Skip to main content

Towards a Logical Analysis of Biochemical Pathways

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3229))

Abstract

Biochemical pathways or networks are generic representations used to model many different types of complex functional and physical interactions in biological systems. Models based on experimental results are often incomplete, e.g., reactions may be missing and only some products are observed. In such cases, one would like to reason about incomplete network representations and propose candidate hypotheses, which when represented as additional reactions, substrates, products, would complete the network and provide causal explanations for the existing observations.

In this paper, we provide a logical model of biochemical pathways and show how abductive hypothesis generation may be used to provide additional information about incomplete pathways. Hypothesis generation is achieved using weakest and strongest necessary conditions which represent these incomplete biochemical pathways and explain observations about the functional and physical interactions being modeled. The techniques are demonstrated using metabolism and molecular synthesis examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bryant, C., Muggleton, S., Oliver, S., Kell, D., Reiser, P., King, R.: Combining inductive logic programming, active learning and robotics to discover the function of genes. Linkoping Electronic Articles in Computer and Information Science 6 (2001)

    Google Scholar 

  2. Deville, Y., Gilbert, D., van Helden, J., Wodak, S.: An overviewof data models for the analysis of biochemical pathways. Briefings in Bioinformatics 4, 246–259 (2003)

    Article  Google Scholar 

  3. Doherty, P., Łukaszewicz, W., Szałas, A.: Computing circumscription revisited. Journal of Automated Reasoning 18, 297–336 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gabbay, D.M., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation and Reasoning, KR 1992, pp. 425–435 (1992)

    Google Scholar 

  5. Nonnengart, A., Szałas, A.: A fixpoint approach to second-order quantifier elimination with applications to correspondence theory. In: Orłowska, E. (ed.) Logic atWork: Essays Dedicated to the Memory of Helena Rasiowa, pp. 307–328. Springer Physica-Verlag (1998)

    Google Scholar 

  6. Doherty, P., Łukaszewicz, W., Szałas, A.: Computing strongest necessary and weakest sufficient conditions of first-order formulas. In: International Joint Conference on AI (IJCAI 2001), pp. 145–151 (2001)

    Google Scholar 

  7. Doherty, P., Kachniarz, J., Szałas, A.: Using contextually closed queries for local closedworld reasoning in rough knowledge databases. In: Pal, S., Polkowski, L., Skowron, A. (eds.) Rough-Neuro Computing: Techniques for Computing with Words. Cognitive Technologies, pp. 219–250. Springer, Heidelberg (2003)

    Google Scholar 

  8. Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Chabrier-Rivier, N., Fages, F., Soliman, S.: The biochemical abstract machine biocham. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 172–191. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Doherty, P., Kertes, S., Magnusson, M., Szałas, A.: Towards a logical analysis of biochemical pathways (extended abstract). In: Proceedings of the European Conference on Artificial Intelligence ECAI 2004 (2004) (to appear)

    Google Scholar 

  11. Lin, F.: On strongest necessary and weakest sufficient conditions. In: Cohn, A., Giunchiglia, F., Selman, B. (eds.) Principles of Knowledge Representation and Reasoning, KR’2000, pp. 167–175 (2000)

    Google Scholar 

  12. Doherty, P., Łukaszewicz, W., Szałas, A.: A reduction result for circumscribed semi-Horn formulas. Fundamenta Informaticae 28, 261–271 (1996)

    MATH  MathSciNet  Google Scholar 

  13. Doherty, P., Łukaszewicz, W., Szałas, A.: General domain circumscription and its effective reductions. Fundamenta Informaticae 36, 23–55 (1998)

    MATH  MathSciNet  Google Scholar 

  14. Pine, S., Hendrickson, J., Cram, D., Hammond, G.: Organic Chemistry. McGraw-Hill, Inc., New York (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doherty, P., Kertes, S., Magnusson, M., Szalas, A. (2004). Towards a Logical Analysis of Biochemical Pathways. In: Alferes, J.J., Leite, J. (eds) Logics in Artificial Intelligence. JELIA 2004. Lecture Notes in Computer Science(), vol 3229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30227-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30227-8_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23242-1

  • Online ISBN: 978-3-540-30227-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics