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Abstract. Practical reasoners are resource-bounded—in particular they require
time to derive consequences of their knowledge. Building on the Timed Reason-
ing Logics (TRL) framework introduced in [1], we show how to represent the
time required by an agent to reach a given conclusion. TRL allows us to model
the kinds of rule application and conflict resolution strategies commonly found
in rule-based agents, and we show how the choice of strategy can influence the
information an agent can take into account when making decisions at a particular
point in time. We prove general completeness and decidability results for TRL,
and analyse the impact of communication in an example system consisting of two
agents which use different conflict resolution strategies.

1 Introduction

Most research in logics for belief, knowledge and action (see, for example, [2-11])
makes the strong assumption that whatever reasoning abilities an agent may have, the
results of applying those abilities to a given problem are available immediately. For
example, if an agent is capable of reasoning from its observations and some restricted
set of logical rules, it derives all the consequences of its rules instantaneously.

While this is a reasonable assumption in some situations, there are many cases
where the time taken to do deliberation is of critical importance. Practical agents take
time to derive the consequences of their beliefs, and, in a dynamic environment, the
time required by an agent to derive the consequences of its observations will determine
whether such derivations can play an effective role in action selection. Another example
involves more standard analytical reasoning and a classical domain for the application
of epistemic logics: verifying cryptographic protocols. An agent intercepting a coded
message usually has all the necessary “inference rules” to break the code. The only
problem is that if the encoding is decent, it would take the intercepting agent millen-
nia to actually derive the answer. On the other hand, if the encryption scheme is badly
designed or the key length is short, the answer can be derived in an undesirably short
period of time. The kind of logical results we want to be able to prove are therefore of
the form agent i is capable of reaching conclusion ¢ within time bound t.

In this paper we show how to model the execution of communicating rule-based
agents using Timed Reasoning Logics (TRL). TRL is a context-logic style formalism
for describing rule-based resource bounded reasoners who take time to derive the conse-
quences of their knowledge. This paper builds on the work in [1], where we introduced



TRL. In that paper, we described how our logic can model different rule application
and conflict resolution strategies, and proved soundness and completeness of the logic
TRL(STEP) which captures the all rules at each cycle rule application strategy used by
step logic [12] (for another example of a TRL(STEP) logic, see [13]). We also showed
how to model a single rule at each cycle strategy similar to that employed by the CLIPS
[14] rule-based system architecture, and sketched a logic TRL(CLIPS). In this paper,
we prove a general soundness and completeness result for TRL, from which soundness
and completeness of TRL(CLIPS) follows. We study TRL(CLIPS) in more detail and
give a detailed example involving two communicating agents using different CLIPS
conflict resolution strategies.

2 Model of an agent

In this section we outline a simple model of the kind of rule-based agent whose execu-
tion cycle we wish to formalise.

A rule-based agent consists of a working memory and one or more sets of condition-
action rules. The working memory constitutes the agent’s state, and the rules form the
agent’s program. We assume that agents repeatedly execute a fixed sense-think-act cy-
cle. At each tick of the clock, an agent senses its environment and information obtained
by sensing is added to the previously derived facts and any a priori knowledge in the
agent’s working memory. The agent then evaluates the condition-action rules forming
its program. The conditions of each rule are matched against the contents of the agent’s
working memory and a subset of the rules are fired. This typically adds or deletes one
or more facts from working memory and/or results in some external actions being per-
formed in the agent’s environment. For the purposes of this paper the only external
action we assume is a ‘communication’ action which allows agents to communicate
facts currently held in working memory to other agents.

Our interest here is with the rule application and conflict resolution strategy adopted
by the agent. In general, the conditions of a rule can be consistently matched against
the items in working memory in more than one way, giving rise to a number of distinct
rule instances. Following standard rule-based system terminology we call the set of rule
instances the conflict set and the process of deciding which subset of rule instances are
to be fired at any given cycle conflict resolution. Agents can adopt a wide range of rule
application and conflict resolution strategies. For example, they can order the conflict
set and fire only the first rule instance in the ordering at each cycle, or they can fire all
rule instances in the conflict set on each cycle once, or they can repeatedly compute the
conflict set and fire all the rule instances it contains set until no new facts can be derived
at the current cycle. We call these three strategies single rule at each cycle, all rules at
each cycle, and all rules to quiesence respectively.

3 Timed Reasoning Logics (TRL)

The literature contains many attempts at providing a logic of limited or restricted rea-
soning. However most of these do not explicitly take account of time. For example,
Levesque’s [2] logic of implicit and explicit belief restricts an agent’s explicit beliefs



(the classical possible worlds notion) by allowing non-classical (either incomplete or
impossible) worlds to enter an agent’s epistemic accessibility relation. Although agents
need not then believe all classical tautologies, they remain perfect reasoners in relevance
logic. In [15] Fagin & Halpern propose an alternative approach to restricting possible
worlds semantics which involves a syntactic awareness filter, such that an agent only
believes a formula if it (or its subterms) are in his awareness set. Agents are modelled
as perfect reasoners whose beliefs are restricted to some syntactic class compatible with
the awareness filter. Konolige [4] represents beliefs as sentences belonging to an agent’s
belief set, which is closed under the agent’s deduction rules. A deduction model assigns
a set of rules to each agent, allowing representation of agents with differing reasoning
capacities within a single system. However the deduction model tells us what a set of
agents will believe after an indefinitely long period of deliberation.

The only logical research we are aware of which represents reasoning as a process
that explicitly requires time is step logic [16, 17, 12]. However, until recently, step logic
lacked adequate semantics. In [18] Nirkhe, Kraus & Perlis propose a possible-worlds
type semantics for step logic. However this re-introduces logical omniscience: once
an agent learns that ¢, it simultaneously knows all logically equivalent statements. In
more recent work [19], Grant, Kraus & Perlis propose a semantics for step logic which
does not result in logical omniscience, and prove soundness and completeness results
for families of theories describing timed reasoning. However, their logic for reasoning
about time-limited reasoners is first-order and hence undecidable (even if the agents
described are very simple).

The approach we describe in this paper, Timed Reasoning Logics (TRL), avoids the
problem of logical omniscience and is at the same time decidable. TRL is a context-
logic style formalism for describing rule-based resource bounded reasoners who take
time to derive the consequences of their knowledge. Not surprisingly, in order to avoid
logical omniscience, a logic for reasoning about beliefs has to introduce syntactic ob-
jects representing formulas in its semantics. In [19], domains of models of the meta-
logic for reasoning about agents contain objects corresponding to formulas of the agent’s
logic. We have chosen a different approach, where models correspond to sets of agent’s
states together with a transition relation (similar to [8]). States are identified with finite
sets of formulas and the transition relation is computed using the agent rules.

This paper builds on the work in [1], where we introduced TRL. In this section, we
give a slightly more general formulation of TRL than that given in [1], and prove its
soundness and completeness.

3.1 TRL Syntax

Our choice of syntax is influenced both by step logics and context logics and by Gab-
bay’s Labelled Deductive Systems [20]. To be able to reason about steps in deliberation
and the time deliberation takes, we need a set of steps, or logical time points, which we
will assume to be the set of natural numbers. To be able to reason about several agents,
we also have a non-empty set of agents or reasoners A = {a, b, ¢, 4, j,i1,...,0n ...}

Different agents may use different languages. To be able to model changes in the
agent’s language, such as acquiring new names for things etc., we also index the lan-
guage by time points: at time ¢, agent i speaks the language L.



Well formed formulas in the agent’s languages £! are defined in the usual way. For
example, if £§ (the agent a’s language at time 0) is a simple propositional logic with
propositional variables pg, p1, . - ., Pn, then a well formed formula ¢ of £§ is defined as

¢ =pil=dlp — dloAPlPV ¢

As in context logic, we use labelled formulas to distinguish between beliefs of dif-
ferent agents at different times. If ¢ is an agent, ¢ is a moment of time, and ¢ a well-
formed formula of the language £}, then (i,t) : ¢ is a well-formed labelled formula of
TRL.

The general form of an inference rule in TRL is:

(il,t)t¢1, sy (in,t) : an
(,t+1): ¢

with a possible side condition of the form: provided that (i1,¢) : ¢1,. .., (in,t) : ¢, and
the set A, of all formulas derived at the previous stage in the derivation (see Definition 1
below) satisfy some property. For example, a side condition for a defeasible rule may
be that some formula is not in A;.

A significant restriction on the format of possible TRL rules is that only finitely
many formulas labelled t should be derivable starting with a finite set of labelled for-
mulas I, for any ¢. For example, supposing we had an operator B, for “agent a believes
that”, then the following negative introspection rule:

(a,t+1): ~B,¢ giventhat (a,t):¢ & A,

cannot be introduced in unrestricted form since it would generate infinitely many for-
mulas at step ¢ + 1.

A simple example of a TRL rule is an inference rule corresponding to a rule in the
agent’s program. If agent a’s program contains the rule

A(z), B(z) — C(x)
then the corresponding inference rule in TRL would be

(a,t) : A(zx), (a,t) : B(x)
(a,t+1):C(x)

Depending on the agent’s rule application strategy, the TRL inference rule may have
a side condition stating, for example, that it may only be applied if no other rule is
applicable.

Another kind of rule which we will see later is used to model communication be-
tween agents. For example,

(a,t) : &
(b,t+1): Byo

expresses the fact that whenever a believes ¢, at the next step b believes B, ¢. In this

paper, we do not explicitly model message passing. Instead we assume that whenever
an agent derives a fact of a certain form it communicates this fact to other agents. The



message arrives at the next tick of the clock, and is ‘observed’ immediately. In the
example above, whenever a derives ¢, it sends a message containing ¢ to b, which
arrives at ¢ + 1. This model corresponds to perfect broadcast communication with a
fixed one tick delay.

The derivability relation in a TRL logic may be non-monotonic due to the agent’s
rule application strategy (e.g. only one of the rules is applied at each cycle) or to the
presence of defeasible rules. Before we give a formal definition of derivability, we need
a couple of auxiliary definitions. Let R be a set of TRL rules and A a finite set of
labelled formulas. Then by R(A) we denote the set of all labelled formulas derivable
from A by one application of a rule in R. Formally, R(A) is the set of all labelled
formulas (i, ¢ + 1) : ¢ such that there is a rule in R of the form

(ilvt) : ¢1a---7(i7ut) D On
(i,t+1): ¢

and (i1,t) : ¢1,...,(in,t) : ¢ € A and any side condition of the rule, holds for
(i1,t) : @1, .., (in,t) : ¢, and A. Finally, given a set of labelled formulas I", we write
Iy, for the subset of I" labelled by time point & (formulas in I” of the form (3, k) : ¢ for
any agent j).

Definition 1. Given a set of TRL rules R, a labelled formula (i,t) : ¢ is derivable
using R from a set of labelled formulas I':

I'tg(i,t): ¢
if there exists a sequence of finite sets of labelled formulas
Ao, Ay, Ay,
such that (i,t) : ¢ € Ay and

1. Ay is the union of I'y and all axioms in R labelled by time 0 (i.e., (j,0) for some

agent j).
2. Ay is the union of Iy, and R(Ak_1).

3.2 TRL Semantics

We identify the local state of agent i at time ¢, m¢, with a finite set {¢1, . .., ¢, } of for-
mulas of the agent’s language at time ¢, i.e. £¢. At this point, we don’t require anything
else in addition to finiteness. In particular, this set may be empty or inconsistent.

A TRL model is a set of local TRL states. Each local state in a TRL model is indexed
by an element of the index set I = A x N, which is the set of pairs (¢, t), where i is
an agent and ¢ is the step number. In addition, a TRL model should satisfy constraints
which make it a valid representation of a run of a multi-agent system. To formulate
those constraints, we need the additional notions of observation and inference, which
constrain how the next state of an agent will look.

Each agent has a program—a set of rules which it uses to derive its next state given
its current state and any new beliefs it obtains by observing the world. We therefore



equip each model with an obs function and a set of inf, functions (one for each agent
1). Intuitively, obs models observations, which we take to include inter-agent communi-
cation, and takes a step ¢ and an agent ¢ as arguments and returns a finite set of formulas
in the agent’s language at that step. This set is added to the agent’s state at the same
step (we thus model observations as being believed instantaneously). Each inf; models
agent ¢’s computation of a new state by mapping a finite set of formulas in the language
L} to another finite set of formulas in the language £} , ;. Intuitively, inf, takes the to-
kens in agent ¢’s state at time ¢, applies the rules in ¢’s program to them to obtain a new
set of tokens, which, together with ¢’s observations at time ¢ + 1, constitute its state at
time ¢ + 1.

Definition 2 (TRL Model). Let A be a set of agents and {L: : i € A,t € N} a set of
agent languages. A TRL model M is a tuple (obs, inf,, {mi : i € At € N}) where
obs is a function which maps a pair (i,t) to a finite set of formulas in L%, inf, is a
function from finite sets of formulas in L: to finite sets of formulas in Lt 11, and each
m} is a finite set of formulas in L} such that m}__, = inf;(m}) U obs(i,t + 1).

Definition 3 (Satisfaction and Logical Entailment). A labelled formula (i,t) : ¢ is
true in a model, written M = (i,t) : ¢, iff & € m! (the state indexed by (i,t) in M
contains ¢). A labelled formula (i,t) : ¢ is valid, = (i,t) : &, iff for all models M,
M [ (i,t) : ¢. Let I' be a set of labelled formulas. I logically entails (i,t) : ¢,
I' = (i,t) : ¢, if in all models where I is true, (i,t) : ¢ is true.

3.3 Soundness and completeness of TRL

In this section we prove a general soundness and completeness result for TRL systems.
We are going to show that given a set of TRL rules R (the only condition on R is
that starting from a finite set of premises, it only produces a finite set of consequences
labelled ¢, for any ¢) and a set of TRL models S, describing possible runs of a multi-
agent system, R is sound and complete with respect to S if, and only if, .S is the set of
models which conform to R in the sense defined below.

Definition 4. A TRL model M conforms to a set of TRL rules R if for every rule in R
of the form
(ilat) : ¢1a ] (invt) : an
(G, t4+1): 9
possibly with some side condition on A, M satisfies the property that if for all premises
of the rule, ¢r, € m¥, and the side condition of the rule holds for | J jea m{ substituted
for Ay, thenp € m ;.

Before proving the main theorem, we need one more notion, similar to the notion
of a knowledge-supported model in [19]:

Definition 5. [Minimal Model] A TRL model M conforming to a set of TRL rules R is
a minimal model for a set of labelled formulas T if for every i,t and ¢, ¢ € m} iff one
of the following holds:



1. there is a rule in R of the form

(il,t) . (]51,...7(Z'n,t) . ¢n
(i,t+1):¢

for all premises of the rule, ¢, € m¥_, and the side condition of the rule holds for
Ujea mi_, (in other words, ¢ is in m! begause the model conforms to R)
2. or (i,t) : ¢ € I' in which case ¢ € obs(my).

A minimal model for I" only satisfies the formulas in I" and their logical conse-
quences.

Lemma 1‘. Let M be a minimal model for I' conforming to R. Then for every formula
o, pemliff kg (i,t): .

Proof. The proof goes by induction on ¢. If ¢t = 0, then the only way ¢ € mj is because
¢ € 0bs(i,0) hence (i,0) : ¢ € I'so I' kg (4,0) : ¢. Inductive hypothesis: suppose
that for all agents j and all s < ¢, ¢ € mI iff I' - (j,s) : ¢. Let ¢ € mi,,. Then
either (i,t+ 1) : ¢ € I"hence I' R (i,t + 1) : ¢, or there is a rule in R of the form

(il,t) . ¢1,...,(in,t) . ¢n
(G,t+1): 9

such that 9) = ¢ and ¢1,...,¢, € m! (and the side condition of the rule holds for
the set of formulas in the union of all states at time ¢). By the inductive hypothesis,
I' Fg (ig,t) : ¢r. Hence by this same rule, I' g (i,t 4+ 1) : ¢.

Theorem 1. Given a set of TRL rules R, for any finite set of labelled formulas I" and a
labelled formula ¢, I' g ¢ iff I' |=r ¢ where R is the set of all models conforming to
R.

Proof. Soundness (I" =r ¢ = I kg ¢) is standard: clearly, in a model conforming
to R the rules in R preserve validity.

Completeness: suppose I' = ¢. Consider a minimal model for I", M, conform-
ing to R. Since I =r ¢ and our particular model M conforms to R and satisfies I,
Mp | ¢.From Lemma 1, ' g ¢.

Theorem 2. Given a set of TRL rules R, for any finite set of labelled formulas I" and
a labelled formula ¢, it is decidable whether I' - ¢ or I' |Er ¢ where R is the set of
all models conforming to R.

Proof. From Theorem 1 above, the questions whether I" Fr (i,t) : ¢ and whether
I' =r (i,t) : ¢, where R is the set of models conforming to R, are equivalent. Consider
aminimal model My for I".If I' = (i,t) : ¢, then ¢ € m?in M. On the other hand,
from Lemma 1, if ¢ € mi then I' Fg (i,t) : ¢. Hence ¢ € miiff I' Fg (i,t) : ¢ iff
r ':R (i, t) : (b

It is easy to see that given that I” is finite and rules in R only produce a finite num-
ber of new formulas at each step, the initial segment of M (up to step ¢) can be con-
structed in time bounded by a tower of exponentials in |I"| of height ¢ (but nevertheless
bounded). Then we can inspect m} to see if ¢ is there.



4 TRL(CLIPS)

As an example of a logical model of an agent based on TRL, we show how to model
a simple system consisting of two communicating agents. The agents use a CLIPS-
style [14] single rule at each cycle rule application strategy. However each agent uses
a different CLIPS conflict resolution strategy. We show that the adoption of different
conflict resolution strategies by each agent can result in a reduction in the time required
to derive information for action selection.

CLIPS has been used to build a number of agent-based systems (see, e.g., [21]).
In CLIPS each rule has a salience reflecting its importance in problem solving. At
each cycle, all rules are matched against the facts in working memory and any new
rule instances are added to the conflict set. Rule matching is refractory, i.e., rules don’t
match against the same set of premises more than once. New rule instances are placed
above all rule instances of lower salience and below all rules of higher salience. If rule
instances have equal salience, ties are broken by the conflict resolution strategy. CLIPS
supports a variety of conflict resolution strategies including depth, breadth, simplicity,
complexity, lex, mea, and random. The default strategy, called depth, gives preference
to new rule instances; breadth places older rule instances higher. Once the conflict set
has been computed, CLIPS fires the highest ranking rule instance in the conflict set at
each cycle.

Consider an agent with the following set of rules using the depth conflict resolution
strategy:

R1l: tiger(x) -> large-carnivore (x)
R2: large-carnivore(x) -> dangerous (x)

R1 has greater salience than R2. If the agent’s working memory contains the following
fact:

O:tiger(c)
then at the next cycle the agent would derive
l:large-carnivore(c)

Assume that at this cycle the agent observes a second tiger, and a corresponding fact is
asserted into working memory:

l:tiger(d)

Instances of R1 have greater salience than instances of R2, so on the following cycle
the agent will derive

2:large-carnivore (d)

Both “large-carnivore(c)” and “large-carnivore(d)” match R2, but
“large-carnivore (d)” will be preferred since it it is a more recent instance of R2
than “large-carnivore (c)”. On the following cycle the agent will derive

3:dangerous (d)



Finally the agent derives:
4 :dangerous (c)

This is trivial example. However, in general, the time at which a fact is derived can be
significant. For example, in developing an agent we may wish to ensure that it responds
to dangers as soon as they are perceived rather than after classifying objects in the
environment. In our short example, the delay in identifying danger is just one step, but
it is easy to modify the example to make the delay arbitrarily long (by introducing n
new tigers instead of one at cycle 1).

It is easy to see that the TRL logic corresponding to the single rule at each cy-
cle strategy is non-monotonic. For instance, in the example above, {0:tiger(c)}
2:dangerous (c), but {O :tiger(c), l:tiger(d) } |7/ 2:dangerous (c).

To reflect salience of rules, we assume that there is a partial order <; , on the set
of rules R; = {Rx, ..., Ry} which correspond to the rules of agent j’s program. Note
that the logic will contain more rules describing agent j in addition to R;; e.g. rules
which model observation, or the fact that formulas persist in the state. To determine
which rule instance will be fired at a given step in a TRL(CLIPS) derivation, we need
to compute a ‘conflict set’ of sets of premises matching rules in R, order it by a total
order, and fire the rule with the premises which come top in that order. The total order
on the conflict set is determined by the agent’s conflict resolution strategy.

To be more formal, let A; be the set of all formulas derived at step ¢. Let C}; ; be the
the conflict set for j at ¢, namely C;; = {((j,t) : ¢1, ..., (4,1) : dn, Ri) :

(j,t) : ¢1..n € A, Ry € Ry, and (4, ¢) : @1, ..., (j,t) : ¢, match R;}.

Define the order <gep¢n (depth order on C 4, to be read as ‘lower in the depth

order’) as follows:

<(]7t) : ¢17' 7(.77t) : ¢7’L7Ri> <d6pth <(.77t) :wla' 7(]7t) : w’naRm>
iff

1. R; <, ; Ry, (R; has lower salience); or

2. Ry =, Ry, but ((4,t) : ¢1,...,(J,t) : ¢n, R;) is an earlier rule instance, that
is, for some Ag with s < ¢, ((j,5) : ¢1,...,(j,s) : ¢n,Ri) € Cjs and ((J,s) :
¢1, ey (], 8) : wna Rm> g Cj73; or

3. (4,t) : d1,...,(4,t) : ¢ and (4, t) : ¥1,...,(4,t) : 1, match rules of the same
salience and were added to the conflict set at the same time, but
(4, 1) : P1,...,(J,t) : ¢n is lower in some arbitrary, e.g., lexicographic, order.

For the breadth order <p,cqqtn, We reverse the second clause of the definition; now
the premises which belong to a conflict set C; s for the earliest time s are higher in the
order.

We introduce meta-logical abbreviation top; depth(P1,- .., Pm,A:) and
top;.breadth (91, - - -, Om, A¢) to indicate that the set of premises ¢1,..., ¢ is
the highest in the <gepth (<preadrn) order among the conflict set C; ¢ of formulas from
Ay

Finally, we need to account for the refractoriness of the CLIPS rule application strat-
egy: any rule instance is only used once in the TRL(CLIPS) derivation. To be precise,



for any rule R; and a set of premises (4,t) : ¢1,...,(4,t) : ¢, matching this rule, if
at some step s < ¢ the rule 2; was fired with a set of premises which were the same
but for step label (e.g. (i,5) : ¢1,...,(i,5) : ¢n), then (i,t) : ¢1,...,(i,t) : ¢y, are
excluded from the conflict set C; ;.

The rules of a single rule at each cycle agent i using the depth strategy then become
(for ¢1,..., 0, — V).

(Z,t) : Q51, sy (Z,t) : (bn, At
(G, t4+1): 9

provided top; geptn ((,t) © ¢1,. .., (4,t) : Pn, A¢), namely the premises of the rule are
maximal in the <gep¢p order in the conflict set for % at ¢. In what follows, we refer to
such a proviso as ‘standard proviso for depth order’. For example, the agent a from the
example above has a rule:

(a,t) : Tiger(x), Ay
(a,t 4+ 1) : Large-Carnivore(x)

provided topg deptn ((a,t) : Tiger(x), A¢)

For monotonic agents (who keep all the facts they derived earlier) we have an ad-
ditional monotonicity rule which does not have a side condition, is always applicable,
and is excluded from the ordering of the internal agent rules proper:

(i,t) 1 ¢
(i,t+1): ¢

To give an example of an observation rule, suppose that the agent a gets some of its

information about the world from agent b. In particular, if b decides that something is
nearby, then at the next step a also decides that it is nearby:

(b,t) : Near(z)
(a,t 4+ 1) : Near(x)

This rule also does not have any side conditions.
The notion of derivation in TRL(CLIPS) is a special case of TRL derivation as given
in Definition 1.

4.1 Example

In this section we give a worked example of a derivation in TRL(CLIPS). Our example
involves two agents, a and b. They have the same set of rules with the same salience
order and start with the same set of observations, but a uses the depth strategy, while b
uses the breadth conflict resolution strategy. We show that they both can reach the same
conclusion, (classify a tiger as a dangerous object), however if they communicate, they
can reach this conclusion faster.

The rules corresponding to the program rules of agent a are (with the standard
proviso for depth order):

(a,t) : Large(x), (a,t) : Carnivore(x), (a,t) : Near(z), (a,t) : Free(x), Ay R

(a,t + 1) : Dangerous(x) 1



(a,t) : Bengal-Tiger(x), A,
a,t+ 1) : Tiger(z)

g »
(a,t) : Tiger(z), Ay

(

(

a,t+ 1) : Large(x)

a,t) : Tiger(x), A,
(a,t + 1) : Carnivore(x)

(a,t) : Distance < 5m(z), A¢
(a,t 4+ 1) : Near(x)

(a,t) : =Caged(z), Ay
(a,t + 1) : Free(x)

R5

R6

The rules for agent b are the same, with topg deptn teplaced with topp preadtn. The
salience order on rules is R1 >, R2 >, {R3, R4, R5, R6}.
In addition, both agents have the monotonicity rule and the following communica-
tion rules:
(a,t) : Large(x)
(b,t + 1) : Large(x)

(a,t) : Carnivore(x)
(b,t + 1) : Carnivore(x)
(b,t) : Near(x)
(a,t 4+ 1) : Near(x)
(b,t) : Free(x)
(a,t+1): Free(x)

Suppose both agents start with the same set of observations, corresponding to a
sighting of a Bengal tiger at a distance less than 5 meters, and apparently uncaged:
(a,0) : Bengal-Tiger(c), (a,0) : Distance < 5m(c),(a,0) : —Caged(c), (b,0) :
Bengal-Tiger(c), (b,0) : Distance < 5m(c),(b,0) : =Caged(c). At this step, both
agent’s conflict sets are the same: all formulas match one of the rules, but the highest
salience rule is R2, in the case of a matched by (a,0) : Bengal-Tiger(c). The other
two rule instances in C, o are (a,0) : Distance < 5m(c) matching R5 and (a,0) :
—Caged(c) matching R6 (similarly for C o). So at the next step, Ay contains (a, 1) :
Bengal-Tiger(c), (a,1) : Distance < 5m(c), (a,1) : ~Caged(c), by the monotonicity
rule, and (a, 1) : Tiger(c) by R2, and corresponding formulas for b. From step 1, the
conflict sets of the two agents diverge: agent a places a new rules instance, (a,1) :
Tiger(c) which matches R3, at the top of the conflict set, while agent b favours one of
the old rule instances, let’s say R5. The new formulas in Ay are (a,2) : Large(c), and
(b,2) : Near(c).

At this stage, the top rule instance for a is (a, 2) : Tiger(c) matching R4, while the
top rule instance for b is (b, 2) : = Caged(c) matching R6. In addition, both agents have
now derived formulas of the kind they communicate to each other; so at the next step,
a will discover that c is nearby and b will discover that c is large. The new formulas in
Ag are (a,3) : Carnivore(c), (a,3) : Near(c), (b,3) : Free(c), (b,3) : Large(c).



At the next step, both agents will acquire the facts (a,4) : Large(c), (a,4)
Carnivore(c), (a,3) : Near(c), (a,4) : Free(c), and will match the rule with the
top salience, R1, to derive (a,5) : Dangerous(c) (similarly for b). The reader will eas-
ily verify that it would have taken the agents longer to derive Dangerous(c) without
communication.

5 Conclusion

In this paper we showed how to model the execution of communicating rule-based
agents using Timed Reasoning Logics (TRL). Our framework allow us to model agents
at a fine-grained level, so that we can prove, for example, that the agent will use so
many computation cycles to arrive at a given conclusion.

In previous work [1], we showed how to model a single rule at each cycle strat-
egy similar to that employed by the CLIPS [14] rule-based system architecture, and
sketched a logic TRL(CLIPS). In this paper, we prove a general soundness and com-
pleteness result for TRL, from which soundness and completeness of TRL(CLIPS) fol-
lows. We study TRL(CLIPS) in more detail and give a detailed example involving two
communicating agents using CLIPS rule application strategy. The example is quite sim-
ple, but it demonstrates that we can compare different agent designs and prove proper-
ties of various conflict resolution strategies in the presence of communication between
agents.

In the future, we plan to add a more fine-grained analysis of action and communi-
cation to the TRL framework. It would also be interesting to investigate more system-
atically the impact of communication on the time required by agents to reach a given
conclusion.
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