
A Game Theoretic Approach
for Power Aware Middleware�

Shivajit Mohapatra and Nalini Venkatasubramanian

School of Information and Computer Science
University of California, Irvine
mopy,nalini@ics.uci.edu

Abstract. In this paper, we propose a dynamic game theoretic approach
for choosing power optimization strategies for various components(e.g.
cpu, network interface etc.) of a low-power device operating in a dis-
tributed environment. Specifically, we model the energy consumption
problem as a dynamic non-cooperative game theoretic problem, where
the various components of the device are modelled as the players in the
game that simultaneously consume a common resource(device battery
power). An analysis for the Nash and social optima of the game is pre-
sented. We then introduce an adaptive distributed power-aware middle-
ware framework, called “Dynamo”, that incorporates the game theoretic
approach for determining optimal power optimization strategies. We sim-
ulate the distributed game environment for proxy-based video streaming
to a mobile handheld device. Our performance results indicate that sig-
nificant energy savings are achievable for the device when the energy
usage of the individual components achieve a social optima than when
the energy usage achieves the strategic Nash equilibria. The overall util-
ity of the system is measured both in terms of energy gains and the
quality of video playback. Our results indicate that the device lifetime
was increased by almost 50%-90% when compared to the case where no
power optimization strategies were used, and 30-40% over device life-
time when Nash equilibrium is achieved; the overall utility of system for
both types of equilibria were similar(utilities differ by ≤ .5%), indicating
that the Nash equilibrium strategies tend to overuse the battery energy
consumption.

Keywords: power optimization, game theory, power-aware middleware

1 Motivation

Limiting the energy consumption of low-power mobile devices has become an im-
portant research objective in recent years. The capabilities of these devices are
limited by their modest sizes and the finite lifetimes of the batteries that power
them. As a result, minimizing the energy usage of every component (e.g. CPU,
network card, display, architecture etc.) in such devices remains an important
� This work was supported by funding from ONR MURI Grant N00014-02-1-0715 and

NSF Career Grant ANI-9875988.

H.-A. Jacobsen (Ed.): Middleware 2004, LNCS 3231, pp. 417–438, 2004.
c© IFIP International Federation for Information Processing 2004

418 Shivajit Mohapatra and Nalini Venkatasubramanian

design goal and continues to pose significant challenges. These issues have been
aggressively pursued by researchers and numerous interesting power optimiza-
tion solutions have been proposed at various cross computational levels – sys-
tem cache and external memory access optimizations [18], dynamic voltage scal-
ing(DVS) [9, 7] of the CPU, dynamic power management of disks and network
interfaces(NICs) [10, 4, 5], efficient compilers and application/middleware [20,
19] based adaptations for power management. Consequently, future generations
of these low-power mobile devices will represent a new class of “power-aware”
systems. These power-aware systems will be able to make the best use of the
available battery power by adapting their behavior to the constraints imposed
by their operating environments (users, network topology etc.). Additionally,
components of these systems will be capable of multiple modes of operation for
power management. Already, current wireless network cards have various power
modes (sleep, transmit, idle etc.) and some CPUs (e.g. Transmeta’s Crusoe) can
be operated at various lower voltages(or frequencies). Moreover, the selection of
the modes would be accomplished through various strategies that would control
the aggressiveness of the power management for that component.

Interestingly, power optimization techniques developed for individual com-
ponents of a device have remained seemingly incognizant of the strategies em-
ployed for other components. Therefore, increased research effort needs to be
devoted to study the important issues involved in the interplay between the
power management [25, 18] of the various components. While focussing their
attention to a single component, researchers make a general assumption that no
other power optimization schemes are operational for other components. Con-
sequently, only the most aggressive forms of power management for individual
components are investigated. We contend that unless a study is made of the
trade-offs involved in the joint operation of the various components and the
customizations/adaptations therein, the power gains (or performance) may turn
out to be reductive instead of cumulative. For example, a cache optimization
strategy for power optimization might adversely affect the performance of an
aggressive DVS based algorithm, as the execution times of the tasks might be
affected. Therefore, when multiple components are co-operating to effect power
savings, the most aggressive strategies may not necessarily be the best ones. At
a very high level, we view the system as a collection of components, that draw
power from a common shared energy source (battery) and provide some utility in
return. The overall utility of the system can be considered to be a function(e.g.
sum, product etc. and is usually defined by the system designer) of the indi-
vidual utilities of the components. We now need to solve the following problem:
how can we maximize the cumulative user experience (e.g. quality of video for
multimedia applications) of the system while ensuring that the low-power device
is operational for the longest time? Fortunately, this problem is amenable to
game theoretic analysis, which provides powerful tools for analyzing precisely
such interactions.

Game Theory [1, 21] provides a set of tools to model interactions between
agents with conflicting interests. For decades, game theoretic tools have been

A Game Theoretic Approach for Power Aware Middleware 419

used by economists and others to model economic agents such as firms and
stock markets. Game theory typically assumes that all players seek to maximize
their utilities in a perfectly rational manner. Economists have a hard time as
human players are seldom perfectly rational. However, as in our case, when
players are computational entities, it is reasonable to assume some notion of
strong rationality (at least as far as computationally possible). Therefore, game
theoretic analysis has also been widely used in the study of power control [17],
flow control [3] and routing problems [23] in wireless networks. The purpose
of our study is to use game theoretic analysis to tailor aggressiveness of power
optimization techniques (for individual components), such that both the battery
lifetime as well as the cumulative system utility are optimized.

2 Modelling Power Optimization as a Dynamic Game

To model a joint management strategy for power optimization, we must first
identify the sources of power consumption. In modern mobile systems, there are
three primary sources of power consumption: the CPU, the network interface and
the display. At the architectural level, components such as caches, memory and
logic gates are also driven by battery power. In this section, we present our view
of the system and model the power management problem as a dynamic game. A
basic introduction to game theory and some preliminary definitions are posted at
http://www.ics.uci.edu/ d̃sm/dyn/prelim.pdf. In a typical low-power system, we
have multiple components jointly utilizing a resource (the battery) to which they
all have access. In exchange for the extraction of some fraction of the resource,
they provide some utility to the user of the system. As an example, for streaming
media applications a measure of utility could be both the battery lifetime of the
device and the application output quality as perceived by the user. The actual
representation of the utility is in itself a rather hard research issue as it might
contain both objective and subjective elements. We will revisit this topic in a
later section. Moreover, in this case, the residual power of the device (battery)
evolves through time according to the pattern of past component usage; note
that the overall utility of a set of power management strategies is impacted as
the residual power vanishes.

We can characterize the conjunctive operation of the various components of
a low-power device as a non-cooperative dynamic game(Γ). We denote the pri-
mary power consuming components of the system as the set of players (P) in the
game. Therefore P = {Pcpu, Pnet, Pdisplay , ...} and let PN denote the number of
such players. Note that all the players concurrently draw energy from a common
exhaustible resource(battery). We define the “game environment” at a period T
as the current residual energy of the device(or battery) = ET

R ≥ 0 , which evolves
over time depending on the energy consumptions of the individual components
of the system. The period identifies the frequency at which a sub-game is played
and identifies the points in time at which the strategies can be re-evaluated. The
strategy space S of each player is represented by an aggregation of all the power
management strategies that are available for that player. For example, the strat-

420 Shivajit Mohapatra and Nalini Venkatasubramanian

egy space for the processor can be denoted as Scpu = {S0
cpu, S1

cpu, S2
cpu, ..., SN

cpu},
where there are “N+1” independent power optimization strategies available for
the cpu. These strategies could represent the various dynamic voltage scaling
(DVS) algorithms suggested for slowing down the cpu under various conditions
for energy gains. In general, this strategy space would include all power man-
agement strategies available for cpu slowdown. Additionally, we define a basic
strategy denoted by S0

cpu, which denotes a strategy that does not employ any
power optimization technique for the cpu. Consequently, the power consumed
by a basic strategy would be the maximum of all the strategies in the strat-
egy space of that player. Similarly, the strategy spaces are defined for other
players(components) in the game. We denote player Pi’s (Pi ∈ P) energy con-
sumption during a period T by CiT (for strategy Sk

i); C0T is assumed to be
the energy consumed by the player under its “basic strategy”, i.e. S0

i , where
i = cpu, net, display, etc.. It is natural to consider CiT ≥ 0 and that consump-
tion gives player Pi a payoff or utility. The value of ER (residual energy of
battery) constraints the total amount of energy that can be consumed by the
players, i.e. at every period T , it must be the case that

∑

i=1..PN

CiT ≤ ET
R (1)

The amount of residual energy that would remain when each player plays its basic
strategy (no power optimization) is given by XT = ET

R −∑
C0T , However, when

power optimization strategies are employed, each player generates an energy
saving over the energy consumed by its basic strategy. We denote these energy
savings as �k

i , where i is the player index {cpu, disk etc.} and k is the strategy
used by the player. Therefore, the residual energy available in the period T + 1
is (E(T+1)

R ≥ XT) and is given by

E
(T+1)
R = ET

R −
∑

C0T +
∑

�k
i (2)

Now if energy gain was the only measure of the utility, then maximizing �k
i

would maximize the utility. However in practice, the payoffs for power man-
agement strategies are influenced by a number of factors beyond the control of
the players. The form factor of the device, the number and type of executing
applications, energy gains, perceived user satisfaction, QoS guarantees, applica-
tion response times etc. are all factors that could define the utility of a particular
strategy. This makes defining an ideal utility function a very hard research prob-
lem. For our purpose, we define the utility for a particular strategy as a function
of the energy savings from the strategy (can be measured) and the perceived user
satisfaction (determined subjectively). From experience, we know that these two
factors are somewhat in conflict. For example, if we slowdown the cpu for power
savings, the response times of the applications will increase thereby reducing
the perceived user satisfaction. In multimedia applications, a slower processing
of video frames might cause a jitter. In general, a more aggressive power saving
strategy tends to save more power, but might have a greater negative impact

A Game Theoretic Approach for Power Aware Middleware 421

on the user perception. Consequently, higher �k
i may not directly translate to

a higher utility. Our objective is to determine a value for �i such that both
the device lifetime and the overall utility of the device is maximized. A loga-
rithmic function closely depicts such an utility function. In Sec. 4.2, we study
the utility functions for the CPU and the network card and show that they
can be approximated using logarithmic functions. We therefore define player i’s
utility function when it employs strategy Sj

i as log(CiT). Moreover, the amount
of power saved by any strategy can be expressed as a function of the residual
energy of the device at the time the strategy is employed; therefore we can define
�k

i = f(ET
R) for each player. We can say that the power optimization strategies

regenerate(in some sense) some of the energy that would otherwise be used up
with the basic strategies. We therefore assume that the residual energy for the
next period can be expressed as E

(T+1)
R = f(XT). This characterization lends

the game to be analyzed as a classical game theory problem called the tragedy
of the commons [2, 15]. Note that duration of this potentially infinite game can
be restricted by setting a threshold battery energy level until which the game is
played. This level can be selected such that minimum energy requirements for
the device components are reserved.

Fig. 1. Extensive form for a 2 player game(CPU,Network)

The extensive form of the game (with 2 players) is shown in Fig. 1. Initially,
the residual energy of the low-power device is assumed to be E0

R. At this point,
both the CPU and the network interface card(NIC) choose their power manage-
ment strategies indicated by Si

CPU and Si
NET . The game is played in accordance

with these strategies for the period T0. At the end of the period the strategies
are again re-evaluated depending on the residual device power. We assume that
the evaluation takes a small time δT as shown in the figure. At this point, both
players decide on the new strategies and the game continues over period T1. Note
however, that depending on the initial strategies chosen the game could take one
of many courses (2 of them are depicted in the figure). The oval represents the
range of the strategies that can be employed by the players. This game continues
indefinitely until either the battery drains out of power (inevitable) or the device
is stopped.

422 Shivajit Mohapatra and Nalini Venkatasubramanian

2.1 Game Analysis

By designing the conjunctive component power management for low-power de-
vices as a non-cooperative dynamic game (as above) makes it amenable to several
different types of game theoretic analysis. In this section, we investigate the game
from the perspective of Markovian strategies that provide Nash equilibrium for
each period. This is representative of the current research approaches, where
each player(component) unilaterally chooses its strategies with the objective of
maximizing its own utility. We also present a social optimality analysis wherein
the objective is to maximize the conjunctive utility of the system. This is repre-
sentative of the approach we suggest. A brief comparison of the analytical results
is made and its implications to our overall problem is discussed. Using our anal-
ysis, we can answer the following questions – how does the residual energy of the
device yt evolve over time? Does strategic interaction of the components lead to
persistent overuse of the battery resource?

Before we present the analysis, we redefine some of the notations presented
in the last section for easier readability. Let the “game environment” (residual
energy of device) at the beginning of period t be yt ≥ 0. We denote player
i’s energy consumption due to the adopted strategy in period t as cit ≥ 0.
Furthermore, in the event that the players attempt to consume energy in excess
of the current residual energy, we assume that the total amount is split equally
among the players. We perform our analysis on a two player game (CPU, network
interface card) for power/utility management for two components). In low-power
devices, the CPU and the network card account for a significant percentage of
the overall energy consumption. In the case of the LCD displayo, the main energy
drain comes from the backlight, which has a predefined user setting and therefore
has a limited degree of controllability by the system through various strategies.
This remains a subject of ongoing research and therefore we do not include the
backlight in our analysis. In the two player game: i) the analysis is much simpler
and is easier to understand and (ii) it is representative of the general “N” player
game, that is a ”N” player game can be analyzed in much the same manner.
Fortunately, for our purposes, the maximum number of players is three (N=3)
(considering the LCD display and the fact that most handhelds do not have
disks).

Furthermore, as the analysis is quite complex for a two player game [2, 15], we
show the analysis for specific forms of the utility function and the energy regen-
eration functions. An analogous analysis is possible for other types of functions.
Without loss of generality, we assume that player i’s utility from consuming ci

amount of energy in any period is given by Blog(ci)+C, and that yt+1 = A.Xt
D,

where A,B,C and D are constants. We simply denote the players by subscripts 1
and 2. More specifically, we use the functions log(ci) (B=1,C=0) for the utility
function and yt+1 = A.

√
Xt (D = 1

2) to improve readability of the analysis.

2.2 Social Optimum Analysis

From an analogous economic game theory standpoint, social optimality is de-
fined as: In a society of two individuals having simultaneous unrestricted access

A Game Theoretic Approach for Power Aware Middleware 423

to a common resource, how should each player extract the common resource
such that this society of two individuals remain as “happy” as they can be. In
our case, the “happiness” is represented by the joint utility of the players with
the common resource being the battery energy. Therefore to derive the social
optimality solution we need to consider the sum of the two players’ utilities –
and maximize it. This can be achieved through analysis by backward induction.
Suppose to begin with, there are exactly 2 periods (as shown in Fig. 1). If we
are in the last period with residual energy y, then we need to solve

Max {log(c1) + log(c2)} (3)

where c1 + c2 ≤ y. In order to maximize utility, all the available residual energy
should be used up at this period; that is it must be that c1 + c2 = y. Hence, the
maximization problem can be written as

Maxc1 {log(c1) + log(y − c1)} (4)

Using the first order condition for maximization (1st order derivative = 0) we
get 1

c1
= 1

y−c1
; that is consumption by both the components should be equal

(c1 = c2 and equal to y
2). Consequently, each components socially optimal utility

when there is one period left and the residual energy is y, is given by V 1(y) =
log y

2 = log(y)− log(2). This can be written as log(y)+ B(1), where B(1) stands
for the constant -log(2). Let us now consider the penultimate period (i.e fold back
the tree in Fig. 1). Clearly, when there are 2 periods left the socially optimum
energy consumption is found from solving the following problem:

Max {log(c1) + log(c2) + 2δV 1[A(y − c1 − c2)0.5]} (5)

where c1 + c2 ≤ y and δ is the discount factor. In our case the discount factor
is important because as the device runs out of power, the energy resource gets
more valuable, and therefore so do the utilities. Since, V 1[A(y − c1 − c2)0.5] =
log[A(y − c1 − c2)0.5] = log(A) + 1

2 log(y − c1 − c2) + B(2); we can write the
problem as

Max {log(c1) + log(c2) + δlog(y − c1 − c2)} (6)

where c1 + c2 ≤ y, where we have suppressed the additive constants log(A) and
B(2), as they do not affect the optimal choice. Again, the first-order conditions
for maxima are obtained by equating the derivative of the above equation to
zero. We have 1

c1
= δ[y − c1 − c2]−1 and 1

c2
= δ[y − c1 − c2]−1. Since, the

expressions are identical, it must be that the two consumptions are equal. Using
the above equations it follows that the common consumption is y

2+δ . Note that
the energy consumption is less than it is when there is only one period left. After
collecting the terms, the socially optimal utility for a component can be written
as (1 + δ

2)log(y) + B(3), where B(3) is a compilation of constants.
Now we consider the case when there are more than 2 periods. Instead of

solving the general case right away, let us do one more step of induction to see
if there is a solution pattern. Now, suppose there are three periods of resource
usage. In the first period we have the following problem to solve:

Max {log(c1) + log(c2) + 2δV 2[A(y − c1 − c2)0.5]} (7)

424 Shivajit Mohapatra and Nalini Venkatasubramanian

where c1 + c2 ≤ y. Now, by substituting for V 2 and by suppressing all the
(irrelevant) constants we can rewrite the last expression as

Max {log(c1) + log(c2) + δ(1 +
δ

2
)log(y − c1 − c2)} (8)

where c1 + c2 ≤ y. Proceeding similarly as before we can get the first-order
conditions for this problem as 1

c1
= δ(1 + δ

2)[y − c1 − c2]−1 and an identical
expression for c2. It can be shown that the socially optimal consumption equals
y
2 (1 + δ

2 + δ2

4)−1 and the socially optimal utility for each player is of the form
(1 + δ

2 + δ2

4)log(y) + A(3), where A(3) is a compilation of the constants. At this
stage a pattern is clearly observed. Similarly, the analysis for “T” remaining
periods is present in Table 1.

Table 1. Energy consumption for various remaining periods

periods remaining consumption (fraction of y)

1 1
2

2 1

2(1+ δ
2)

3 1

2(1+ δ
2+ δ2

4)

T (conjecture) 1

2[1+ δ
2+...+(δ

2)T−1]

Using the above conjecture, we now know the equilibrium consumptions for
the game for T periods. Note that in an infinite period model, we can get this
identical consumption function (call it c(y)) by taking the limit of the optimal
consumption as T→ ∞. Since, 1 + δ

2 + ... + δ
2

T−1
+ ... = 1

1− δ
2
, we can say that

c(y) =
1 − δ

2

2
y (9)

Based on this optimal energy consumption rule an optimal power management
strategy can be executed for each component. In a later section, we will discuss
some component based power management strategies and how we profile such
strategies for various components.

2.3 Best-Response(Nash) Equilibrium Analysis

We now present a parallel analysis in a strategic (rather than social) setting.
Here the assumption is that the players are consuming the battery resource uni-
laterally. Therefore, each player (component) will only consider its own utility
and seek the strategy that maximizes this utility. Much like the social optimality
analysis, the game equilibrium can be solved by backward induction. We present
a similar analysis for a two player game. As before, suppose we are in the last

A Game Theoretic Approach for Power Aware Middleware 425

period with residual energy y. At this point, all the energy can be consumed.
Hence, the stage sub-game equilibrium is one where each player’s actual con-
sumption is y

2 . Consequently, each components equilibrium utility is given by
W 1(y) = log(y

2) = log(y) + B(1), where B(1) is a constant (= -log(2)). Let us
now fold the tree back to consider the penultimate period. When there are two
periods left, player 1 faces the following best-response problem:

Max log(c1) + δW 1[A(y − c1 − θy)0.5] (10)

where c1 ≤ (1− θ)y, δ is the discount factor and θ is the fraction of the resource
that player 2 is expected to consume in the first period . Note that we have
assumed that the consumption of player 1, c1 ≤ (1 − θ)y. Otherwise, we know
that there will be no consumption for either player in the last period. Since,
W 1{A(y− c1 − θy)0.5} = log(A)+ 1

2 log[(1− θ)y− c1]+B(2), we can rewrite the
problem as

Max log(c1) +
δ

2
log[(1 − θ)y − c1] (11)

where c1 ≤ (1 − θ)y and the constants are suppressed. Applying the first order
condition we have 1

c1
=

δ
2

(1−θ)y−c1
. Therefore, the best response consumption is

given by (1 + δ
2)c1 = (1 − θ)y. If we write the consumption as a fraction of the

residual energy at that time - that is, if we write it as b(θ)y - then it follows that

b(θ) =
1 − θ

1 + δ
2

(12)

If we do a similar analysis for player 2, we get the symmetric equilibrium condi-
tion, wherein each player has the same consumption, and the rate is such that it
is the best response to itself. Therefore, b(θ) = θ. Put differently, the extraction
rate 1

2+ δ
2

is a symmetric equilibrium. As before, after collecting the terms, the

equilibrium utility when there are two remaining periods, W 2, can be written as
(1 + δ

2)log(y) + B(3), where B(3) is a constant. After substituting the formula
for W 2, it can be shown that the first period best response problem for player 1
is

Max log(c1) +
δ

2
(1 +

δ

2
)log[(1 − θ)y − c1] (13)

where the previous conditions for the variables hold. Solving for the first order
condition we get 1

c1
=

δ
2 (1+ δ

2)

(1−θ)y−c1
. We get the symmetric consumption level for

each player equal to 1

2+ δ
2 + δ2

4

. As with social optimality we can generalize the

solution for T periods as follows: when there are “T” remaining periods, the
energy consumption fraction of each player is given by 1

2+ δ
2+...+(δ

2)T−1 . In the
infinite period model, the equilibrium consumption function (call it c∗(y)), will
be given by the limit of the equilibrium consumption as T → ∞. Since 2 + δ

2 +
... + (δ

2)T + ... = 1 + 1
1− δ

2
, we can say that

c∗(y) =
1 − δ

2

2 − δ
2

y (14)

426 Shivajit Mohapatra and Nalini Venkatasubramanian

Using the above equilibrium consumption, a best response strategy can be chosen
for each component.
Discussion: From the above analysis we observe that when each component
(player) employs its power optimization strategies unilaterally, there is a possi-
bility of overuse of the battery resource. As mentioned earlier, such one-sided
decisions do not necessarily translate to the highest overall utility for the sys-
tem. Comparing the two consumption functions: the socially optimal function
c(y) (eqn 9) and the strategically optimal function c∗y(eqn 14), we see that

c(y) =
1 − δ

2

2
y <

1 − δ
2

2 − δ
2

y = c∗(y) (15)

The equation holds as (2 − δ
2) < 2. It can be concluded that the strategic

equilibrium are suboptimal. While theoretically it has been proved that the
social optimal is better than the strategic optimal, it is a challenge to design a
system that can facilitate such optimal battery usage. In the next section, we
present a middleware framework that can be effectively used for optimal use of
the system battery resource.

3 The Dynamo Middleware Framework

In the previous section, we presented a theoretical analysis for optimized power
consumption for a generic set of components and their power management strate-
gies. However, in practice, the options available for power optimization are lim-
ited by type of low-power devices used and the context of the applications.
For example, a cpu slowdown strategy that slows down the cpu by 70%(say)
may not be feasible for multimedia applications(as frames cannot be decoded in
time); again a handheld without a network card need not be optimized for that
component. Therefore, we need to conduct a case-specific analysis for a given
environment and device context. Furthermore, in our case, it is important to
reevaluate the strategies used for various components as the game environment
evolves (network/device conditions dynamically change). A distributed adaptive
middleware framework designed for cross-level power optimization is a natural
choice for performing such an optimality analysis. The system architecture for
such an adaptive middleware framework (called Dynamo) is depicted in Fig. 2.
A prototype implementation of the framework is presented in section 5.

In Fig. 2, the lowest level shows the various hardware components targeted
for power optimization. The driver interfaces and the power optimization strate-
gies for the various components are available at the operating system layer. A
battery monitor provides higher layers with realtime information on the current
residual battery level of the low-power device. Dynamo consists of a lightweight
middleware runtime layer that executes on the device and provides an API in-
terface for dynamically deploying power management strategies for the various
components. Additionally, the framework contains a more heavy weight com-
ponent that can execute on a network node (e.g. a proxy server) and performs

A Game Theoretic Approach for Power Aware Middleware 427

Fig. 2. The Dynamo middleware architecture

the game theoretic analysis remotely using a distributed protocol; As the more
computationally expensive game theoretic analysis is shifted onto a distributed
proxy, the middleware on the low-power devices can have a lightweight footprint.
By using this model, the middleware can exploit knowledge of the local device
state (e.g. residual power levels stored & updated at a directory service) and
global state (e.g. network congestion, node mobility etc.) that can be available
at the proxy to dynamically select optimal power optimization strategies for the
components. We assume that the middleware has at its disposal a knowledge
base of the strategy space and corresponding utility functions for each of the
components. Such a knowledge base can be created by extensively profiling (or
using research literature) each component and its various strategies under dif-
ferent operating conditions. Additionally, the middleware can implement various
policies that affect the analysis of the strategic interaction of the components.
For example, the middleware can fix the number of periods for which the game
is played (or if the game is infinite) using various policies(e.g. constant,infinite
etc.); dynamically modify the game environment incase there is a sudden drift
in the battery energy level, assign value of the discount factor(δ) and set the
threshold energy level before the start of the game. By using a distributed ap-
proach, much of the computationally expensive analysis is moved away from the
low-power device to a network entity (proxy). Furthermore, the proxy is better
suited to make dynamic global adaptations because it has information of the
global state that would be unavailable at the device. The communication over-
heads in this approach are minimal as the proxy communicates with the device
only when power management strategies for individual devices need to change.

The high level algorithm employed by the middleware for determining the
socially optimal energy strategies are presented in Fig. 3. Fig. 3(a) presents the

428 Shivajit Mohapatra and Nalini Venkatasubramanian

Fig. 3. High-Level Algorithm used for determining the Social Optimum Strategies

algorithm for a static scenario where parameters of the power management game
are fixed. Given a residual power of the device, the number of applications and
application QoS requirements and a constant network noise level, the algorithm
can be used to determine strategies that achieve a social energy consumption
equilibria. In a dynamic scenario, some or all of the game parameters can change
randomly. The middleware can implement a dynamic algorithm(Fig. 3(b)) that
detects these changes in application load, network noise levels and diminishing
device power levels and repeatedly executes the static equilibrium algorithm
continuous adaptation.

4 Performance Evaluation

We adopt a two pronged approach to evaluate the performance of our framework.
First, we use profiled results to simulate the game environment and compare the
performance of the game strategies. In Sec. 5, we present a prototype implemen-
tation of the middleware framework on a Linux based system. In this section,
we focus on the results of our simulations in the context of video applications.

In our simulations, we consider two system components(CPU & NIC) for
power optimization. We measure the energy consumption and overall utility
of the system and the individual components, when the components consume
energy according to “social” and “best-response” equilibria conditions. A com-
parison is made with the energy consumption of the baseline condition in which
no optimizations are made for either the CPU or the NIC. We use a streaming
video player as the user application executing on the device. Streaming video
applications are ideal for our simulation, as they heavily use both the cpu and
the network. The values used in our simulations are based on our extensive
work [18] in profiling the power consumption characteristics of streaming video
onto handheld computers. The next section presents the details of the simulation
environment and a discussion on the strategy spaces used for both components.

A Game Theoretic Approach for Power Aware Middleware 429

Table 2. CPU and Video burst length configurations for ideal energy and performance
gains

Video Cache Voltage Original Optimized Savings Video Bursts Power Saved
Quality (Size,Assoc) Energy Energy (in secs) (Watts)

Q1(Highest) 8,8 1 1.29 0.76 47.5% 2.3 0.925

Q2 8,8 1 1.09 0.64 47.8% 3.5 1.0

Q3 8,8 1 0.95 0.56 48.0% 4.6 1.04

Q4 32,2 0.9 0.54 0.26 57.6% 4.85 1.05

Q5 32,2 0.9 0.48 0.23 57.8% 6.8 1.08

Q6 32,2 0.9 0.42 0.20 58.0% 14.5 1.12

Q7 8,8 0.9 0.29 0.14 57.3% 17.5 1.13

Q8(Lowest) 8,8 0.9 0.24 0.11 57.5% 17.0 1.12

4.1 Simulation Environment

We model our low-power device after a Compaq iPAQ 3650, with a 206Mhz Intel
StrongArm processor, with 16MB ROM, 32MB SDRAM. The iPAQ is equipped
with a Cisco 350 Series Aironet 11Mbps wireless PCMCIA network interface
card for communication. The streaming video application is modelled after the
Pocket Video Player available for Windows CE. Table. 2 present sample values
for optimized network and cpu operating points for videos of different qualities.
We then identify the strategy spaces for the CPU and the NIC for the above
device.

CPU: Instead of identifying individual CPU strategies for power optimization,
we assumed that the speed of the processor can be varied continuously from the
minimum(Smin) to the maximum(Smax) supported CPU speeds for the device,
and normalize the values such that the operating range varies from [νmin, 1],
where νmin = Smin

Smax
. We then use the commonly used energy model presented in

[14] to calculate the power P as a function of “slowdown factor(ν)”.
P = f(ν) = 0.284 ·ν3+0.225 ·ν2+0.0256 ·ν+

√
311.16 · ν2 + 282.24 · ν×(0.0064 ·

ν + 0.014112 · ν2)
We assume that the strategy space for the CPU is the set of strategies that can
can vary the CPU speed between the minimum and maximum supported speeds.
However in practice, these values will be discrete slowdown factors supported by
the CPU, so an approximation to the closest theoretical slowdown factor needs
to be chosen. This can be achieved through an operating system API interface
available to the middleware. Also using the above model, we can determine a
CPU slowdown factor that corresponds to a particular energy consumption level.

NIC: In [4, 18, 22], it is demonstrated that if video packets are buffered and sent
to the device in bursts, then the NIC card on the device can be transitioned from
the “active” to the “sleep” mode, thereby saving significant power. As the energy
saved for a network card is proportional to the amount of time it spends in the
“sleep” mode, the energy consumption of the NIC is dependent on the burst
sizes used for transmitting packets [18]. Note here that “burst size” refers to the
number of seconds of video payload that can be buffered and sent to the device

430 Shivajit Mohapatra and Nalini Venkatasubramanian

in one burst over the network. While large bursts sizes can cause significant
savings in power, they cause higher packet drop rates and buffer overflows at the
wireless access point resulting in a significant drop in perceived video quality. We
assume the strategy space for the network card as the set of strategies that set
the burst sizes of video transmissions (in secs) to continuous values in the range
between 1 second to 150 seconds. Note that for each burst size chosen there is
a unique value for the energy consumed by the NIC. In the next section, we use
our empirical studies from [18] to derive the utility functions for the CPU and
the network card.

4.2 Utility Functions

In this section, we describe how we identify the utility functions for the various
strategies used for the power management of the CPU and the NIC. Recall that
we define the utility function for a strategy as a function of both the power
consumed (essentially equal to power saved) and the satisfaction as perceived by
the user. For video applications, we assume that the user perception is directly
related to the quality of the video(described by frame rate, frame resolution and
bit rate of the stream) as in [18]. Fig. 4 shows how the normalized power savings
and the perceived video quality varies with the cpu slowdown factor. Clearly the
power savings increase as the cpu is slowed. However, the user perception remains
at the highest level till the cpu is slowed by about 48%. Subsequent reduction in
cpu speeds causes a drop in the video quality, due to frame deadline misses. Fig. 5
shows the actual utility curve for the video as the sum of the curves in Fig. 4,
plotted against the cpu energy usage. A curve fitting technique is then used to
determine an approximation of this curve. We determine that the utility for the
video application can be specified as a function of the power consumption as
follows: Utility = 0.0408Log(Power) + 1.369, with a R2 value of 0.0197. Fig. 6
demonstrates how video quality(based on % of pkts dropped) and the power
savings of the network card vary with the packet burst sizes in seconds. Clearly,
the power savings improve when the burst sizes increase. However, as the burst
size becomes larger than 1.48 seconds, packets start getting dropped at the
wireless access point. As a result, there is a perceived drop in the user perceived
video quality. Fig. 7 shows the actual utility curve for the video against the burst
size. Fig. 8 plots the power savings of the NIC versus the video burst size used.
Using a curve fitting method can specify the network card power savings as a
function of the packet burst size as follows: y = 0.1909Log(x)+0.4139. Using the
above strategy spaces and utility functions for the CPU and the NIC, we now
present the results for the overall energy savings achieved when the CPU and
the NIC operate under conditions of “social” and “best-response” equilibria.

4.3 Experimental Results

We used our simulator to determine the energy consumption of the device un-
der both static and dynamic application loads and network noise levels. In both

A Game Theoretic Approach for Power Aware Middleware 431

Fig. 4. power & video quality (cpu) Fig. 5. cpu power vs. utility

Fig. 6. power & video quality (NIC) Fig. 7. video burst size vs. utility

Fig. 8. burst size vs. power saved Fig. 9. total energy consumption

cases, we estimated the energy consumption characteristics of the device un-
der three different operating (social,nash and no-optimization) conditions of the
CPU and the NIC. For the static measurements, we assumed that a multimedia
application (video player) playing streaming video on the device with a static
network noise level. The energy consumptions were calculated assuming a fixed
number of repetitions of the game while a single application executed on the de-
vice. In the dynamic case, we randomly started and stopped a set of applications
as well as varied the network noise levels randomly. As a baseline condition, we
estimated the energy consumption when no power optimization strategies were
used. Under this assumption,the CPU operates at its maximum speed and the

432 Shivajit Mohapatra and Nalini Venkatasubramanian

network card is in the “active” state at all times. Next we measured the energy
consumption of the device when the components used strategies that achieved
the “social” and the “best-effort” equilibria respectively.

We first present the results of our simulation of the static case. Fig. 9 shows
the total energy consumed by the device under the above three conditions, as-
suming the initial lifetime of the device to be 90 minutes and considering 30
repetitions(T=30) of the two-player game and a discount factor(δ) of 0.95. It is
seen that the the overall energy consumption for the social optima is the lowest.
However, both the best-response and the socially optimal energy consumptions
are significantly less than the energy used when no power optimizations are in
place. As seen in the analysis earlier, the social equilibrium tends to consume all
the available energy in the last period of the game, therefore at that point its
energy consumption equals that of the no optimization case. This is because we
considered a finitely repeated game(T=30). However, at T=30, clearly the resid-
ual energy available at the device would be the maximum when the components
consume energy in accordance with the social optimality condition.

Fig. 10. CPU energy consumption Fig. 11. Gain in device Lifetime

Fig. 11 shows the lifetime of the device for various initial values for residual
energy. As seen from the figure, the device lifetime is significantly increased
using the socially optimal strategies for both the CPU and the network. This is
expected as less battery energy is drawn under this condition. Fig. 10 compares
the energy consumed by only the CPU under the two equilibria. It is seen that
the CPU consumes 13% less energy when it operates at a social equilibrium
than when it operates under the best-response equilibrium. Fig. 12 compares
the normalized video quality levels achieved by the strategies used for the CPU.
Clearly, there is very little difference(≤ 0.1) in the normalized quality of video
attained by the two equilibrium conditions for the cpu. However, much lower
energy consumption levels are attained for the social equilibrium strategies. Note
that the utility for the no-optimization case is much less than either of the
above techniques as it consumes significantly more energy with possibly a slight
increase in the user perceived quality.

In the dynamic case, we used a set of 6 applications and randomly started and
stopped the applications and randomly varied the network noise levels. Fig. 13

A Game Theoretic Approach for Power Aware Middleware 433

shows the energy consumption characteristics of the CPU as the dynamic adap-
tation is performed for both social and Nash equilibrium conditions. The small
frequent spikes in the graph indicate the points at which the application load
(no. of applications) on the device changes. Fig. 15 shows the corresponding en-
ergy consumption plot for the NIC. For both the CPU and the NIC, the social
equilibrium strategy tends to consume lesser energy than the Nash equilibrium
strategy. The overall energy consumed over time for both the equilibrium con-
ditions and the baseline case is shown in Fig. 14. The total energy consumption
is much lesser for the socially optimal strategy.

Finally, in order to compare the dynamic adaptation with the static case, we
started out by executing eight applications on the device and computed the static
social and Nash equilibrium energy consumptions. Then we randomly stopped
applications one by one and performed dynamic adaptation for the new appli-
cation load. Intuitively, as the number of applications are reduced we should
be able to reduce the equilibrium energy consumption dynamically, while still
maintaining the same perceived quality. Fig. 16 shows the residual energy of
the device over time for static and dynamic social equilibria. Clearly, significant
amount of residual energy is saved over time when dynamic adaptation is per-
formed. In conclusion, as the number of applications decrease randomly, dynamic
adaptation can increase the overall lifetime of the device. On the other hand, as
the number of tasks increase, dynamic adaptation can provide a better quality.

Fig. 12. Quality Comparison (cpu) Fig. 13. CPU power vs. time

Fig. 14. Total Energy over time Fig. 15. Network power vs. time

434 Shivajit Mohapatra and Nalini Venkatasubramanian

Fig. 16. Dynamic vs. Static Adaptation

4.4 Summary of Results

We compared the performance of socially optimal power consumption strategies
with the strategies that achieve strategic equilibrium and the ones that imple-
ment no energy optimization under both static and dynamic load conditions.
Under static conditions, the energy consumed for the socially optimal strategies
was lesser(about 20J for every repeated game) than the energy used by the Nash
strategies. The device lifetime was considerably increased(around 80-90% over
no optimization strategies and 20-40% over Nash strategies) with only a slight
decrease in the quality of the video application. We showed that a dynamic
algorithm that adapts to changing application load and network noise levels us-
ing strategies that provide social optima provide significant energy gains over
Nash strategies. Finally, we show that in situations where the application load
changes over time, a dynamic algorithm performs better than a static algorithm.
It was observed that the number of repetitions of the game(T) and the discount
factor(δ) had little impact on energy usage levels of the components.

5 Prototype Implementation

We have implemented a prototype of the Dynamo middleware framework. The
hardware platform for our implementation is the Sharp Zaurus (model SL5600)
running the Linux operating system. It uses an Intel 400MHz Xscale processor
and has 32MB of SDRAM and 64MB of protected flash memory. The Xscale
processor can operate at various frequencies ranging from 100MHz(0.85V) to
400MHz(1.3V).As our proxy, we use a Windows XP desktop system with a 2.4
GHz processor and 512MB of RAM and a 40 GB disk. The handheld used a
Cisco 350 Series Aironet 11Mbps wireless PCMCIA network interface card for
communication. We use a National Instruments PCI DAQ board to sample volt-
age drop across the iPAQ at 200K samples/sec. The streaming video application
is modelled after the freely available VLC media player for Linux.

A Game Theoretic Approach for Power Aware Middleware 435

Fig. 17. Prototype Implementation in Dynamo

Fig. 17 shows the integration of the game analysis into the Dynamo middle-
ware architecture. The middleware on the device includes four primary compo-
nents – the game controller, the system and energy monitors and the communi-
cation manager. The middleware provides an API interface for applications to
specify the QoS requirements and to change QoS requirements for dynamic adap-
tation. The game controller is used to specify the details of the game analysis
and to set/modify the dynamic game parameters. The system monitor moni-
tors the resource usage of the system and notifies the runtime of changes (e.g.
change in the number of applications). The energy monitor communicates with
the PCI DAQ board as well as interfaces with the low-level OS APIs to mon-
itor the energy usage of the CPU and the network interface. The power-aware
API (PAAPI) library for Linux is used to adjust the operating frequency of
the CPU. The communication manager defines the middleware communication
protocol and communicates with the proxy middleware. It uses UDP over IP
for communication and a well defined structure interface for exchange of control
information. On the proxy the Dynamo middleware uses a module to perform
the strategy analysis using an profiled payoff base. A network monitor module
maintains an updated state information on the overall congestion level. This in-
formation is used by the middleware to adapt the network traffic to the device.
Fig. 18 lists a limited set of middleware API used at the low power device and
briefly describes each function. It also presents the energy overheads of using the
middleware framework and the communication overheads.

Fig. 18. Prototype Middleware API and Initial results

436 Shivajit Mohapatra and Nalini Venkatasubramanian

Discussion: Note that the middleware needs to utilize a set of operating system
API to achieve some of the low-level functionality. While a number of low-level
power management knobs exist for handheld devices, currently many have to be
statically configured (e.g. backlight intensity levels). Again, current Xscale pro-
cessors provide only frequency scaling and it would be desirable to have voltage
scaling as well. Similarly, the network interface cards have multiple low duty-
cycle operating modes. However, support for dynamically exploiting these at
higher levels (middleware and application) are still very limited. We are notic-
ing a growing trend in the exposing of system level knobs to applications and
middleware through well defined API interfaces, and have designed our frame-
work to incorporate and exploit future enhancements to APIs at the OS and
architectural levels. We also concur that some of our approaches can be better
incorporated at the OS level, as it currently has a higher degree of control over
hardware power management. The discussion of the low-level API is outside the
scope of this work.

6 Related Work

The mathematical theory of games was first introduced by Neumann and Mor-
genstern [13] in 1944. Since then, game theory [21] has evolved into an important
tool for analysis of conflict situations and has found invaluable application in the
analysis of numerous social and economic conflict models. Traditionally, game
theory has been used in computer science for development of computer games
(e.g. chess) and in the areas of artificial intelligence. More recently, several inter-
esting research efforts have applied game theoretic analysis to wireless commu-
nication systems [17], flow control [3] and routing [23]. In cellular systems users
desire to have a high signal to interference (SIR) ratio at the base station (for
low error rate, and reliability) coupled with the lowest possible transmit power
(for longer battery life). A high transmit power used by a user can increase in-
terference for other users thereby lowering their SIR. This might lead to other
users to increase their transmit powers. Game Theory has been extensively used
for analysis of such communication systems [17, 16, 8]. The use of game theoretic
analysis for dynamic power management of disks has been suggested in [12]. In
our work, we have used game theory to analyze the power management of var-
ious components in a low-power system, where we propose that the individual
power management strategies for the various components should be chosen such
that a socially optimal equilibrium condition is achieved. This is in accordance
with the classical game theory problem called the ”tragedy of the commons” [2,
15, 21].

On the other hand, power management for the individual components for low-
power devices have been aggressively researched. Dynamic Voltage Scaling [9, 7]
for saving energy consumption of CPUs have been extensively studied. At the ap-
plication and middleware levels, the primary focus has been to optimize network
interface power consumption [10, 4, 5]. A thorough analysis of power consump-
tion of wireless network interfaces has been presented in [10]. Chandra et al. [4]

A Game Theoretic Approach for Power Aware Middleware 437

have explored the wireless network energy consumption of streaming video for-
mats like Windows Media, Real media and Apple Quick Time. In [22], Shenoy
suggests performing power friendly proxy based video transformations to reduce
video quality in real-time for energy savings. They also suggest an intelligent
network streaming strategy for saving power on the network interface. Caching
streams of multiple qualities for efficient performance has been suggested in [11].
The GRACE project [25] claims the use of cross-layer adaptations for maximiz-
ing system utility. They suggest both coarse grained and fine grained tuning of
parameters for optimal gains. In [24], the authors enhance the OS to support
process groups which consist of a set of closely related/dependent processes. Co-
ordination between the architecture(cache) optimizations, network and applica-
tion adaptations through an adaptive middleware framework has been used in
[18] to optimize power and utility for multimedia applications. In [19], a middle-
ware framework that partitions reconfigurable middleware components between
a low-power device and proxy for improving the costs of computation and com-
munication is presented. Energy efficient battery management strategies have
been extensively studied by Rao et al. [6].

7 Conclusions and Future Work

In this paper, we presented a dynamic game theoretic approach for choosing
power optimization strategies for multiple components that draw energy from
a common resource, the battery. We modelled the components as players in a
non-cooperative game and determined how each component should draw bat-
tery power. We evaluated two techniques – one in which the components employ
strategies that aim to maximize the overall utility of the system (social opti-
mum) and another in which each component uses a best-response strategy for
maximizing its own utility. Our performance results indicate that strategies that
achieved a socially optimal energy usage provided the maximum energy savings
and with similar utility values. We therefore conclude, that in a multi-component
system, strategies for each component should be chosen such that they attain a
socially optimal energy usage pattern. As an extension of our current efforts, we
plan to employ game theoretic analysis for optimizing power consumption and
performance of low-power devices by exploiting the knowledge of the distributed
environment. It would be interesting to study a more distributed adaptation
scheme involving multiple proxies and devices. We also plan on investigating the
impact of optimizations on non realtime applications such as browsers and text
editors etc..

References

438 Shivajit Mohapatra and Nalini Venkatasubramanian

	1 Motivation
	2 Modelling Power Optimization as a Dynamic Game
	2.1 Game Analysis
	2.2 Social Optimum Analysis
	2.3 Best-Response(Nash) Equilibrium Analysis

	3 The Dynamo Middleware Framework
	4 Performance Evaluation
	4.1 Simulation Environment
	4.2 Utility Functions
	4.3 Experimental Results
	4.4 Summary of Results

	5 Prototype Implementation
	6 Related Work
	7 Conclusions and Future Work
	References

