
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Neighborhood Composition: A Parallelization of
Local Search Algorithms

Handa, Yuichi
Department of Electrical Engineering and Computer Science, Kyushu University

Ono, Hirotaka
Department of Electrical Engineering and Computer Science, Kyushu University

Sadakane, Kunihiko
Department of Electrical Engineering and Computer Science, Kyushu University

Yamashita, Masafumi
Department of Electrical Engineering and Computer Science, Kyushu University

https://hdl.handle.net/2324/14874

出版情報：Lecture Notes in Computer Science. 3241, pp.155-163, 2004-09. Springer
バージョン：
権利関係：

Neighborhood Composition:
A Parallelization of Local Search Algorithms

Yuichi Handa, Hirotaka Ono, Kunihiko Sadakane, and Masafumi Yamashita

Dept. of Electrical Engineering and Computer Science, Kyushu University
{u1,ono,sada,mak}@tcslab.csce.kyushu-u.ac.jp

Abstract. To practically solve NP-hard combinatorial optimization prob-
lems, local search algorithms and their parallel implementations on PVM
or MPI have been frequently discussed. Since a huge number of neighbors
may be examined to discover a locally optimal neighbor in each of lo-
cal search calls, many of parallelization schemes, excluding so-called the
multi-start parallel scheme, try to extract parallelism from a local search
by distributing the examinations of neighbors to processors. However,
in straightforward implementations, when the next local search starts,
all the processors will be assigned to the neighbors of the latest solu-
tion, and the results of all (but one) examinations in the previous local
search are thus discarded in vain, despite that they would contain useful
information on further search.
This paper explores the possibility of extracting information even from
unsuccessful neighbor examinations in a systematic way to boost parallel
local search algorithms. Our key concept is neighborhood composition. We
demonstrate how this idea improves parallel implementations on PVM,
by taking as examples well-known local search algorithms for the Trav-
eling Salesman Problem.

1 Introduction

Most of combinatorial problems which frequently arise in various real-world sit-
uations, such as machine scheduling, vehicle routing and so on, are known to
be NP-hard [3], and are believed that there would not exist polynomial time
algorithms to find optimal solutions. Many researchers are hence interested in
approximation algorithms [8] that can find near-optimal solutions in reasonable
time.

Among them are metaheuristics algorithms based on local search very pop-
ular [4, 1, 10] because of their simplicity and robustness. A generic outline of a
local search algorithm starts with an initial feasible solution and repeats replac-
ing it with a better solution in its neighborhood until no better solution is found
in the neighborhood. Although local search algorithms are much faster than ex-
act algorithms, they may still require an exponential time for some instances.
Furthermore we have started considering that just a polynomial time algorithm
is no longer practical for huge instances in real applications.

Parallel implementations of local search algorithms are promising to satisfy
the above requirement and hence many parallel algorithms have been proposed

mainly 1) to reach a better solution and 2) to re.duce the processing time,
although they are apparently related with each other. A well-known paradigm
called multi-start has every processor independently execute the same algorithm
from randomly selected initial solution and returns the best solution among
those obtained by the processors, mainly to increase the quality of solution
(see e.g., [2]). A parallelized GRASP is an application of multi-start paradigm;
while original GRASP randomly generates initial solutions in greedy manner
then applies local search for each initial solution, in parallelized GRASP it is
considered that several processors do GRASP for different seeds of randomness
(e.g., [7]).

As mentioned, a local search algorithm repeats a local search starting with
the current solution. Since the area of neighborhood can be huge as the size of
instance becomes large, a local search consists of many independent searches (in-
side neighborhood) for a locally optimal solution. Many parallel implementations
thus try to extract parallelism from each of the local searches by distributing
the searches (in each of local searches) to processors, mainly to reduce the pro-
cessing time. However, in straightforward implementations, all the processors
will be assigned to the search of neighborhood of the current solution when the
next local search starts, and the results of all (but one) searches in the previous
local search are thus discarded in vain, despite that they would contain useful
information on further search.

This paper explores the possibility of extracting useful information even from
unsuccessful neighborhood searches to boost parallel local search algorithms. Our
key concept is neighborhood composition. In a local search algorithm, a local
search starts with a solution x and tries to obtain a better solution y. Suppose
that a search i suggests the replacement of a subsolution ui of x with a vi to
obtain a better solution xi. Since the size of an instance is huge and search i can
explore only very limited neighborhood of x, for many i and j, ui and uj do not
overlap each other. Obviously, in many problems, xi can be improved further by
replacing uj in xi by vj . This trivial fact is the essence. Suppose that searches i
and j are executed in different processors pi and pj in a parallel implementation
and that xi achieves the locally optimal solution. Why don’t we use uj , vj pair
to improve the current solution, instead of discarding it? This is our claim.

The neighborhood composition gives us a concrete idea how to realize this
idea on PVM or MPI. It works on the master/slave model. First a master proces-
sor divides the solution space and distributes them to slave processors. Then each
slave searches the solution space independently. The master keeps the current
best solution found in the whole search, and the slaves keep their own current
solutions. When a slave finds an improved solution, it sends the difference be-
tween its own current solution structure and the improved solution structure, as
improvement information, to the master. The master then tries to apply the im-
provement information to its own current solution. If the trial is successful, the
master gets a new improved solution and sends it to the slaves. Otherwise if it is
not, the section of solution space assigned to the slave is updated (because the
slave’s current solution may be completely different from the current solution).

Since our method does not need synchronize the slaves, each slave can search its
own neighborhood while other slaves communicate with the master, which hide
the communication overhead.

To confirm the availability of our method, we choose the Traveling Salesman
Problem [6] (TSP, for short) and 2OPT (or Or-OPT) and Lin-Kernighan [5]
neighborhood local search algorithms as a model problem and its algorithms.
We implemented these algorithms on PVM, and then conducted computational
experiments. The reasons why we adopt TSP and these neighborhood set are as
follows: 1) TSP is one of the most well-known problems, and we can easily ob-
tain many benchmark problems from TSPLIB1. Also many algorithms based on
local search are proposed. 2) 2OPT, Or-OPT and Lin-Kernighan neighborhoods
in TSP are suitable to explain our idea visually. Through the computational ex-
periments, we see that our parallelized local searches achieve good performance
in many cases; that is, the processing time of parallelized algorithm is much
smaller than the original one.

2 TSP and Local Search

In this section, we introduce some basic ideas and notations used throughout
this paper. Although we should actually give more general definitions and nota-
tions for combinatorial optimization and local search algorithms, we restrict our
explanations to TSP and its local search problems due to the space limitation.
One can easily apply them to many other problems and many other local search
algorithms.

TSP is described as follows: Given a set of n cities and an n × n distance
matrix D, where dij denotes the distance from city i to city j, with i, j = 1, ..., n,
find a tour that visits each city exactly once, and is of minimum total length.

In order to solve TSP, many local search based algorithms are proposed.
A local search starts from an initial solution σ and repeats replacing σ with
a better solution in its neighborhood N(σ) until no better solution is found in
N(σ), where N(σ) is a set of solutions obtainable by slight perturbations. The
local search from an initial solution σ0, in which the neighborhood N is used, is
formally described as follow.

Algorithm Local Search(N, σ0)

step1. Set σ := σ0.
step2. Search a feasible solution σ′ ∈ N(σ) such that cost(σ′) < cost(σ)

(SEARCH). If such σ′ exists, set σ := σ′ (IMPROVE) and return to step2.
Otherwise go to step3.

step3. Output σ and stop.

Obviously, the performance of local search algorithm depends on which neigh-
borhood we use. If we adopt wider neighborhood, the local search may find the
1 http://www.crpc.rice.edu/softlib/tsplib/

initial solution

neigborhood

improve

local optima

Fig. 1. Local Search

better solutions, however, it probably requires more computational time. In this
paper, we consider local search algorithms for TSP whose neighborhood types
are 2OPT, 3OPT, and Or-OPT. A 2OPT move deletes two edges, thus breaking
the tour into two paths, and then reconnects those paths in the other possible
way (Fig.2). Thus, A 2OPT neighborhood of a solution (tour) σ is defined as a
set of tours that can be obtained by 2OPT moves from tour σ. Similarly, 3OPT
move and neighborhood are defined by the exchange replaces up to three edges
of the current tour. An Or-OPT neighborhood is a subset of 3OPT (Fig.3). The
Lin-Kernighan heuristic allows the replacement of an arbitrary number of edges
in moving from a tour to neighboring tour, where again a complex greedy crite-
rion is used in order to permit the search to go to an unbounded depth without
an exponential blowup. The Lin-Kernighan heuristic is generally considered to
be one of the most effective methods for TSP.

Fig. 2. 2OPT move

within 3 cities

within 3 cities

Fig. 3. Or-OPT move

within k times

Fig. 4. k LK-OPT move

All of these are the most basic types of neighborhoods for TSP, and indeed
quite a many number of local search and metaheuristics algorithms are proposed
and studied[1]. Also, these neigborhood structures can be seen in many other
(NP-hard) combinatorial problems. Indeed, GAP(general assignment problem)’s
basic neigborhoods, swap-neigborhood, ejection-neigborhood have quite similar
structures to 2OPT and LK-OPT of TSP, respectively.

3 Parallelization of Local Search

As described in Section 2, local search has two important phases, SEARCH and
IMPROVE. In our parallelization, these two phases are imposed by different
processors: IMPROVE is done by a master processor, and SEARCH is by slave

processors; a rough idea of acceleration is that the master processor maintains
the current best solution (do IMPROVE) and slave processors share SEARCH
operations.

For this purpose, we consider to divide the neighborhood in SEARCH, and
to assign them to slave processors. Such a division is easy to design if all the
slave processors are synchronized. One simple way is as follows: The master
divides search space, and assigns them to slaves. Each slave executes SEARCH
operation for the assigned space. Once a slave finds a better solution, it sends
the result to the master. Then it performs IMPROVE by replacing the current
solution with the received solutions, and divides the new search space for the
improved solution again. In this method, search space is divided into all n slaves,
so that the time spent by SEARCH will be ideally reduced to 1/n. In fact, this
method however needs much time in communication between the master and
slaves. Moreover, only a result of one slave is used for updating the master’s
current solution; most of SEARCHs by slave processors are in vain.

To overcome this, we propose the following method:

Algorithm Master (IMPROVE)

step1. Set σmaster := σ0 and divide N(σmaster) into N1, ..., Nn, then send
σmaster and Ni to each slave slave[i].

step2. Wait. When receiving a data from slave, go to step3.
step3. Improve σmaster with the improvement information received from slave[i],

if possible(CHECK).
step4. Divide N(σmaster) and send the σmaster and new Ni to slave[i] from

which the improvement information were received just before. Return to
step2.

Algorithm Slave (SEARCH)

step1. Receive the initial solution σ0 and Ni. σslave[i] := σ0.
step2. If there is a better solution σ′ in Ni, send to the master the improvement

information of σ′.
step3. Wait. When receiving σmaster and Ni from the master, replace Ni and

set σslave[i] := σmaster, and go to step2.

Improvement information in the above description is defined as the difference
between the original solution and its improved solution. For example, in case of
2OPT, improvement information is represented by two edges in the improved
solution but not in the original solution.

As an example, suppose that there are one master and three slaves available.
First, the master and slaves have the same initial solution. Slaves begin to search
the same neighborhood of the initial solution from different neighbor (Fig.5).

If one slave finds a better solution, the slave sends to the master not the
better solution but the improvement information. Receiving the improvement
information, the master CHECKs if it is consistent for the current solution (i.e.,
the improvement keeps the solution feasible). If CHECK is yes, the master im-
proves the current solution based on it. The master then returns the new current

solution to only the slave that generated the improvement information; The other
slaves (Slave A and C at Fig. 6) do not receive the new solution. That is, these
slaves continue to their own neighborhood.

current solution

A

B

C

Fig. 5. Each slave begins a
search in a different space

current solution

A

B

C

IMPROVE

Fig. 6. Slave B finds a bet-
ter solution

current solution

A

B

C

IMPROVE

Fig. 7. Slave A finds a
better solution (CHECK is
needed)

Here, it should be noted that the solution kept by the master may be different
from ones of the slaves. If the neighborhood structure of the slave’s solution is
quite similar to the one of master’s solution, its improvement information can be
applied and the improvement is successful (Fig. 9). Otherwise, the improvement
information cannot be applied and it fails (Fig. 10). Actually, since our algorithm
is based on local-search manner, we can expect that the neighborhood structures
are not so different. We call this devise of improving solutions neighborhood
composition.

Note that our parallelized algorithm does not need synchronization, which
causes the following properties: As the defect, the master needs to do the extra
task CHECK for every improvement of slave’s solution. However, the overheads
become negligible because while one slave communicates with the master and
the master do CHECK, other slaves can continue SEARCH.

4 Experimental Results

To evaluate the performance of this parallelization method, we implement paral-
lel algorithms based on a local search algorithm with basic neighborhood struc-
tures. The algorithms which we have parallelized are the following 2 types:

A. searching 2OPT and OrOPT neighborhood 2

B. searching Lin-Kernighan neighborhood 3

As a problem instance, we used a standard TSP instance, att532, pr1002, nrw1379
in TSPLIB.

Table 1 shows the run times of the original and the parallelized algorithms
“A” and “B”. As shown above, the communication between master and slave
and CHECK phase on master are needed when using this parallelization method,
so paralleled with a few slaves may slow the process. However, adding the slaves,
2 http://www-or.amp.i.kyoto-u.ac.jp/members/ibaraki/today/tsp1.c
3 http://tcslab.csce.kyushu-u.ac.jp/~u1/program/lkh3 1.c

Master

Master

Slave

Slave1

Slave2

SEARCH : IMPROVE : JUDGE : COMUNICATE :

time

fail!

Original

Paralleled with
 1 Master
 1 Slave

Paralleled with
 1 Master
 2 Slaves

Fig. 8. comparison of Non-Parallelized, Parallelized by 1 master and 1 slave and Par-
allelized by 1 master and 2 slave

SLAVE

MASTER
improve information

IMPROVE

IMPROVE

Fig. 9. The master’s solution has the
same two edges that the slave cut for IM-
PROVE

SLAVE

improve information
MASTER

IMPROVE

IMPROVE

Fig. 10. The master’s solution does not
have the same two edges that the slave
cut for IMPROVE

these overheads are hidden and the process gets faster. IMPROVE arises as many
in “A” as in “B”. The overhead (communication and CHECK) is proportional
to the number of IMPROVE, so the overheads in parallelizing “A” and “B” are
almost the same. But in “B” one IMPROVE takes less time than in “A”, which
means the rate of SEARCH time in the whole time is small, so the parallelization
is less effective in “B”. Nevertheless using more than six slaves, we can make “B”
faster than the original.

¿From the table 2, it is observed that the failure ratio of IMPROVE becomes
higher as the number of slaves increases. The reason may be that the solution
structures of slaves easily vary if the number of slaves is large; the similarity is
lost. For the same number of slaves, the failure ratio is higher in 5 edges cut
and reconnected. The larger changes makes the master’s and slave’s solution
structure more different from each other. The high rate of failure makes the
effect of the parallelization smaller.

Figure 11 plots the result by the two method. The horizontal axis represents
the run time and the vertical axis gives the costs obtained by the algorithms.
The symbol “◦” represents the result of the original Lin-Kernighan algorithm.
The symbol “×” and “+” imply the result by Lin-Kernighan algorithm paral-

lelized with “Neighborhood Composition” and with multi-start, and the number
above the symbol means the number of slave processors. The symbol “∗” im-
plies the result using both two parallelizing methods, and has “(x, y)” above
it. “y” means the number of groups, and each group has one master processor
and “x” slave processors. Lin-Kernighan algorithm parallelized with “Neighbor-
hood Composition” is executed by each group, then the best solution of all the
groups is adopted. Parallelizing with “Neighborhood Composition” makes the
local search faster, and parallelizing by multi-start makes its solution better. By
combining two methods we can get highly precise solution in short time.

original 2 slaves 4 slaves 6 slaves 8 slaves

2,OrOPT 62.83(1.00) 35.98(0.57) 25.16(0.40) 20.43(0.32) 20.36(0.32)
att532 3-LK-OPT 4.65(1.00) 11.79(2.59) 4.02(0.86) 2.75(0.59) 2.36(0.51)

5-LK-OPT 4.70(1.00) 12.90(3.17) 4.06(0.86) 3.19(0.68) 2.38(0.51)

2,OrOPT 349.42(1.00) 199.03(0.56) 118.58(0.34) 98.75(0.28) 83.19(0.24)
pr1002 3-LK-OPT 21.11(1.00) 81.80(3.87) 21.58(1.02) 13.22(0.62) 10.33(0.49)

5-LK-OPT 21.68(1.00) 89.85(4.14) 24.12(1.11) 13.40(0.62) 10.62(0.48)

2,OrOPT 881.49(1.00) 494.68(0.56) 309.04(0.35) 221.07(0.25) 203.28(0.23)
nrw1379 3-LK-OPT 34.04(1.00) 133.36(3.92) 34.76(1.02) 22.10(0.62) 17.72(0.52)

5-LK-OPT 35.42(1.00) 134.96(3.81) 39.95(1.12) 23.83(0.67) 18.26(0.52)

Table 1. Run time (s) of original and parallelized “2,OrOPT” and “k-LK-OPT”

2 slaves 4 slaves 6 slaves 8 slaves

2,OrOPT 2 edges 2.44 4.79 7.51 8.86
3 edges 13.52 33.18 38.39 42.88

2 edges 4.58 18.67 29.16 36.39
5-LK-OPT 3 edges 4.25 18.49 29.06 37.08

4 edges 4.70 19.07 30.96 39.12
5 edges 6.72 24.40 37.58 46.25

Table 2. comparison of ratio (%) of failing to improve with the improve solution at
parallelized 5-LinKernighan (Instance = att532)

5 Conclusion

In this paper, we proposed a parallelization method for local search algorithm,
which is applicable to many combinatorial optimization algorithms. The purpose
of our parallelization is to reduce the run time. We then implemented typical
parallelized local search algorithms for TSP, and conducted computational exper-
iments. The result of experiment shows that our parallelization method greatly
reduces the run time: our method or the idea of our method are potentially
useful for many combinatorial optimization problems and many local search al-
gorithms. As a future work, we need to confirm that our parallelization method
is useful for more sophisticated algorithms, and compare other parallelization
methods.

Acknowledgements

The authors would like to thank anonymous referees for their helpful comments.
This work was partially supported by the Scientific Grant-in-Aid by the Ministry
of Education, Science, Sports and Culture of Japan.

27800

28000

28200

28400

28600

28800

0 1 2 3 4 5 6 7

co
st

time(s)

original

parallelized by Neigborhood Composition

parallelized by Multi-Start

parallelized by the combination of two methods

27686
optimal

468

4
6

8

2(4,2)(6,2)(8,2)

(8,4)
(6,4) (4,4)

Fig. 11. comparison of the parallelized by Neigborhood Composition and by Multi-
Start and by both two method (5-LKH, Instance = att532)

References

1. E. Aarts and J. K. Lenstra, Local Search in Combinatorial Optimization, John Wiley
& Son, 1997.

2. Y. Asahiro, M. Ishibashi, and M. Yamashita, Independent and Cooperative Parallel
Search Methods for the Generalized Assignment Problem Optimization Methods and
Software, Vol.18, No.2, pp.129-141, Apr. 2003.

3. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, 1979.

4. P.E. Gill, W. Murray and M.H. Wright, Practical Optimization. Academic Press.
1981.

5. K.Helsgaun, An Effective Implementation of the Lin-Kernighan Traveling Salesman
Heuristic, European Journal of Operational Research 126 (1), 106-130, 2000.

6. E. L. Lawler, J. K. Lenstra, A. H. G Rinnooy Kan and D. B. Shmoys, The Traveling
Salesman Problem, A Guided Tour of Combinatorial Optimization, John Wiley and
Sons 1985

7. S. Vandewalle, R. V. Driesschie, and R. Piessens, The parallel performance of
standard parabolic marching schemes, International Journals of Super Scomputing,
3(1):1-29, 1991.

8. V. V. Vazirani, Approximation Algorithms, SpringerVerlag, 2001.
9. A. S. Wagner, H. V. Sreekantaswamy, S. T. Chanson, Performance Models for the

Processor Farm Paradigm, IEEE Transactions on Parallel and Distributed Systems,
Vol. 8, No. 5, May 1997.

10. M. Yagiura and T. Ibaraki, “On Metaheuristic Algorithms for Combinatorial Op-
timization Problems,” Systems and Computers in Japan, Vol. 32, Issue 3, 2001, pp.
33-55.

