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Abstract. We investigated a real-valued Negative Selection Algorithm 
(NSA) for fault detection in man-in-the-loop aircraft operation. The de- 
tection algorithm uses body-axes angular rate sensory data exhibiting 
the normal flight behavior patterns, to generate probabilistically a set of 
fault detectors that can detect any abnormalities (including faults and 
damages) in the behavior pattern of the aircraft flight. We performed 
experiments with datasets (collected under normal and various simu- 
lated failure conditions) using the NASA Ames man-in-the-loop high- 
fidelity C-17 flight simulator. The paper provides results of experiments 
with different datasets representing various failure conditions. 

1 Introduction 

Early detection of a fault or damage of air& subsystems is very crucial for its con- 
trol and maneuver during the flight [5, 151. These events include sudden loss of con- 
trol surfsces, engine failure, and other components that may result in abnormal flight 
operating conditions. Monitoring and detection of such events are necessary to 
achieve acceptable flight performance and higher flight survivability under abnormal 
conditions. There are several techniques available for aircraft fault accommodation 
problems [2-3, 11,  131 and for fault detection and isolation issues [6, 161. This work 
investigated an immunity-based approach that can detect a broad spectrum of known 
and unforeseen faults. The goal is to apply the immunity-based fault detection algo- 
rithm to improve the fault tolerance capabilities of the existing Intelligent Flight Con- 
troller (IFC) architecture [l l ,  131. 

Prior studies have established the benefits of intelligent flight control [2]. However, 
one area of weakness that needed be strengthened was the control dead band induced 
by commanding a failed surface. Since the IFC approach uses fault accommodation 
with no detection, the dead band, although reduced over time due to learning, was 
present and caused degradation in handling qualities. This also makes it challenging 
for outer loop control design. If the failure can be identified, this dead band can h- 
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ther be minimized to ensure rapid fault accommodation and better handling qualities 
[12, 13, IS]. 

2 Real-valued Negative Selection (RNS) Algorithm 

The negative selection algorithm [9] is based on the principles of self-nonself dis- 
crimination in the immune system (Fig. 1 shows the concept of self and nonself 
space). This negative selection algorithm can be summarized as follows (adopted 
from [TI): 

Define self as a collection S of elements in a feature space G. a collection 
that needs to be monitored. For instance. if C corresponds to the space of 
states of a system represented by a list of features, S can represent the subset 
of states that are considered as normal for the system. 
Generate a set F of detectors, each of which fails to match any ming in S. An 
approach that mimics the immune system generates random detectors and 
discards those that match any element in the self set. However. a more effi- 
cient approach [SI tries to minimize the number of generated detectors while 
maximizing the covering of the nonself space. 
Monitor S for changes by continually matching the detectors in F against S. If 
any detector ever matches, then a change is known to have occurred, as the 
detectors are designed not to match any representative samples of S. 

Figure 1. The figure illustrates the concept of self and nonself in a feanm space. Here F1, F2, 
etc. indicate different fault conditions represented by detecton. 



The above description is very general and does not say anything about the represen- 
tation of the problem space and the type of matching rule is used. It is, however, clear 
that the algorithmic complexity of generating good detectors can vary significantly, 
which depends on the type of problem space (continuous, discrete, mixed, etc.), detec- 
tor representation scheme, and the rule that determines if a detector mutches an ele- 
ment or not. Most of the research works on the NS algorithm have been restricted to 
the binary matching rules like rcontiguous [SI. The primary reason for this choice is 
ease of use, and there exist efficient algorithms to generate detectors, exploiting the 
simplicity of the binary representation and its matching rules [8]. However, the scal- 
ability issue has prevented it ffom being applied more. extensively. 

We adopted a real-valued NS (RNS) algorithm, which tries to alleviate the limita- 
tions previously mentioned, while using the structure of the higher-level- 
representation to speed up the detector generation process. The real-valued NS algo- 
rithm applies a heuristic process that changes iteratively the position of the detectors 
driven by two goals: to maximize the coverage of the nonself subspace and to mini- 
mize the coverage of the self samples. 

2.1 Details of the RNS Algorithm - Detector Generation phase: 

The RNS detector generation starts with a population of candidate detectors, which are 
then matured through an iterative process. In particular, the center of each detector is 
chosen at random and the radius is a variable parameter which determines the size (in 
m-dimensional space) of the detector. The basic algorithmic steps of the RNS detector 
generation algorithm are given in Fig. 2, and some computational details of are illus- 
trated in Figs. 3(a)-(d). 

At each iteration, first, the radius of each candidate detector is calculated, and the 
ones that fall inside self region are moved (Le. its center is successively adjusted by 
moving it away from training data and existing detectors). The set of nonself detectors 
are then stored and ranked according to their size (radius). The detectors with larger 
radii (and smaller overlap with other detectors) are considered as better-fit and se- 
lected to go to the next generation. Detectors with very small radii, however, are re- 
placed by the clones of better-fit detectors. The clones of a selected detector are moved 
at a fixed distance in order to produce new detectors in its close proximity. Moreover, 
new areas of the nonself space are explored by introducing some random detectors. 
The whole detector generation process termhates when a set of mature (minimum 
overlapping) detectors are evolved which can provide significant coverage of the non- 
self space. 
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Figore 2: Flow diagram showing the algorithmic steps for the real-valued negative 
selection algorithm. 

The purpose of the fault detection is to identify which states of a system are normal 
(self) and which are faulty. The states of a system are represented by a set of control 
variables which can exhibit the current and past system behavior. The actual values of 
these variables are scaled or normalized in the range [O.O, 1.01 in order to define the 
self-nonself space with a unit hypercube. 

A detector is defined as d = (c, rd), where c= (c,. c2, .... c,) is an rn-dimensional 
point that corresponds to the center of a unit hypersphere with rd as its radius. The 
following parameters are used for the detector generation process: 

r,: threshold value (allowable variation) of a self point; in other words, a point at a 
distance greater than or equal to r, h m  a self sample is considered to be abnormal. 

a: variable parameter to specify the movement of a detector away h m  a self sam- 
pie or existing detectors. 

5: maximum allowable overlap among the detectors, which implicates that allowing 
some overlap among detectors can reduce holes in the nonself coverage. 



2.1.1 Calculating the detector radius: We used the Minkowski dislance to meas- 
ure the distance (0) between two points x and y ,  which is defined as 

where X= { XO ... x N-1) and y = { yOyp ... JJ N-11. The Minkowski distance 
with 1 = 2 is equivalent to Euclidean Distance. 
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(a) Calculate detector radius (b) Moving a detector (c) Cloning a detector 

Figum3: Ihaate weamt Ixmpumicmal steps used during tbe detectormaturati on process. (a) 
Shows a way to calculate and update theradius of a detector (b) E a  candidate dcteaoroverlaps 
w i t h a n ~ ~ ( c r s e l f p o ~ ) , t h e n t h e  candidatedetector(i.e. its water, c) ismovedm 
the opposite directim to its nearest neighbor detector; (c) Given amatme detec&r, a clone is 
aeatedata distance equal to itsnxiius, and the direction where it is created is selected at random 

This approach allows having variable size detectors to cover the nonself space. As 
shown in Fig. 3(a), if the distance between a candidate detector, d = (c, rd) and its 
nearest self point in the training dataset is 0, then the detector radius is considered as 
rd= (D - rJ. However, if a detector is close to any edge of the hypercube and has a 
large radius, then only a portion of it is inside the space, and such a detector is re- 
fmed to as an edge detector. If the value rd= (D - rs) is negative then it falls inside the 
self (radius); and this detector is expected to be discarded or moved in subsequent 
iteration. 

2.1.2 Moving detectors: Let d = (c, rd) represents a candidate detector and d"m 
= (c-, rdnaycr )  is its nearest detector (or a self point), then the center of d is moved 
such that 

cnew =c+a- ,  

1141 
where d r  = c - c-, and (1.11 denotes the norm of a m-dimensional vector (Fig. 

3(b)). Accordingly, if a detector overlaps significantly with any other existing detec- 



tors, then it is also moved away from its nearest neighbor detector. In order to guaran- 
tee the convergence of this process, an exponential decay fimction is used for the 
moving parameter (a). 

2.13 Detector Cloning and Random Exploration: At every generation, a few better- 
fitted detectors are chosen to be cloned Specifically, let d = ( c ~ ,  rd ""> be a detector 
to be cloned and, say e = (c"", r d c y ,  is a cloned detector whose center is located 
at a distance rd dd fkom d and whose radius is the same as that of the detector, d. Ac- 
cordingly, the center of& is computed as 

dir = coU - cMM (see Fig. 3(c)), and where c- is the center of d ' s  near- 
est detector. 

In addition, a few less-fit detectors are replaced by random detectors at each gen- 
eration This process allows the exploration of new regions of the nonself space, 
which may need to be covered. 

2.1.4 Evalnntion of nonself detedors: Detectors which do not fall in the self ~e 

gion are sorted according to their size. A detector with large radius gets selected for 
the next generation population, if it has small overlap with existing detectors i.e. less 
than an overlappii threshold (5). 

Accordingly, the overlapping measure W of a detector is computed as the sum of its 
overlap with all other detectors as follows, 

where w(4 d ') is the measured overlap between two detectors d = (c, rd and d' = 

(c, rd;);  and is defined by W(d,d') = (eXp(6) - I)", m is the dimension of the 
f-space, 

The value of 6 is considered to be bounded between 0 and 1; and D is the distance 
between two detector centers c and c'as shown in Fig. 3(d). This overlapping measure 
seems to favor the detectors with bigger radii, i.e. detectors having larger coverage of 
the nonself space with minimum overlap among them. Accordingly, the closer the 
center of two detectors is, the higher the value of the overlapping measure w (4 d 3. 
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Figure yd): The o v m  between two detectors daud d’is cumputed in tenns of the distance 
(0) between their centres (c, cy and radii (rd rdy. 

2.2 Testingphase.Dete&on - P- 
The detection process is straightforward -- the matured detectors are continually exam- 
ined with new samples in test datasets. For example, the distance between a sample 
patlern, p = (cp rJ and a detector, d = (c, rd, is computed as D (cp c), where D (cp, c) 
is the distance between the sample pattern and the detector calculated in the same way 
as in the detector generation phase. If the distance, D < (rs + rd, then the detector d 
gets activated indicating possible fault. 

3. Fault Detection in Aircraft operation 

There are many applications where the aircraft behavior monitoring for indicating 
flight subsystem fauivdamage, detection of changes (in trends) in the operating condi- 
t i o ~ ~  etc. appears to be very useful [12]. We used a C-17 man-in-the-loop simulation 
data for this study. 

An aircraft typically has many dedicated primary and secondary control surfaces to 
maneuver the airrraft through space. In modern fly-by-wire aircraft, the pilot com- 
mands angular rates of the air& using a side stick device. Speed and altitude control 
is mostly achieved using auto pilot settings chosen by the pilot. The C-17 aircraft, in 
addition to four engines, has a stabilizer, four elevators, two ailerons, eight spoiler 
panels, four flap sections, and two rudders for control. In the figure shown below, the 
pilot stick commands are shaped by a reference model to generate body-axes roll, 



pitch, and yaw a ~ ~ e l t ~ a t i ~ ~  commands to the NASA Ames developed Intelligent 
Flight Controller [ll, 131. The sensory feedback to the controller includes the body- 
axes angular rates, airspeed, altitude, and angle+f-attack. An error vector, computed 
using the difference between commanded and sensed body-axes angular rates, is used 
to drive the intelligent flight controller. For this study, data generated through piloted 
siollrlation shdies using the C-17 sirnulator are used. 

Pitot i 

Figare 4: The block d i a p m  showing the integrdon of immunity-based Fault detection system 
and intelligent flight control @C) system. 

We experimented with different detector generator schemes for real-valued nega- 
tive selection algorithm for better detection of different faults. This fault detection 
system takes real-vaiued data set as inpat; extracts the important semantic information 
bq applying data fusion and normalization techniques. The reduced information is 
then represented as a collection of strings, which forins the self set ( n o d  patterns). 
that can be used to generate a diverse set of detectors. The set of detectors are subse- 
quently used for detection of different type of faults (known and unknom faults). The 
aim is to find a small number of specialized detectors (as signature of known failure 
conditions) and a bigger set of generalized detectors for unknown (or possible) fault 
conditions. The output of the fault detection system ~ $ 1 1  be provided to IFC for isolat- 
ing the faulty control surface. 

4. Experiments and Results 

The data fYom the simulator is collected at the rate of 30 Hz per second. Since the data 
is t?om man-in-the-loop simulation, there is an extra control (the human pilot) that 
simply cannot be removed from the data. We considered three sets of in-flight sensory 
information-namely, body-axes roll rate, pitch rate and yaw rate-40 detect five 



different simulated faults. The error rates are measured h m  the desired output of the 
reference model and the actual sensed output (as shown in Fig. 4). 

The training data set was created by taking all of the data until the moment of the 
failure. For both cases, this is a different amount of time which varies between 2-3 
seconds. The test data were generated by windowing the data 1.5 seconds before and 
1.5 seconds after the failure. As a result, the "normal" part of the test data looks simi- 
lar to the training data for each case. It is to be noted that some of the entries are zero 
at the beginning of the data set, because the pilot has likely not entered a command to 
maneuver by then, and the aircraft would still be flying straight and level. 

4.1 Preprocessing Data: 

First, data are normalized where the actual values of the variables are scaled or nor- 
malized to fit a defined range [O.O, 1.01 using the maximum and minimum (+/- 20% to 
normal data) value of each dimension in the data set. Any value above and below the 
defined mar and min is considered as I and 0, respectively. Data window shifi+hifb 
the data based on the window shifting and data overlapping parameters. In these ex- 
periments, K-mean clustering is used to reduce the trahirig dataset to improve the time 
complexity of the detector generation process. 

4.2 Detector generation phase: 

The RNS algorithm takes as input a set of hyper-spherical detectors randomly distrib- 
uted in the seWnonself space. The algorithm applies a heuristic process that changes 
iteratively the position of the detectors driven by the objective to maximize the cover- 
age of the nonself subspace and to minimize their overlap, while not covering the self 
samples. The flow diagram for the proposed detector generation algoritbm (RNS) is 
given in previous section (Fig. 2). 

The aim is to find a small number of specialized detectors (as signature of known 
fault conditions) and other generalized detectors for unknown (or possible) fault con- 
ditions. 

4.3 Testing phase: 

Aiier generating the detectors, the mxt bkp is to exatnine the ef€ectivencss of detec- 
tors in identifying various faults. We used the same preprocessing steps and distance 
measure during the testing phase as was used in g e n d g  detectors. If a detector gets 
activated with current pattern, a change in the behavior patiern is known to have oc- 
cmed and an alarm si@ is generated regarding the fault. In particular, 

For each hult condition: Combine all (or as many as possible) activated de- 
tectors to form a small set of specialized fault detectors that can be labelled 
with specific fault type. 



For rest of the detectors: Use clustering method to form different clusters 
with cluster centre and radius of the cluster to be labelled as probable (or 
possible) fault detectors 

Some of the generalized detectors can be used for detecting simulated faults during 
the testing phase, however, others may be considered as be ig  useless and discarded. 
It is expected that a limited number of detector generated by NSA (initially) may not 
be sufficient to cover the entire space, so it may be necessary to change the number, 
their distribution and resolution in nonself space to provide system and condition 
specific fault detection capabilities. 

4.4 Results: 

The sensor parameters considered for these experiments include body-axes roll angle 
rate, pitch rate and yaw rate, where both expected and observed values are monitored 
and error rate ( e )  is calculated. If these error rates are abnormal, the NS fault detection 
algorithm should detect them indicating possible failures. The following graphs illus- 
trate results of experiments with different failure conditions. 

Fig. 5 shows the error m e )  for three sensory inputs that are considered as the 
normal operating conditions, and used to generate the detector set. Fig. 6 illustrates 
the performance of the detection system when tested with wing fault data, where this 
type of fault is &ested in roll error rate (starting at 300 time step). The graph also 
shows the number of detectors activated (upper bar chart) as significant deviations in 
data patterns appear. Fig. 7 displays similar results for the tail failure. It is to be noted 
that simulation data that have a full tail %lure, show up fmt in the pitch axis as the 
pitch axis has very little coupliig with the roll and yaw axes. 

As this detector generation algorithm generates variably sized detectors to cover 
spaces within and outside self regions, Fig. 8 gives the number of detectors with dif- 
ferent sizes in a typical run. In this case, more number of detectors is generated with 
radii ranging between 0.25-0.3. However, some of the detectors with larger radii are 
edge detectors, partidly covering the nonself space. 

Table 1 gives &he s&.tisticd results of 10 runs for two differeat faultstai!  and wing 
damage. Here the number of detector generated is 368; when tested on two faulty data 
sets, the detection rates of 89% and 92% are observed with relatively small false alarm 
rates. 
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Figure 5. Show error rates for three sen- 
sory inputs (roll. pitch and yaw) rhat are 
considered as the normal data pattern. 

Figure 6. Show the detection of a wing 
failure with number of activated detectors. 
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Figure 7: Test resuits indicating the detection of 
Tail 1 failure. 
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Figure 8: Indicates diffment sized detectors that 
are generated in a typical nm. 

Table 1. Table shows some statistics oftesting two different faults (tail and wing failure). 

Performance 
Detection date False alarm rate 

Tail 0.87% 0.45 
Win 0.98% 0.32 

Faults 
Mean 



Fig. 9 shows the niimber of detectors activated for five different fauits. W-e observed 
that a good number of detectors get activated in each fault case. There appears to be 
three possible reasons: first, because of allowing some overlap among detectors; sec- 
ond. faulty data may be clustered at several locations in the nonself space, and third 
the same detectors may be activated for more than one fault cases. Fig. 10 shows dif- 
ferent false alarm rates with the change in number of detectors. It indicates that the 
false positive rate reduces as number of detectors increases; moreover, the increase in 
false negative is insignificantly small (up to 1.4%) ai the same time. 

Figure9 Averagenrrmberofdeteaors 
activated for each k l t  tested 
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Figure 10. Shows the false alarm rates 
(both false positive and false negative) with 
change in number of detectors. 

5. Conclusions: 

There exist many techniques for aircraft failure detection 12-33-6.13.151. One of the 
drawbacks of existing fault detection and isolation (FDI) based approaches is that the? 
cannot detect unexpected and unknown fauit tqpes. The immunity-based approaches 
have been used in many applications including fault detection [I, 4. 17. 19. 201, 
anomaly detection [14. 181, etc. We investigated a real-valued negative selection algo- 
rithm that could detect a broad spectrum of known and unforeseen faults. In this work, 
once the fault is detected and identified, a direct adaptive control system would use 
this detection information to stabilize the aircraft by utilizing available resources (con- 
trol surfaces). The proposed intelligent fault detection algorithm is inspired by the 
principles of the biological immune sqstem. This fault detection algorithm is a prob- 
abilistic approach (motivated by the negative selection mechanism of the immune 
system) in order to detect deviations in aircraft flight behavior patterns. In particular, 
the detection systein learns the knowledge of the normal flight patterns h m  sensory 
data, to generate probabilistidly a set of (novel) pattern detectors that can detect any 
abnormalities (including faults) in the behavior pattern of the aircraft flight. 

In summary, the proposed method works as follows: 



Based on the dataset (given) of normal operating conditions, generate a set of fault 
detectors; the goal is, however, to evolve ‘good’ detectors that cover the nonself space. 

0 A’good’detector: 
o 
o 

It must not cover self space. 
It has to be as general as possible: the larger the volume, the better. 

One detector may not be enough; instead, a set of detectors is required that 
can collectively cover the nonself space with minimum overlap. 

During the testing phase, we used the data collected during different fault condi- 

Detectors that get activated (match) for each fault are labeled as specific fault 
detectors. These constih~te a set of specialized detectors for identifling dif- 
ferent class of faults. 
It may be necessary to go through the detector optimization process: filter out 
some overlapping detectors, and merge some and generating new ones for 
better coverage. 

tions: 

Some faulty conditions can be simulated (by changing some crucial, monitored pa- 
rameters) in order to check which generalized detectors get activated. These detectors 
can also provide the knowledge of possible (unknown) faults. The goal is to achieve a 
certain level of damage control under any known fault or unknown abnormalities. 

The long-team goal is to use NSA to detect control surface area loss caused by 
damage (or failure) and other causes that may result in the departure of the aircraft 
from safe flight conditions. Once the failure is detected and identified, the intelligent 
Flight Controller (IFC) then utilizes all remaining source of control power neceSSary 
to achieve the desired flight performance. 
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