
Parallelization of GSL: Architecture,
Interfaces, and Programming Models�

J. Aliaga1, F. Almeida2, J.M. Bad́ıa1, S. Barrachina1, V. Blanco2,
M. Castillo1, U. Dorta2, R. Mayo1, E.S. Quintana1, G. Quintana1,

C. Rodŕıguez2, and F. de Sande2

1 Depto. de Ingenieŕıa y Ciencia de Computadores
Univ. Jaume I, 12.071–Castellón, Spain

{aliaga,badia,castillo,mayo,quintana,gquintan}@icc.uji.es
2 Depto. de Estad́ıstica, Investigación Operativa y Computación

Univ. de La Laguna, 38.271–La Laguna, Spain
{falmeida,vblanco,casiano,fsande}@ull.es

Abstract. In this paper we present our efforts towards the design and
development of a parallel version of the Scientific Library from GNU
using MPI and OpenMP. Two well-known operations arising in discrete
mathematics and sparse linear algebra illustrate the architecture and
interfaces of the system. Our approach, though being a general high-level
proposal, achieves for these two particular examples a performance close
to that obtained by an ad hoc parallel programming implementation.

1 Introduction

The GNU Scientific Library (GSL) [2] is a collection of hundreds of routines for
numerical scientific computations coded.Although there is currently no parallel
version of GSL, probably due to the lack of an accepted standard for devel-
oping parallel applications when the project started, we believe that with the
introduction of MPI and OpenMP the situation has changed substantially.

We present here our joint efforts towards the parallelization of of GSL us-
ing MPI and OpenMP. In particular, we plan our library be portable to several
parallel architectures, including distributed and shared-memory multiprocessors,
hybrid systems -consisting of a combination of both types of architectures-, and
clusters of heterogeneous nodes. Besides, we want to reach two different classes
of users: a programmer with an average knowledge of the C programming lan-
guage but with no experience in parallel programming, that will be denoted as
user A, and a second programmer, or user B, that regularly utilizes MPI or
OpenMP. As a general goal, the routines included in our library should execute
efficiently on the target parallel architecture and, equally important, the library
should appear to user A as a collection of traditional serial routines. We believe
our approach to be different to some other existing parallel scientific libraries
(see, e.g., http://www.netlib.org) in that our library targets multiple classes of
� Supported by MCyT projects TIC2002-04400-C03, TIC2002-04498-C05-05.

D. Kranzlmüller et al. (Eds.): EuroPVM/MPI 2004, LNCS 3241, pp. 199–206, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



200 J. Aliaga et al.

architectures. Moreover, we offer the user a sequential interface while trying to
avoid the usual loss of performance of high-level parallel programming tools.

In this paper we describe the software architecture of our parallel integrated
library. We also explore the interface of the different levels of the system and
the challenges in meeting the most widely-used parallel programming models
using two classical numerical computations. Specifically, we employ the operation
of sorting a vector and the usaxpy (unstructured sparse α times x plus y)
operation [1]. Although we illustrate the approach with two simple operations,
the results in this paper extend to a wide range of the routines in GSL. Our
current efforts are focused on the definition of the architecture, the specification
of the interfaces, and the parallelization of a certain part of GSL. Parallelizing
the complete GSL can then be considered as a labor of software reusability.
Many existing parallel routines can be adapted without too much effort to use
our interfaces while, in some other cases, the parallelization will require a larger
code re-elaboration.

The rest of the paper is structured as follows. In Section 2 we describe the
software architecture of our parallel integrated library for numerical scientific
computing. Then, in Sections 3–5, we describe the functionality and details of the
different levels of the architecture from top to bottom. Finally, some concluding
remarks follow in Section 6.

2 Software Architecture
of the Parallel Integrated Library

Our library has been designed as a multilevel software architecture; see Fig. 1.
Thus, each layer offers certain services to the higher layers and hides those layers
from the details on how these services are implemented.

The User Level (the top level) provides a sequential interface that hides the
parallelism to user A and supplies the services through C/C++ functions ac-
cording to the prototypes specified by the sequential GSL interface (for example,
a gsl sort vector() routine is provided to sort a gsl vector data array).

The Programming Model Level provides a different instantiation of the GSL li-
brary for each one of the computational models: sequential, distributed-memory,
shared-memory, and hybrid. The semantics of the functions in the Programming
Model Level are those of the parallel case so that user B can invoke them directly
from her own parallel programs. The function prototypes and data types in user
A codes are mapped into the appropriate ones of this level by just a renam-
ing procedure at compilation time. The Programming Model Level implements
the services for the upper level using standard libraries and parallelizing tools
like (the sequential) GSL, MPI, and OpenMP. In the distributed-memory (or
message-passing) programming model we view the parallel application as being
executed by p peer processes, P0, P1,. . . ,Pp−1, where the same parallel code is
executed by all processes on different data.

In the Physical Architecture Level the design includes shared-memory plat-
forms, distributed-memory architectures, and hybrid and heterogeneous systems



Parallelization of GSL: Architecture, Interfaces, and Programming Models 201

Fig. 1. Software architecture of the parallel integrated library for numerical scientific
computing.

(clusters of nodes with shared-memory and processors with different capabili-
ties). We map one process per processor of the target parallel system where, in
order to balance the computational load, a process will carry out an amount
of work that is proportional to the performance of the corresponding processor.
The performance of the parallel routines will depend on the adequacy between
the programming paradigm chosen by the user and the target architecture.

In the following sections we review the functionality, interfaces, and further
details of the different levels of the software architecture, from top to bottom.

3 User Level

The basic purpose of this level is to present user A with the classical interface and
interaction of the sequential GSL routines. To illustrate the challenges involved
in this task, consider the following program which reads two vectors, computes
their usaxpy, and outputs the result:

1: #include <gsl_sparse_vector.h>
2: void main (int argc, char * argv[]) {

...
3: scanf ("Value of nz %u", &nz);
4: y = gsl_vector_alloc (n);
5: x = gsl_sparse_vector_alloc (n, nz); // Allocate
6: gsl_vector_scanf (y, n);
7: gsl_sparse_vector_scanf (x, n, nz);
8: gsl_usaxpy (alpha, x, y); // USAXPY operation
9: printf ("Result y = alpha x + y\n"); // Output
10: gsl_vector_printf (y, n);
11: gsl_vector_free (y); // Deallocate
12: gsl_sparse_vector_free (x); }

What a serial user in general expects is to compile this program using, e.g.,
the make utility, and execute the resulting runnable code from the command line.
We offer the user the proper Makefile that at compilation time, depending on
the programming model selected, maps (renames) the function prototypes into



202 J. Aliaga et al.

the appropriate ones of the Programming Model Level. This mapping includes
user A’s data I/O routines, the main() function in the code, and the data types.
We also provide several gslrun scripts (one per programming model) to launch
the execution of the program.

The code does not need to be transformed further in case the parallelization
is targeted to a shared-memory programming model. Parallelism is exploited in
this case inside the corresponding parallel GSL routines.

Nevertheless, when the code is targeted to the distributed-memory program-
ming model, we still need to deal with a few problems. First, notice that following
our peer processes approach, the execution of the user’s program becomes the
execution of p processes running in parallel, where user’s data I/O is performed
from a single process. Also, a different question to be considered is that of error
and exception handling. Finally, some execution errors due to the parallel nature
of the routines cannot be masked and must be reported to the end-user as such.

4 Programming Model Level

In this section we first review the interface of the routines in the parallel in-
stantiations of the GSL library, and we then describe some details of the major
parallelization approaches utilized in the library.

4.1 Programming Model Interface

All programming models present similar interfaces at this level. As an exam-
ple, Table 1 relates the names of several sequential User Level routines with
those of the different instantiations of the parallel library. The letters “sm”,
“dm”, and “hs” after the GSL prefix (“gsl ”) denote the programming model:
shared-memory, distributed-memory, and hybrid systems, respectively. In the
distributed-memory model, the following two letters, “rd” or “dd”, specify
whether the data are replicated or distributed.

Table 1. Mapping of User Level routines to the corresponding parallel routines.

User Level Programming Model Level

Sequential Shared-memory Distributed-memory Hybrid
fscanf() fscanf() gsl dmrd fscanf() gsl hs fscanf()

gsl dmdd fscanf()

gsl sort vector() gsl sm sort vector() gsl dmrd sort vector() gsl hs sort vector()
gsl dmdd sort vector()

At the Programming Model Level the interface supplied to the User Level is
also available as a parallel user-friendly interface to user B. The parallel routines
can thus be employed as building blocks for more complex parallel programs.

A sorting routine is used next to expose the interface of the distributed-
memory programming model:



Parallelization of GSL: Architecture, Interfaces, and Programming Models 203

1: #include <mpi.h>
2: #include <gsl_dmdd_sort_vector.h>
3: void main (int argc, char * argv []) {

...
4: MPI_Init (& argc, & argv);
5: gsl_dmdd_set_context (MPI_COMM_WORLD); // Allocate
6: gsl_dmdd_scanf ("Value of n %u", &n); // Read
7: v = gsl_dmdd_vector_alloc (n, n); // Block-Cyclic Allocation
8: gsl_dmdd_vector_scanf (v, n);
9: status = gsl_dmdd_sort_vector (v); // Sorting operation
10: printf ("Test sorting: %d\n", status); // Output
11: gsl_dmdd_vector_free (v); // Deallocate
12: MPI_Finalize (); }

Here the user is in charge of initializing and terminating the parallel machine,
with the respective invocations of routines MPI Init() and MPI Finalize(). Be-
sides, as the information about the parallel context is needed by the GSL kernel,
the user must invoke routine gsl dmdd set context to transfer this informa-
tion from the MPI program to the kernel and create the proper GSL context.
The MPI program above assumes the vector to sort to be distributed among all
processes so that, when routine gsl dmdd vector alloc(n, cs) is invoked, the
allocation for the n elements of a gsl vector is distributed among the whole
set of processors following a block-cyclic distribution policy with cycle size cs.
In the case of heterogeneous systems, the block sizes assigned depend on the
performance of the target processors. The call to gsl_dmdd_sort_vector sorts
the distributed vector following the PSRS algorithm [3] described later.

4.2 Implementation in the Distributed-Memory
Programming Model

Our library currently supports two data distributions: In the replicated layout
a copy of the data is stored by all processes. In the distributed layout the data
are partitioned into a certain number of blocks and each process owns a part of
these blocks; in heterogeneous systems the partitioning takes into consideration
the different computational capabilities of the processors where the processes
will be mapped.

All I/O routines in the distributed-memory programming model (e.g., routine
gsl dmdd fscanf) perform the actual input from P0 and any value read from
the input is then broadcasted to the rest of processes; analogously, any data to
be sent to the output is first collected to P0 from the appropriate process. While
scalar data can be easily replicated using the policy just described, replication
of GSL arrays has to be avoided in order to minimize memory requirements.
This implies parallelizing the routines of GSL which deal with these derived
data types. Notice that data I/O performed by user B in her program directly
refers to the routines in the stdio library and therefore is not mapped to the
I/O routines in the distributed-memory programming model.

A sorting routine is used next to illustrate the parallelization in the
distributed-memory programming model. For generality, we have chosen the
well-known Parallel Sort by Regular Sampling (PSRS) algorithm, introduced
in [3]. This algorithm was conceived for distributed-memory architectures with



204 J. Aliaga et al.

homogeneous nodes and has good load balancing properties, modest communi-
cation requirements, and a reasonable locality of reference in memory accesses.

The PSRS algorithm is composed of the following five stages:

1. Each process sorts its local data, chooses p−1 “pivots”, and sends them to P0.
The stride used to select the samples is, in the case of heterogeneous contexts,
different on each processor and is calculated in terms of the size of the local
array to sort.

2. Process P0 sorts the collected elements, finds p − 1 pivots, and broadcasts
them to the remaining processes. Again, for the heterogeneous systems, the
pivots are selected such that the merge process in step 4 generates the appro-
priate sizes of local data vectors, according to the computational performance
of the processors.

3. Each process partitions its data and sends its i-th partition to process Pi.
4. Each process merges the incoming partitions.
5. All processes participate in redistributing the results according to the data

layout specified for the output vector.

The case where the vector to sort is replicated poses no special difficulties: a
simple adjustment of pointers allows the processes to limit themselves to work
with their corresponding portions of the vector. Only stage 5 implies a redistri-
bution. When the output vector is replicated, each process has to broadcast its
chunk. Redistribution is also required even for a vector that is distributed by
blocks, since the resulting chunk sizes after stage 4 in general do not fit into a
proper block distribution. The average time spent in this last redistribution is
proportional to the final global imbalance.

4.3 Implementation in the Shared-Memory Programming Model
In this subsection we explore the parallelization on a shared-memory parallel
architecture of the usaxpy operation using OpenMP. A simplified serial imple-
mentation of this operation is given by the following loop:

1: for (i = 0; i < nz; i++) {
2: iy = indx [i];
3: y [iy] += alpha * valx [i]; }

As specified by the BLAS-TF standard [1], sparse vectors are stored using
two arrays: one with the nonzero values and the other an integer array holding
their respective indices (valx and indx in our example).

The usaxpy operation, as many others arising in linear algebra, is a typical
example of a routine that spends much of its time executing a loop. Parallel
shared-memory architectures usually reduce the execution time of these routines
by the executing iterations of the loops in parallel across multiple processors. In
particular, the OpenMP compiler generates code that makes use of threads to
execute the iterations concurrently.

The parallelization of such a loop using OpenMP is quite straight-forward.
We only need to add a parallel for compiler directive, or pragma, before the
loop, and declare the scope of variable iy as being private. As all iterations
perform the same amount of work, a static schedule will produce an almost
perfect load balancing with a minimum overhead.



Parallelization of GSL: Architecture, Interfaces, and Programming Models 205

Table 2. Characteristics of the platforms handled in the experimental evaluation.

Type Manufacturer/ Processor Memory size Commun.
Architecture Frequency (RAM/Cache) #Proc. Network

PC cluster Intel Pentium Xeon 2.4GHz 1GB/512KB L2 34 Gigabit Ethernet
distributed-memory Myrinet

Heterogeneous Intel Pentium Xeon 1.4 GHz 2GB/512 L2 4 Fast Ethernet
Cluster AMD (Duron) 800 MHz 256MB/64 L2 4

AMD-K6 500 MHz 256MB/64 L2 6
CC-NUMA SGI 500MHz 1GB/16MB L2 160 Crossbar

SGI Origin 3800 MIPS R14000 Hypercube
Shared-memory Intel Pentium Xeon 700MHz 1GB/1MB L2 4 System bus

Fig. 2. Parallel performance of the Sorting case studies.

5 Physical Architecture Level

In this section we report experimental results for the parallel versions of the
sorting and usaxpy operations on several platforms; see Table 2.

The parallel PSRS algorithm is evaluated on three different platforms (see
Fig. 2): a PC cluster (using a distributed data layout), a SGI Origin 3800 (with
a replicated data layout), and a heterogeneous cluster (with a nonuniform data
distribution). In the PC cluster we used mpich 1.2.5 for the Gigabit Ethernet
and gmmpi 1.6.3 for the Myrinet network. The native compiler was used for the
SGI Origin 3800. The mpich 1.2.5 implementation was also employed for the
heterogeneous cluster. The use of the Myrinet network instead of the Gigabit
Ethernet in the PC cluster achieves a considerable reduction in the execution
time. The parallel algorithm presents acceptable parallel performances. As could
be expected, the execution time is reduced in both architectures when the num-
ber of processors is increased. We observed super-linear speed-ups in the SGI
platform that are a consequence of a better use of the cache memory in the par-
allel algorithms. Due to the heterogeneous data distribution, better speed-ups
are also achieved in the heterogeneous cluster.



206 J. Aliaga et al.

Fig. 3. Parallel performance of the USAXPY case studie.

The parallel performances reported for usaxpy operation on the shared-
memory Intel platform were obtained using the Omni 1.6 OpenMP compiler
(http://phase.hpcc.jp/Omni). The results in Fig. 3 show a moderate reduction
in the execution time of the operation when the problem size is large enough.
We believe the poor results for the smaller problems to be due to a failure of the
OpenMP compiler to recognize the pure parallel nature of the operations, but
further experimentation is needed here.

6 Conclusions

We have described the design and development of an integrated problem solving
environment for scientific applications based on the GNU Scientific Library. Our
library is portable to multiple classes of architectures and targets also a class of
users with no previous experience in parallel programming.

Two simple operations coming from sparse linear algebra and discrete math-
ematics have been used here to expose the architecture and interface of the
system, and to report preliminary results on the performance of the parallel
library.

References

1. I.S. Duff, M.A. Heroux, and R. Pozo. An overview of the sparse basic linear algebra
subprograms. ACM Trans. Math. Software, 28(2):239–267, 2002.

2. M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and F. Rossi.
GNU scientific library reference manual, July 2002. Ed. 1.2, for GSL Version 1.2.

3. X. Li, P. Lu, J. Schaeffer, J. Shillington, P.S. Wong, and H. Shi. On the versatility of
parallel sorting by regular sampling. Parallel Computing, 19(10):1079–1103, 1993.


	1 Introduction
	2 Software Architecture of the Parallel Integrated Library
	3 User Level
	4 Programming Model Level
	4.1 Programming Model Interface
	4.2 Implementation in the Distributed-Memory Programming Model
	4.3 Implementation in the Shared-Memory Programming Model

	5 Physical Architecture Level
	6 Conclusions
	References

