Skip to main content

Integration of Immune Models Using Petri Nets

  • Conference paper
Artificial Immune Systems (ICARIS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3239))

Included in the following conference series:

Abstract

Immune system has unique defense mechanisms such as innate, humoral and cellular immunity. These immunities are closely related to prevent pathogens from spreading in host and to clear them effectively. To achieve those mechanisms, particular processes, such as clonal expansion, positive and negative selection, and somatic hypermutation and so on, have been evolved. These properties inspired people to open a new field, called artificial immune systems that mimics and modifies immune behaviors to invent new technologies in other fields. To explain immune mechanisms, many mathematical models focusing on one particular phenomenon were developed. We developed an integrated immune model that enables to understand immune responses as a whole and to find new emergent properties of the immune system that could not be seen in separate models. We used a continuous Petri net as modeling language, because of its easiness of modeling and analysis.

This work was supported by the Korean Systems Biology Research Grant (M1-0309-02-0002) from the Ministry of Science and Technology. We would like to thank CHUNG Moon Soul Center for BioInformation and BioElectronics and the IBM SUR program for providing research and computing facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fearon, D.T., Locksley, R.M.: The instinctive role of innate immunity in the acquired immune response. Science 272, 50–53 (1996)

    Article  Google Scholar 

  2. Dornand, J., Gross, A., Lafont, V.: Liautard. J, Oliaro, J., Liautard, J.P.: The innate immune response against Brucella in humans. Veterinary Microbiology 90 (2002)

    Google Scholar 

  3. McHeyzer-Williams, M.G.: B cells as effectors. Curr. Opin. Immunol. 15, 354–361 (2003)

    Article  Google Scholar 

  4. Baumgarth, N.: A two-phase model of B-cell activation. Immunological Review 176, 171–180 (2000)

    Article  Google Scholar 

  5. Dutton, R.W., Bradley, L.M., Swain, S.L.: T cell memory. Annu. Rev. Immunol. 16, 201–213 (1998)

    Article  Google Scholar 

  6. Lanzavecchia, A.: Mechanisms of antigen uptake for presentation. Curr. Opin. Immunol. 8, 348–354 (1996)

    Article  Google Scholar 

  7. Dennert, G.: Molecular mechanism of target lysis by cytotoxic T cells. Int. Rev. Immunol. 14, 133–152 (1997)

    Article  Google Scholar 

  8. Rosen, H.R.: Hepatitis C pathogenesis: mechanisms of viral clearance and liver injury. Liver Transplantation 43, S35-S43 (2003)

    Article  Google Scholar 

  9. Surh, C.D., Sprent, J.: T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372, 100–103 (1994)

    Article  Google Scholar 

  10. Cornall, R.J., Goodnow, C.C., Cyster, J.G.: The regulation of self-reactive B cells. Curr. Opin. Immunol. 7, 804–811 (1995)

    Article  Google Scholar 

  11. Mueller, D.L., Jenkins, M.K., Schwartz, R.H.: Clonal expansion versus functional clonal inactivation: a costimulatory signaling pathway determines the outcome of T cell antigen receptor occupancy. Annu. Rev. Immunol. 7, 445–480 (1989)

    Article  Google Scholar 

  12. Wagner, S.D., Neuberger, M.S.: Somatic hypermutation of immunoglobulin genes. Annu. Rev. Immunol. 14, 441–457 (1996)

    Article  Google Scholar 

  13. Mond, J.J., Lees, A., Snapper, C.C.: T cell-independent antigens type 2. Ann. Rev. Immunol. 13, 655–692 (1995)

    Article  Google Scholar 

  14. Triantafilou, M., Triantafilou, K.: Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends in Immunology 23, 301–304 (2002)

    Article  Google Scholar 

  15. Pleiman, C.M., Dambrosio, D., Cambier, J.C.: The B cell antigen receptor complexstructure and signal-transduction. Immunol. Today 15, 393–399 (1994)

    Article  Google Scholar 

  16. Kidd, P.: Th1/Th2 balance: The hypothesis, its limitations, and implications for health and disease. Altern. Med. Rev. 8, 223–246 (2003)

    Google Scholar 

  17. DeFranco, A.L.: Molecular aspects of B-lymphocyte activation. Ann. Rev. Cell Biol. 3, 143–178 (1987)

    Article  Google Scholar 

  18. Robbins, F.C., Robbins, J.B.: Current status and prospects for some improved and new bacterial vaccines. Am. J. Pub. Health 7, 105–125 (1986)

    Article  MathSciNet  Google Scholar 

  19. van Lier, R.A.W., ten Berge, I.J.M., Gamadia, L.E.: Gamadia: Human CD+ T-cell differentiation in response to viruses. Nature Rev. Immunol. 3, 1–8 (2003)

    Article  Google Scholar 

  20. Trambas, C.M., Griffiths, G.M.: Delivering the kiss of death. Nature Immunol. 4, 399–403 (2003)

    Article  Google Scholar 

  21. Kim, J., Bentley, P.J.: Towards an Artificial Immune System for Network Intrusion Detection: An Investigation of Clonal Selection with a Negative Selection Operator. Proc. of the Congress on Evolutionary Computation, 1244–1252 (2001)

    Google Scholar 

  22. Bradley, D.W., Tyrrell, A.M.: The Architecture for a Hardware Immune System. In: Proc. of 3rd NASA/DoD Workshop on Evolvable Hardware, pp. 193–200 (2001)

    Google Scholar 

  23. Knight, T., Timmis, J.: AINE: An Immunological Approach to Data Mining. In: Proc. of the IEEE International Conference on Data Mining, pp. 297–304 (2001)

    Google Scholar 

  24. Gibert, C.J., Routen, T.W.: Associative Memory in an Immune-Based System. In: Proc. of the 12th National Conf. on Artificial Intelligence, pp. 852–857 (1994)

    Google Scholar 

  25. Castiglione, F.: A network of cellular automata for the simulation of the immune system. Int. J. Morden Physics C 10, 677–686 (1999)

    Article  Google Scholar 

  26. Rundell, A., DeCarlo, R., HogenEsch, H., Doerschuk, P.: The humoral immune response to Haemophilus influenzae type b: a mathematical model based on Tzone and germinal center B-cell dynamics. J. Theor. Biol. 194, 341–381 (1998)

    Article  Google Scholar 

  27. Perelson, A.S.: Immunology for physicists. Reviews of Modern Physics 69 (1997)

    Google Scholar 

  28. Perelson, A.S.: Modelling viral and immune system dynamics. Nature Rev. Immunol. 2, 28–36 (2002)

    Article  Google Scholar 

  29. Puzone, R., Kohler, B., Seiden, P., Celada, F.: IMMSIM, a flexible model for in machine experiments on immune system responses. Future Generation Computer Systems 18, 961–972 (2002)

    Article  MATH  Google Scholar 

  30. Kesmir, C., De Boer, R.J.: A mathematical model on germinal center kinetics and termination. J. Immunol. 163, 2463–2469 (1999)

    Google Scholar 

  31. Agrawal, N.G.B., Linderman, J.J.: Mathematical modeling of helper T lymphocyte/antigen-presenting cell interactions: analysis of methods for modifying antigen processing and presentation. J. Theor. Biol. 182, 487–504 (1996)

    Article  Google Scholar 

  32. Davenport, M.P., Fazou, C., McMichael, A.J., Callan, M.F.C.: Clonal selection, clonal senescence, and clonal succession: the evolution of the T cell response to infection with a persistent virus. J. Immunol. 168, 3309–3317 (2002)

    Google Scholar 

  33. DeBoer, R.J., Oprea, M., Antia, R., Murali-Krishna, K., Ahmed, R., Perelson, A.S.: Recruitment times, proliferation, and apoptosis rates during the CD8+ T-cell response to lymphocytic choriomeningitis virus. J. Virol. 75, 10663–10669 (2001)

    Article  Google Scholar 

  34. Bocharov, G.A.: Modeling the dynamics of LCMV infection in mice: conventional and exhaustive CTL responses. J. Theor. Biol. 192, 283–308 (1998)

    Article  Google Scholar 

  35. Funk, G.A., Barbour, A.D., Hengartner, H., Kalinke, U.: Mathematical model of a virus-neutralizing immunoglobulin response. J. Theor. Biol. 195, 41–52 (1998)

    Article  Google Scholar 

  36. Marino, S., Kirschner, D.E.: The human immune response to Mycobacterium tuberculosis in lung and lymph node. J. Theor. Biol. 227, 463–486 (2004)

    Article  Google Scholar 

  37. Koguchi, Y., Kwakami, K.: Cryptococcal infection and Th1-Th2 cytokine balance. Intern. Rev. Immunol. 21, 423–438 (2002)

    Article  Google Scholar 

  38. Hosken, N.A., Shibuya, K., Heath, A.W., Murphy, K.M., O’Garra, A.: The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor- αβ-transgenic model. J. Exp. Med. 182, 1579–1584 (1995)

    Article  Google Scholar 

  39. Edwards, B.M., Barash, S.C., Main, S.H., Choi, G.H., Minter, R., Ullrich, S., Williams, E., Fou, L.D., Wilton, J., Albert, V.R., Ruben, S.M., Vaughan, T.J.: The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BLyS. J. Mol. Biol. 334, 103–118 (2003)

    Article  Google Scholar 

  40. Mehr, R., Globerson, A., Perelson, A.S.: Modeling positive and negative selection and differentiation in the thymus. J. Theor. Biol. 175, 103–126 (1995)

    Article  Google Scholar 

  41. Guermonprez, P., Valladeau, J., Zitvolgel, L., Thery, C., Amigorena, S.: Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621–667 (2002)

    Article  Google Scholar 

  42. Rogers, P.R., Croft, M.: Peptide dose, affinity, and time of differentiation can contribute to the Th1/Th2 cytokine balance. J. Immunol. 163, 1205–1213 (1999)

    Google Scholar 

  43. Foulds, K.E., Zenewicz, L.A., Shedlock, D.J., Jiang, J., Troy, A.E., Shen, H.: Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J. Immunol. 168, 1528–1532 (2002)

    Google Scholar 

  44. DeBoer, R.J., Homann, D., Perelson, A.S.: Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J. Immunol. 171, 3928–3935 (2003)

    Google Scholar 

  45. Ridge, J.P., Rose, F.D., Matzinger, P.: A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998)

    Article  Google Scholar 

  46. Badovinac, V.P., Porter, B.B., Harty, J.T.: Programmed contraction of CD8+ T cells after infection. Nat. Immunol. 3, 619–626 (2002)

    Article  Google Scholar 

  47. Kaech, S.M., Ahmed, R.: Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol. 2, 415–422 (2001)

    Google Scholar 

  48. Chao, D.L., Davenport, M.P., Forrest, S., Perelson, A.S.: A stochastic model of cytotoxic T cell responses. J. Theor. Biol. 228, 227–240 (2004)

    Article  MathSciNet  Google Scholar 

  49. Dmitriev, D.A., Massino, Y.S., Sega, O.L.: Kinetic analysis of interactions between bispecific monoclonal antibodies and immobilized antigens using a resonant mirror biosensor. J. Immunol. Methods 280, 183–202 (2003)

    Article  Google Scholar 

  50. Peterson, J.L.: Petri net theory and the modeling of systems. Prentice-Hall, Englewood Cliffs (1981)

    Google Scholar 

  51. Murata, T.: Petri nets: Properties, analysis and applications. Proc. IEEE 77, 541–580 (1989)

    Article  Google Scholar 

  52. Peleg, M., Yeh, I., Altman, R.B.: Modelling biological processes using workflow and Petri Net models. Bioinformatics 18, 825–837 (2002)

    Article  Google Scholar 

  53. Alla, H., David, R.: A modeling and analysis tool for discrete event systems: continuous Petri net. Performance Evaluation 33, 175–199 (1998)

    Article  Google Scholar 

  54. Ridge, J.P., et al.: A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998)

    Article  Google Scholar 

  55. Van Stipdonk, M.K., Lemmens, E.E., Schoenberger, S.P.: Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol. 2, 423–429 (2001)

    Google Scholar 

  56. Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A., Rocha, B.: Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nat. Immunol. 1, 47–53 (2000)

    Article  Google Scholar 

  57. Bachman, M.F., Kundig, T.M., Kalberer, C.P., Hengartner, H., Zinkernagel, R.M.: How many specific B-cells are needed to protect against a virus? J. Immunol. 152, 4235–4241 (1994)

    Google Scholar 

  58. Karlsson, M.C.I., Getahun, A., Heyman, B.: Fc γ RIIB in IgG-mediated suppression of antibody responses: different impact in vivo and in vitro. J. Immunol. 167, 5558–5564 (2001)

    Google Scholar 

  59. Marino, S., Kirschner, D.E.: The human immune response to Mycobacterium tuberculosis in lung and lymph node. J. Theor. Biol. 227, 463–486 (2004)

    Article  Google Scholar 

  60. Wilson, M., Seymour, R., Henderson, B.: Bacterial perturbation of cytokine networks. Infection and Immunity 6, 2401–2409 (1998)

    Google Scholar 

  61. Heyman, Birgitta: Feedback regulation by IgG antibodies. Immunology Letters 88, 157–161 (2003)

    Article  Google Scholar 

  62. Pittner, B.T., Snow, E.C.: Strength of signal through BCR determines the fate of cycling B cells by regulating the expression of the Bcl-2 family of survival proteins. Cell. Immunol. 186, 55–62 (1998)

    Article  Google Scholar 

  63. Scott, D.W.: Activation-induced cell death in B lymphocytes. Cell Research 10, 179–192 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Na, D., Park, I., Lee, K.H., Lee, D. (2004). Integration of Immune Models Using Petri Nets. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds) Artificial Immune Systems. ICARIS 2004. Lecture Notes in Computer Science, vol 3239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30220-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30220-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23097-7

  • Online ISBN: 978-3-540-30220-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics