, f2, f3). (7)

Reformulate the above three-objective optimization test function as follows:

minimize (F1, F2) (8)

F1 = wf1 + (1− w)f2,

F2 = wf1 + (1− w)f3,

where 0 ≤ w ≤ 1. Obviously, the two-objective optimization problem in equation
(8) has a moving Pareto front when the weight changes. We can show that the
solutions of the two-objective MOO problem in equation (8) with a fixed weight
is a subset of the solutions of the three-objective MOO problem in equation (7).
To verify this, we aggregate the two objectives of the dynamic MOO problem in
equation (8):

F = vF1 + (1− v)F2 (9)

= wf1 + v(1− w)f2 + (1− v)(1− w)f3, (10)

where 0 ≤ v ≤ 1. It can easily be seen that for 0 ≤ v, w ≤ 1, the weight for each
objective in equation (10) is between 0 and 1 and the sum of the three weights
always equals 1:

w + v(1− w) + (1− v)(1− w) = 1, (11)

which means that the optimization task in equation (10) is a weighted aggrega-
tion of the original three-objective optimization problem in equation (7).

3.4 Illustrative Examples

To illustrate the idea of generating dynamic optimization test problems using
the aggregation concept in MOO, we consider the following convex and uniform
MOO problem [8]:

f1 =
1

n

n
∑

i=1

x2

i , (12)

f2 =
1

n

n
∑

i=1

(xi − 2)2. (13)



By aggregating the two objectives, we have:

F (x) = w

n
∑

i=1

x2

i + (1.0− w)(

n
∑

i=1

(xi − 2)2), (14)

where 0 ≤ w ≤ 1. Thus, various dynamic single objective problems can be
generated. If w is changes in the following form:

w(t) = −0.01t+ 1, 0 ≤ t ≤ 100, (15)

then the location of the optimum of equation (14) moves linearly in parameter
space as well as in objective space, see Fig. 1 for n = 2. If we change the weight
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Fig. 1. The optimum moves linearly with time. (a) Peak location, (b) peak height.

w nonlinearly:

w(t) = −0.0001t2 + 1, 0 ≤ t ≤ 100. (16)

The optimum of F (x) in equation (14) will move nonlinearly, as shown in Fig. 2.

Similarly, if the weight w is changed randomly in every 10 generations, the
optimum of F (x) jumps randomly, refer to Fig. 3 for n = 2.

To illustrate how to generate a moving Pareto front, we take the following
three-objective optimization problem as an example, which is taken from [8]:

f1 = x2

1 + (x2 − 1)2, (17)

f2 = x2

1 + (x2 + 1)2 + 1, (18)

f3 = (x1 − 1)2 + x2

2 + 2, (19)

subject to: −2 ≤ x1, x2 ≤ 2. (20)

The Pareto front of this MOO test function is a convex surface. Reformulating
the above MOO problem as shown in equation (8), and changing the weight w, a
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Fig. 2. The optimum moves nonlinearly with time. (a) Peak location, (b) peak height.
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Fig. 3. The peak moves randomly in every 10 generations. (a) Peak location, (b) Peak
height.

moving Pareto front can be obtained, see for example in Fig. 4, where w changes
from 0.3 to 0.5 and to 0.7.

The above examples illustrate how dynamic single objective and multi-objective
optimization test functions can be generated by combining multiple objectives.
From the above examples, we can conclude that the proposed approach to gener-
ating dynamic test problems is efficient, tunable and capable of generating vari-
ous number of dynamic optimization problems considering the rich test problems
proposed for multi-objective optimization [11].

4 Behavior of Evolution Strategies in Dynamic

Optimization

In this section, we present a few preliminary results on the behavior of evolution
strategies (ES) in tracking different types of moving optima generated using the
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Fig. 4. A dynamic MOO problem. (a) Parameter space, (b) objective space.

proposed method. Previous studies on the behavior of evolution strategies in
tracking dynamic optimums can be found in [2, 25, 1].

The standard evolution strategy and the ES with the covariance matrix adap-
tation have been considered. The parent and offspring population sizes are 15
and 100 respectively and the initial step-sizes are all set to 0.1. Neither recom-
bination nor elitism has been adopted.

The behavior of the evolution strategies in tracking a linearly moving op-
timum of the test problem defined in equation (14) is shown in Fig. 5, where
dimension n is set to 20. The optimum moves from one end to the other in
100 generations and then moves back. It can be seen that both evolutionary
algorithms work well in tracking slowly moving optimum and the ES-CMA out-
performs the standard ES in that it can track the moving optimum more closely.
When the optimum moves faster, optimum tracking becomes difficult. To show
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Fig. 5. Tracking a slowly moving optimum. The dashed line denotes the height of the
moving optimum and the solid line the tracking result. (a) ES, (b) ES-CMA.
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Fig. 6. Tracking a rapidly moving optimum. The dashed line denotes the height of the
moving optimum and the solid line the tracking result. (a) ES, (b) ES-CMA.

this, we change the weight in equation (14) so that the optimum first moves from
one end to the other in 10 generations, then moves back in the next 10 genera-
tions and finally keeps static. The tracking results are presented in Fig. 6. We
see that neither the ES nor the ES-CMA is able to track the moving optimum
closely. We also notice that the tracking speed of the ES-CMA is much faster,
but the “overshoot” is also larger.

It is believed to be more critical for evolutionary algorithms to track a jump-
ing optimum after the algorithm has converged. In order to investigate the be-
havior of evolution strategies in tracking a jumping optimum more clearly, we
modify the dynamic test function in equation (14) slightly so that not only the
peak location but also the peak height will change when the weight changes:

F (x) = w

n
∑

i=1

x2

i + (1.0− w)(

n
∑

i=1

(xi − 2)2 + 1). (21)

The weight is switched between 0.2 and 0.8 in every 50 generations. When the
weight changes from 0.2 to 0.8, the location of the optimum of the function (21)
moves from (1.6, 1.6) to (0.4, 0.4) in parameter space and its height changes from
1.44 to 0.84.

The tracking performance of the standard ES for n = 3 is shown in Fig. 7(a).
It can be seen that the ES fails to track the optimum and gets stuck in a local
minimum. If we look at the step-sizes, it is obvious that one of the step-sizes
converges to zero and fails to adapt itself to the changing environment, refer to
Fig. 7(b).

To solve this problem, the step-sizes are checked during optimization and they
are reset once they are smaller than a given threshold. By doing this, the ES
tracks the jumping optimum properly because the step-sizes are able to adapt,
see Fig. 8(b).

Similar results have been obtained for the ES-CMA. Again, step-size checking
is important for the ES-CMA to track the jumping optimum, refer to Fig. 9 and
Fig. 10 respectively. Compared with the ES case, the ES-CMA gets fully stuck
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Fig. 7. Tracking a jumping optimum using the standard ES. (a) Best fitness, (b) step-
sizes.
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Fig. 8. Tracking a jumping optimum using the standard ES with step-size checking.
(a) Best fitness, (b) step-sizes.

when no step-size checking is implemented. This is due to the fact that all step-
sizes are converged to zero and cannot recover when the environment changes,
refer to Fig 9(b). In contrast, the step-sizes adapt properly with checking, see
Fig. 10(b).

5 Conclusions

The main purpose of this paper is to propose a computationally efficient, easily
tunable and functionally capable dynamic optimization test problem generator
using multi-objective optimization concepts. One of the major merit of the pro-
posed approach is that it provides an easy way of taking advantage of the rich
test problems available in multi-objective optimization. Furthermore, it brings
us to consider the inherent connections between multi-objective optimization,
multi-modal optimization and dynamic optimization, for all of which population
diversity plays a key role.
Acknowledgement: The authors would like to thank Prof. E. Körner for his
support.
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Fig. 9. Tracking a jumping optimum using the ES-CMA. (a) Best fitness, (b) step-sizes.
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Fig. 10. Tracking a jumping optimum using the ES-CMA with step-size checking. (a)
Best fitness, (b) step-sizes.
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