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Abstract. The very nature of implementing and evaluating fully dis-
tributed algorithms or protocols in application-layer overlay networks
involves certain programming tasks that are at best mundane and te-
dious – and at worst challenging – even at the application level. In this
paper, we present iOverlay, a lightweight and high-performance mid-
dleware infrastructure that addresses these problems in a novel way by
providing clean, well-documented layers of middleware components. The
internals of iOverlay are carefully designed and implemented to max-
imize its performance, without sacrificing the simplicity of application
implementations using iOverlay. We illustrate the effectiveness of iOver-
lay by rapidly implementing a set of overlay applications, and report our
findings and experiences by deploying them on PlanetLab, the wide-area
overlay network testbed that iOverlay conveniently supports.

1 Introduction

Existing research in the area of application-layer overlay protocols has produced
a sizable collection of real-world implementations of protocols and distributed
applications in overlay networks. Examples include implementations of struc-
tured search protocols such as Pastry [1] and Chord [2], as well as overlay data
dissemination such as Narada [3], NICE [4], SplitStream [5] and Bullet [6]. How-
ever, an interesting observation is that most of the existing work has resorted to
simulations to evaluate the effectiveness of the proposed protocols.

The recent availability of global-scale implementation testbeds for appli-
cation-layer overlay protocols, such as PlanetLab [7] and Netbed [8], makes it
feasible to design, implement and deploy overlay protocols in a wide-area net-
work, so that they may be evaluated in realistic environments rather than simu-
lations. However, there still exist roadblocks that make it impractical to deliver a
high-quality, high-performance and fully distributed real-world implementation
of overlay applications entirely from scratch: such an implementation involves
many software components that must work together, including certain program-
ming tasks that are at best mundane and tedious – and at worst challenging –
to code.
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We observe that, among all the components of a distributed application or
protocol implementation, only a few specific areas are interesting for research
purposes, and are subject to changes and innovations. On the other hand, any re-
alistic implementation of overlay applications must include a significant number
of largely uninteresting elements, such as (1) bootstrapping wide-area nodes from
a centralized authority; (2) implementing a multi-threaded message forwarding
engine; (3) monitoring facilities to control, debug, and record the performance of
distributed algorithms. The necessity of writing such supporting infrastructure
slows down the pace of prototyping new applications and protocols.

In this paper, we present iOverlay, a lightweight and high-performance mid-
dleware infrastructure that is specifically designed from scratch to support rapid
development of distributed applications and protocols over realistic testbeds.
The design objectives of iOverlay are as follows. First, it seeks to provide a high-
quality and high-performance implementation of a carefully selected number of
features that are common or useful to most of the overlay application implemen-
tations. Second, it seeks to be as generic as possible, and minimizes the set of
assumptions with respect to the objectives and nature of new applications. Third,
it seeks to significantly simplify the implementation of distributed applications,
to the extent that only the logics and semantics specific to the application itself
need to be implemented by the application developer. In addition, it should not
be necessary for the application developer to have any prior knowledge about
the internal details of iOverlay, before starting a successful implementation. Fi-
nally, it seeks to design a well-documented, straightforward and clean interface
between the application and iOverlay.

The remainder of this paper is organized as follows. In Sec. 2, we present the
design and implementation of the iOverlay architecture. In Sec. 3, we present
our own experiences with rapidly prototyping a set of overlay applications as
case studies. Finally, we discuss iOverlay in light of related work (Sec. 4), and
conclude the paper in Sec. 5.
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Fig. 1. The iOverlay architecture.
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2 iOverlay: Design and Performance

iOverlay considers three layers in a distributed application: (1) the message
switching engine, which performs indispensable tasks of switching application-
layer messages. (2) the algorithm, which implements the application-specific dis-
tributed protocol beyond mundane tasks in the engine; and (3) the application,
which produces and interprets the data portion of application-layer messages
at both the sending and the receiving ends. This may include global storage
systems that respond to queries, or publish-subscribe applications that produce
events and interests. The ultimate objective is for the application developer to
build new algorithms based on the engine, and to select an application to be
deployed on top of the algorithm.

Architecturally, the iOverlay middleware infrastructure provides support to
the application developer in all of these aspects. First, it implements a fully
functional, virtualizable and high performance message switching engine, upon
which the application-specific algorithm is built. Second, it implements common
elements of selected categories of algorithms that are completely optional for the
application developer to use. Third, it implements typical applications, which
the algorithm developer may choose to deploy. Finally, it provides a centralized
Windows-based graphical utility, referred to as the observer, for the purpose of
monitoring, debugging, visualizing and logging various aspects of the distributed
application. The iOverlay architecture, as discussed, is illustrated in Fig. 1.

2.1 Highlights

The iOverlay middleware design features the following highlights.

Simplified Interface. iOverlay is designed to have the simplest interface possible
between the application-specific algorithm and the engine on each overlay node,
in order to minimize the cost of entry to use iOverlay. The application developer
only needs to be aware of one function of the engine: the send function, used for
sending data or protocol messages to downstream or peer nodes. In addition to
this function, the entire interface is designed to be completely message driven,
in the sense that the algorithm only needs to passively process messages when
they arrive or are produced by the engine. Since messages are distinguished by
their types, a message handler that handles possible types is all that is required
for the algorithm implementation. Further, the entire implementation of the
application-specific algorithm is guaranteed to be executed in a single thread,
and therefore does not need to use thread-safe data structures (those guarded
with semaphores and locks).

Virtualized nodes. iOverlay features complete virtualization of overlay nodes in
a distributed application. Each physical node in the wide-area network may
easily accommodate from one to up to dozens of iOverlay nodes, depending
on available physical resources such as CPU. Each iOverlay node has its own
bandwidth specifications, such as the total bandwidth available to and from the
node, separate upload and download available bandwidth, or per-link bandwidth
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limits. This adds to the flexibility of iOverlay deployment: if necessary, iOverlay
may be entirely deployed in a local area network with a cluster of servers; or,
for small-scale tests, on just a single server.
Maximized Performance and Flexibility. Finally, iOverlay is designed to maxi-
mize its performance. The engine is implemented from scratch with the C++
programming language and the native POSIX thread library in UNIX. It is
portable across many UNIX variants. The observer is implemented in Windows
using the C# programming language, guaranteeing rapid development of addi-
tional interface elements.

2.2 Internal Design

In iOverlay, we assume that all communication is in the form of application-
layer messages, containing application data of a maximum length in bytes. Each
message maintains a fixed 24-byte header, which includes the type and sender of
the message, the application identifier that it belongs to, the sequence number
and the size of the payload. To keep it simple, the content of a message is mostly
immutable, and is initialized at the time of construction. In addition, the notion
of a node in iOverlay is uniquely identified by its IP address and port number.
The port number may be explicitly specified at start-up time; otherwise, the
engine chooses one of the available ports.
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Fig. 2. The internal design of the engine.

The Message Switching Engine: A Close Examination

The engine of iOverlay is an application-layer message switch. We seek to design
the engine such that it supports multiple competing traffic sessions, so that the
application developer may easily test the performance of distributed algorithms
under heavy cross traffic. It also has the capability to concurrently process both
application data and protocol-specific messages.
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We deploy a multi-threaded architecture to concurrently handle multiple in-
coming and outgoing connections, application-specific messages, as well as mes-
sages to and from the observer. Specifically, we use a thread-per-receiver and
a thread-per-sender design, along with a separate engine thread for processing
and switching messages using the application-specific algorithm. All receiver and
sender threads use blocking receive and send operations, and the sender thread
is suspended when the buffer is empty, to be signaled by the engine thread. We
use a thread-safe circular queue to implement the shared buffers between the
threads. Such a design is illustrated in Fig. 2.

We adopt such a design to avoid the complex wait/signal scenario where the
receiver or sender buffer is shared by more than one reader or writer threads.
Unlike the receiver and sender threads that “sleep” when the the buffer is full (re-
ceiver) or empty (sender), the engine thread constantly monitors the publicized
port of the node (by using the non-blocking select() function) for incoming
control messages from the observer, or from the algorithms of other nodes. If
they exist, they are either processed within the engine, or sent to the algo-
rithm to be processed, by calling the Algorithm::process() function. Next,
it switches data messages from the receiver buffers to the sender buffers in a
weighted round-robin fashion, with dynamically tunable weights (implemented
in the Engine::switch() function). The skeleton of the engine thread is shown
in Table 1.

Table 1. Design of the engine thread.

start the TCP server on the publicized port;
bootstrap from observer;
while not terminated

if there are incoming messages on the port detected
using non-blocking select()

if the message is engine-related
call Engine::process();

else
call Algorithm::process();

call Engine::switch();
stop the TCP server.

Obviously, when the switch attempts to forward messages to downstreams,
the choice of downstream nodes is at the sole discretion of the algorithm. There-
fore, the engine consults with the algorithm by calling Algorithm::process().
There are two possibilities. First, the algorithm may locally process and consume
the message. Second, the algorithm continues to forward the message to one or
more downstream nodes, by calling the Engine::send() function. Only in the
latter case does the engine forward the message to the sender buffers.
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The tight coupling of the algorithm’s and the engine’s message processing
components is intentional by design. First, they must reside in the same thread,
since we prefer to avoid the cases where the developer needs to use thread-safe
data structures when algorithms are developed with iOverlay. It is impossible
to design a typical two-thread solution – where the engine processes control
messages in one thread, and switches data messages in another – and still achieve
such a favorable property of accommodating thread-unaware algorithms. Second,
the seemingly complex “paradox” – at times the engine calls the algorithm, and
at other times the algorithm calls the engine – is in fact straightforward, since
the algorithm is always reactive and never proactive.

There are further complexities involved in the design of a switch. As a first
example, there may be cases where messages are successfully forwarded to only
a subset of the intended senders, but fail to be forwarded to the remaining ones,
since their buffers are full. In this case, we label each message with its set of
remaining senders, so that they may be tried in the next round. As a second
example, in some scenarios a set of states needs to be shared and exchanged be-
tween active threads. For example, a receiver thread needs to notify the engine
when a failed upstream node has been detected, such that the engine thread
can clear up its data structures related to this node. To avoid complex thread
synchronization between active threads, we extensively take advantage of the
mechanism of passing application-layer messages across thread boundaries via
the publicized port. Without a doubt, these complexities are completely trans-
parent to the algorithm developer.

Finally, we may not only wish to forward verbatim messages in an appli-
cation-layer switch, but also wish to merge or code multiple incoming messages
into one outgoing message. In order to implement the most generic n-to-m map-
ping (such as coding messages from n multiple incoming connections to m down-
streams), we allow Algorithm::process() to return a hold type, instructing the
engine that the message is buffered in the algorithm, but its processing should
be put on hold to wait for other messages from other incoming connections. It is
up to the algorithm to implement the logic of merging or coding multiple mes-
sages after requesting a hold on them, and eventually producing a new message
to be sent to downstreams. Using the hold mechanism, we have successfully im-
plemented algorithms that perform overlay multicast with merging or network
coding [9].

Salient Features

Handling of Failures. In iOverlay, we assume that the nodes themselves, the
virtual link between nodes, as well as the application data sources may all fail
prematurely. Transparent to the algorithm developer, iOverlay supports the au-
tomatic detection of failed nodes and links, and the automatic tear-down of
relevant links after such failures. For example, if an upstream link in a multicast
tree has failed, it causes a “Domino Effect” that fails all downstream links from
this point. The engine is able to appropriately tear down these links without
affecting any of the other active links, and to notify the algorithm of such fail-



iOverlay: A Lightweight Middleware Infrastructure 141

ures. All terminations are graceful, and all affected links are smoothly dropped
without side effects.

We have implemented a collection of exception handling mechanisms to de-
tect and process such failures. Depending on the state of the sockets at the
time of premature failures, we rely on a combination of mechanisms to detect
that a node or a link may have failed: (1) exceptions thrown and timeouts at
the socket level; (2) abnormal signals caught by the engine, such as the Broken
Pipe signal; and (3) long consecutive periods of traffic inactivity, detected by
throughput measurements. To avoid overhead, we do not use any forms of active
probes or “heartbeat updates” for this purpose. Still, we are able to implement
very responsive detections of link and node failures in most cases. In addition,
the observer may choose to terminate a node at will, in which case all the data
structures and threads in both the engine and the algorithm will be cleared up,
and the program terminates gracefully.
Measurement of QoS Metrics. At the socket level, we have implemented mecha-
nisms to measure the TCP throughput of a connection, as well as the round-trip
latency and the number of bytes (or messages) lost due to failures. The results of
these measurements are periodically reported to the algorithm and the observer.
Upon requests from the algorithm, the available bandwidth and latency to any
overlay nodes can be measured.
Emulation of Bandwidth Availability. In some cases, the algorithm developer
prefers to test a preliminary algorithm under controlled environments, in which
node characteristics are more predictable. iOverlay explicitly supports the emula-
tion of bandwidth availability in three categories: (1) per-node total bandwidth:
the total incoming and outgoing bandwidth available; (2) per-link bandwidth:
the bandwidth available on a certain point-to-point virtual link; and (3) per-node
incoming and outgoing bandwidth: iOverlay is able to emulate asymmetric nodes
(such as nodes on DSL or cable modem connections) featuring disparate outgo-
ing and incoming bandwidth availability. The emulated values may be specified
at node start-up time, or within the observer at runtime. In the latter case, ar-
tificially emulated bottlenecks may be produced or relieved on the fly, in order
to evaluate the adaptivity of the algorithm. To implement such emulations, we
have wrapped the socket send and recv functions to include multiple timers in
order to precisely control the bandwidth used per interval (the length of which
may be specified by the algorithm).

Performance Considerations

The performance objective of the engine design is to “push” messages through
the engine as quickly as possible, with the lowest possible overhead at the switch.
Towards this objective, we have considered three directions of performance op-
timizations, and successfully implemented them in the current engine.
Persistent Connections. In order to avoid the unacceptable overhead of thread-
level context switching at the operating system when a large number of threads
are used, we implement both incoming and outgoing socket connections as per-
sistent connections, in the sense that all the messages between two nodes are
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carried with the same connection, regardless of the applications they belong
to. With persistent connections, we have avoided the creation of more threads
when new distributed applications are deployed; instead, existing connections
are reused.

Zero Copying of Messages. In order to avoid deep copying of entire messages
when they pass through the engine, we have implemented a collection of mech-
anisms to ensure that only the references of messages are passed from the in-
coming socket all the way to the outgoing socket, and no messages will be copied
in the engine at all. The algorithm may choose to copy messages, if necessary,
supported by the copy constructor of the Msg class. In order to appropriately
destruct messages whose references are shared by multiple threads, an elaborate
thread-safe reference counting mechanism is in place in the core of the engine.

Footprint. The engine is meticulously designed and tested so that the memory
footprint is minimized and stable (without leaks). For example, with a message
size of 5 KB and a buffer capacity of 10 messages, the footprint of the engine is
only 4 MB per active connection1. The optimized binary executable of the engine
(with a simple testing algorithm) is only 100 KB. Such a footprint guarantees
the scalability of iOverlay, especially when a large number of virtualized nodes
are deployed on the same physical server.

The Observer

As a centralized monitoring facility, we have implemented the observer as a
graphical tool in Windows. The observer implements the first level of bootstrap
support, by responding to any bootstrap requests (messages of type boot) with
a random subset of existing nodes that are alive. The number of initial nodes in
such a subset is configurable. Once a node is bootstrapped, the observer peri-
odically sends it a request message to request for status updates, which include
lengths of all engine buffers, measurements of QoS metrics, and the list of up-
stream and downstream nodes. With these status updates, the observer may
visually illustrate the current network topology of each of the applications with
geographical locations of all nodes, on either the world or the North American
map.

Further, the observer serves as a control panel and may take the following
actions to control the status of the network: (1) controlling the emulated per-link
and per-node bandwidth availabilities; (2) deploying an application; (3) asking a
node to join or leave a particular application; and (4) terminating an application
data source or a node. For the sake of flexibility, the observer is also able to send
new types of algorithm-specific control messages to the nodes, with two optional
integer parameters embedded in the header.

Basic Elements of Algorithms

Despite the tight coupling between the algorithm and the engine, the algorithm is
placed in its own namespace with an object-oriented design. The basic and com-

1 This is the case in Linux, which may be inferior with respect to footprint since
clone() is usually used to support user-level POSIX threads.
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monly used elements of an algorithm is defined and implemented in a generic base
class referred to as iAlgorithm. We present two examples. First, it implements
a default message handler, that handles known messages from the observer and
the engine with a default behavior. For example, upon receiving the bootstrap
message from the observer, it records the set of initial nodes in a local data struc-
ture referred to as KnownHosts. Second, iAlgorithm implements a disseminate
function, which disseminates a message to a list of overlay nodes, with a specific
probability p. This resembles the gossiping behavior in distributed systems. The
default implementations of a library of functions in the iAlgorithm class serve
as a set of basic utilities, and since application-specific algorithms are classes
that inherit from iAlgorithm, the developer may choose to override any default
behavior with application-specific implementations.

2.3 Interface Between iOverlay and Algorithms

Given the iOverlay design we have presented, how do we rapidly develop an
application using iOverlay? Many design choices are made to reduce the com-
plexity of developing new application-specific algorithms. First, the algorithm
namespace extensively uses object orientation such that new algorithms may be
built based on existing algorithm implementations. As we have discussed, a few
basic elements of algorithms have already been provided by iOverlay. Second,
the algorithm only needs to call one function of the engine: the send function.
This greatly improves the learning curve of the interface. Finally, the algorithm
is designed as a message handler, in the form of a switch statement on differ-
ent types of messages. While processing each incoming message, internal states
of the algorithm may be modified. The message handler should reside in the
process() function. The skeleton of an algorithm is shown in Table 2.

In such a skeleton, it is not necessary for an algorithm to handle all the
known message types from the engine or the observer. If a message type is not
handled in the algorithm, the default process() function provided by the base
iAlgorithm class takes this responsibility. In fact, the only message type that the
algorithm must handle is the type data, indicating a data message. iAlgorithm
provides default handlers for all other types of messages. It is also not necessary
for an algorithm to handle abnormal return values when invoking the send()
function. In fact, send() has a return type of void, and all abnormal results
of sending a message are handled by the engine transparently. For example, if
the destination node of the message fails, the algorithm is notified appropriately,
again via messages produced by the engine.

Another important design decision is related to the destruction of messages.
In order to completely eliminate memory leaks, we need to carefully assign the
responsibilities of message destruction. Particularly, consider a message passed
to the algorithm (by pointers) as a parameter in the process function. Should the
engine or the algorithm be responsible for destructing the message after it has
been processed? Further, when a message is constructed in the algorithm and
passed to the send function of the engine, should the engine or the algorithm be
responsible for destructing the message after it is sent? To simplify the tasks of
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Table 2. Skeleton of the algorithm using iOverlay.

process(Msg * m)

switch (m -> type())

case sDeploy: (from observer)
deploy an application source;

case request: (from observer)
send algorithm status updates to observer;

case sTerminate: (from observer)
terminate an application source;

case BrokenSource: (from upstream)
clear up internal states corresponding to the application
source at upstream, since it has failed;

case data: (from the engine)
process, consume or forward the message using
send(Msg * m, Node dest);

case UpThroughput: (from the engine)
record or process the throughput from an upstream;

. . . (process other engine or algorithm-specific types)
default: (use the default behavior from iAlgorithm)
iAlgorithm::process(m);

algorithm developers, we stipulate that all message destructions are the respon-
sibility of the engine. The algorithm developer should never destruct messages,
even if they have been constructed in the algorithm.

However, there exist a subtle problem with this solution even it works well at
most times. When the algorithm receives a pointer to an engine-created message
as a parameter of the process function, what if the algorithm passes the pointer
back to the engine by using the send function? We distinguish treatments of this
scenario depending on the type of the message. If the message is of type data,
we have developed the engine carefully such that the algorithm can directly
invoke send with the same message, guaranteeing zero copying of data messages.
However, if the message is of any other type, we require the algorithm developer
to clone the message before invoking send on the new copy. Performance-wise
this is not a problem, since most protocol messages are very small in size.

2.4 Performance

With C++ on Linux, C# on Windows, and around 25, 000 lines of code in total,
we have completed a stable implementation of the entire iOverlay middleware
infrastructure that we have presented. We now evaluate the results of such an
implementation, focusing on the raw message switching performance of iOver-
lay nodes, especially when they are virtualized nodes on the same server. For
this purpose, we execute iOverlay nodes on a single dual-CPU server with two
Pentium III 1GHz processors, 1.5GB of memory, and Linux 2.4.25. The iOverlay
engine is compiled with gcc 3.3.3 with the most aggressive optimizations.
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Since iOverlay nodes are multi-threaded user-level programs, the bottleneck
of such switching performance under heavy load is the overhead of context
switching among a large number of threads. We create such a load using a chain
topology, and we test iOverlay with different number of nodes in the network.
Before we deploy an application on the chain topology, we observe that the CPU
load is 0.00, which shows that iOverlay does not consume CPU resources with-
out traffic. After we deploy an application that sends back-to-back traffic from
one end of the chain to the other as fast as possible, we measure the end-to-
end throughput, as well as the total bandwidth in the chain, calculated by the
end-to-end throughput multiplied by the number of links. The total bandwidth
represents the actual number of messages per second that have been switched or
in transit in the network. Fig. 3 shows the iOverlay engine performance in this
test, with a chain from two nodes to 32 nodes.
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Fig. 3. The raw performance of the iOverlay engine.

We have two noteworthy observations from this experiment. First, if we com-
pare the two-node total bandwidth of 48.4 MBps and the three-node bandwidth
of 46.8 MBps, the overhead of one user-level message switch is only 3.3%. Sec-
ond, as the number of nodes increases, the overhead of context switching be-
comes more significant, due to the Linux implementation of POSIX threads
using clone(). Still, even with a 32-node configuration, the sustained through-
put is still 424 KBps, which is higher than the typical throughput of wide-area
connections. This implies that we may potentially deploy dozens of nodes on a
single physical node in a local-area or wide-area testbed, making it feasible to
test the scalability of new applications in terms of the number of participants.
Such performance is simply not achievable if, for example, Java is used rather
than C++, or zero message copying is not enforced.
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3 Case Studies

We believe that iOverlay is useful to support the rapid implementation of a wide
range of applications and distributed algorithms in application overlay networks.
In this paper, we undertake three case studies to highlight our own experiences of
rapidly prototyping new algorithms and ideas using iOverlay as the middleware
infrastructure.

3.1 Network Coding

The advantages of application-layer overlay networks arise from the fundamental
property that overlay nodes, as opposed to lower-layer network elements such
as routers and switches, are end systems and have capabilities far beyond ba-
sic operations of storing and forwarding. In the first case study, we implement
a novel message processing algorithm that performs network coding on overlay
nodes, using iOverlay. In such an algorithm, messages from multiple incoming
streams are coded into one stream using linear codes in the Galois Field (and
more specifically, with GF(28)). We are pleasantly surprised that, with one de-
veloper, such a non-trivial task is completed within a week. We have evaluated
the network coding algorithm in the topology shown in Fig. 4, where we show
the performance of the algorithm.
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Fig. 4(a) shows the results without using network coding. Node A is the
data source with per-node bandwidth of 400 KBps, and node D has an uplink
bandwidth of 200 KBps. Node A splits its data into two streams sent to B and
C, respectively. In this case, B and C are not able to receive both streams, and
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are referred to as helper nodes. Based on iOverlay throughput measurements,
the nodes D, E, F and G have received 400, 200, 300, 300 KBps, respectively. In
comparison, Fig. 4(b) shows the case where the coding algorithm a+b in GF(28)
is applied at node D on the two incoming streams. In this case, the nodes F and
G are able to receive both streams a and b by decoding a + b with a, achieving
a throughput of 400 KBps. The trade-off, however, is that node E becomes
a helper node, in addition to B and C. Our experiences with this case study
have demonstrated both the advantages and the trade-offs of applying network
coding on overlay nodes. We believe that such an experiment-based evaluation
of network coding algorithms is not possible within such a short time frame, if
iOverlay is not available as a substrate. For more details of our implementation
on network coding, the interested reader is referred to our companion paper [10].

3.2 Construction of Data Dissemination Trees

In this case study, we are interested in the development and evaluation of new
algorithms that construct data dissemination multicast trees in overlay networks,
particularly in the scenario that the “last-mile” available bandwidth on overlay
nodes is the bottleneck. With iOverlay, we have implemented a node stress aware
algorithm to construct such multicast trees, where node stress is defined as the
degree of a node in a data dissemination topology divided by the available “last-
mile” bandwidth of the node.

The outline of this algorithm is as follows. Periodically, each node in the
existing multicast session exchanges node stress information with its parent and
child nodes. As a node A joins the multicast session, it first locates a node
that is currently in the tree by using one of the utility functions supported in
iOverlay, which disseminates a sQuery message. As the message is relayed to the
first such node B in the tree, B compares its own node stress with its parent
and child nodes. If B itself has the minimum node stress, it responds with an
sQueryAck message, so that A becomes a new child of B in the tree. Otherwise,
it recursively forwards the message to the node with the minimum node stress
(parent or children), until the message reaches the minimum-stress node who
sends the acknowledgment.

In order to evaluate such an algorithm in a comparative study, we have
also implemented the all-unicast and randomized tree construction algorithms
as control. In the all-unicast algorithm, node B – or any node who is aware
of the source of the session (e.g., from the sAnnounce message in iOverlay) –
simply forwards the sQuery to the data source of the session. In the randomized
algorithm, node B directly sends the sQueryAck acknowledgment to A, and A
will join the tree on receiving the first such acknowledgment.

We first experiment with a five-node data dissemination session, shown in
Fig. 5, in which the data source is deployed on node S, and nodes A – D joins
the session in the order of D, A, C, and B. The figure has been annotated
with the per-node available bandwidth, as well as the throughput that we have
obtained in our experiments. The node degree and stress are summarized in
Table 3. It is very clear that, with respect to end-to-end throughput, our new
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Fig. 5. Tree construction algorithms: throughput (in KBytes per second).

algorithm has the upper hand. We have also observed that the topology of the
node stress aware tree is not optimal, there may be better trees with respect
to throughput. For example, in Fig. 5(g), if D is a child of A rather than S,
throughput may be further improved, leaving possibilities for further research.
Such experiment-based insights would not be possible without the substrate that
iOverlay provides.

In the next experiment, we choose to evaluate the performance and stress
tolerance of the node stress aware algorithm in large-scale overlay networks, by
deploying it to a total of 81 wide-area nodes in PlanetLab. The per-node available
bandwidth has been specified to a uniform distribution of 50 to 200 KBps for
all the nodes, with the source node set at 100 KBps. By taking advantage of the
deployment scripts in iOverlay, we are able to deploy, run, terminate and collect
data from all 81 nodes, with one command for each operation. Fig. 6 shows the
North American portion of the wide-area topology after 30 nodes have joined
the data dissemination session.

The results we have obtained from these PlanetLab experiments are illus-
trated in Fig. 7. With respect to node stress, we may observe that the node
stress aware algorithm has managed to approach the ideal case (i.e., the vertical
line at node stress 20) much better than the other cases. With respect to end-to-
end throughput, we may observe that the throughput is much higher with the
node stress aware algorithm.
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Table 3. Tree construction algorithms: node degree and stress.

Node node degree node stress (1/100 KBps)

unicast random ns-aware unicast random ns-aware
S 4 2 2 2.0 1.0 1.0
A 1 1 3 0.2 0.2 0.6
B 1 1 1 1.0 0.98 0.97
C 1 2 1 0.5 1.0 0.51
D 1 2 1 1.0 1.98 1.0

Fig. 6. The real-time wide-area topology produced by the node stress aware algorithm
after 30 nodes have joined (only nodes that reside in North America have been shown,
some nodes may reside in the same geographical location).
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3.3 Service Federation in Service Overlay Networks

In some applications, data messages may need to be transformed (such as media
or web data transcoding) by a series of third-party nodes (or services) before
they reach their destinations. The process of provisioning a complex service by
constructing a topology of a selected group of primitive services is known as
service federation (or composition), within what is referred to as service overlay
networks consisting of instances of primitive services. In order to start a service
federation process, a specific service requirement needs to be specified, which in-
cludes the required primitive services in order to compose the federated service.
As a case study, we have designed and implemented a new distributed algorithm,
referred to as sFlow, to federate complex services that require service require-
ments in the generic form of directed acyclic graphs, with the aid of iOverlay
and over a period of three weeks.

We outline the gist of the algorithm as follows. When a new service is estab-
lished by the sAssign message from the observer, it locally maintains a service
graph that represents the producer-consumer relationships among different types
of services, and disseminates its existence to all its known hosts via the sAware
message. The message is further relayed until an existing service node is reached,
which forwards the message to the direct upstream and downstream nodes of the
new service in its service graph. When a service federation session is started using
the observer, the requirement for the complex service is specified in a sFederate
message to the designated source service node. As this message is forwarded,
each node applies a local algorithm to select the most bandwidth efficient down-
stream service node according to the requirement, until the sink service node is
reached. The federation process is concluded with the deployment of actual data
streams through the selected third-party services. In order to construct a high-
quality service topology, the algorithm takes advantage of iOverlay’s feature that
measures point-to-point throughput to selected known hosts.

We start our experiments by implementing our new algorithm on 16 real-
world nodes in PlanetLab, mostly in North America, to construct a service over-
lay network. The best-quality – i.e., most bandwidth efficient – federated service
according to a particular service requirement is presented in Fig. 8. Each node in
Fig. 8 is labeled with a service identifier assigned to them by the observer. The
edges indicate a live service federation session where live data streams are being
transmitted. The end-to-end delay of this service session is 934.547 milliseconds,
and the last hop average throughput is measured as 69374 bytes per second.

During the session, we record detailed statistics on bandwidth measurements
and control message overhead on each of the 16 nodes, shown in Fig. 9. In this ex-
periment, the sAware message overhead depends on the number of known hosts
of each node, and the overhead of sFederate messages is sufficiently small, com-
pared to that of sAware messages. The per-link and total per-node bandwidth
are illustrated in Fig. 9(b) in descending order. Evidently, the overhead incurred
by the algorithm is sufficiently small, and seven nodes are left untouched dur-
ing the entire session of the protocol, since they do not host services or are not
involved in the service federation process.
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4 Related Work

iOverlay was originally motivated by our own experiences of implementing dis-
tributed application implementations on overlays, when we have failed to locate
a suitable middleware framework for such developments. The idea behind iOver-
lay originates from the Flux OSKit project [11] in operating system design, where
a modular set of OS components are designed to be reusable, and to facilitate
rapid development of experimental OS kernels. iOverlay provides a reusable set
of components in the domain of overlay rather than OS implementations, and
seeks to achieve similar design objectives that support rapid prototyping of new
overlay-based distributed applications. Particularly, iOverlay is designed to min-
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imize the bar of entry: in order for it to be useful, it is not required to have either
knowledge about its internals, or extensive system-level programming skills. In
addition, iOverlay is also designed to reside at a “higher level” than previous
work on user-level network protocol stack implementations (e.g., Alpine [12]),
and aims at the development of application-layer rather than network protocols,
without the requirements of root privileges.

There exist previous work on using virtual machines (such as VMWare or
User-Mode Linux) and support the deployment of full-fledged applications over a
virtual network (e.g., [13]), as well as on emulation testbeds and environments to
test network protocols in a virtualized and sandboxed environment (e.g., Netbed
[8] and ModelNet [14]). In comparison, the objective of iOverlay is to facilitate
the development of distributed applications and algorithms at the application
layer, and iOverlay assumes the availability of a wide-area network testbed such
as PlanetLab. Although iOverlay supports virtualizing multiple overlay nodes
on a single physical node, all implementations are achieved at the user level
beyond the abstraction of sockets. iOverlay is designed to be tightly coupled with
applications and distributed algorithms, rather than a supporting infrastructure
based on either virtual machines or emulation environments.

In particular, ModelNet [14] has introduced a set of ModelNet core nodes
that serve as virtualized kernel-level packet switches with emulated bandwidth,
latency and loss rates. Such kernel-level modifications may not be achievable in
wide-area testbeds due to the lack of root privileges. The iOverlay engine, in
contrast, implements application-layer message switches, that may be bundled
with any new algorithms and deployed in the user space of any UNIX hosts.
Thanks to the virtualization of iOverlay nodes, it is not required to have ac-
cess to a large-scale network in order to experiment with large-scale application
topologies.

To the best of our knowledge, there exist two previous papers that present
similar objectives to iOverlay. First, the PLUTO project [15], an underlay topol-
ogy service (or routing underlay) for overlay networks, based on PlanetLab.
PLUTO is a layer between the overlay algorithms and the network, that ex-
poses topological information to the algorithms. More specifically, it may expose
information on connectivity, disjoint end-to-end paths between overlay nodes,
as well as the distance between nodes in terms of a particular metric such as
latency or router hops. We believe that iOverlay and PLUTO are completely
complementary with each other, and that it is straightforward for the algorithm
to simultaneously take advantage of both architectures. From the viewpoint of
PLUTO, iOverlay is simply an overlay application. When it comes to measure-
ment of metrics, iOverlay focuses on measuring the performance of active or
potential overlay links, while PLUTO focuses on obtaining insights on the un-
derlay physical topology. From this perspective, iOverlay operates at a higher
level than PLUTO does, and PLUTO may be easily integrated into the overall
iOverlay middleware architecture.

Second, the Macedon project [16] offers a common overlay network API by
which any Macedon-created overlay implementation may be used. It features a
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new language to describe the behavior of an overlay algorithm, from which ac-
tual code can be generated using a code generator. As a result, Macedon allows
algorithm designers to focus their attention on the algorithm itself, and less on
tedious implementation details. Despite the similarities between the design ob-
jectives of Macedon and iOverlay, the design principles are drastically different.
Macedon attempts to minimize the lines of code to be developed by the algo-
rithm developer, by providing a new language to specify the characteristics of the
algorithm. In contrast, iOverlay seeks to maximize the freedom and flexibility
when designing new algorithms, by minimizing the API between the middle-
ware and the application. While Macedon is able to support Distributed Hash
Table based searching and overlay multicast algorithms, iOverlay is sufficiently
generic to accommodate virtually any applications to be deployed on overlay
networks, while still encapsulating tedious and common functional components
such as message switching, throughput emulation, fault detection and recovery,
as well as a centralized debugging facility. Our recent experiences of successfully
and rapidly deploying a Windows-based MPEG-4 real-time streaming multicast
application on iOverlay have verified our claims.

5 Concluding Remarks

We have been pleasantly surprised at how phenomenally rapidly one can develop
fully distributed overlay applications using iOverlay. The evolution of features we
have presented have been entirely demand-driven: rather than being designed a
priori, with inevitably flawed vision of what new applications may need, iOverlay
has been constantly refined and augmented, driven by the needs of new appli-
cation implementations. From this experience, we conclude that research and
implementation of overlay applications and algorithms are significantly aided
by having reusable, extensible and customizable components that iOverlay pro-
vides. As a matter of fact, the burden on the application developer is completely
shifted to the core portion of the application-specific algorithm, rather than sub-
tle and mundane details that iOverlay has encapsulated. We are convinced that
the full potential of iOverlay has yet to be realized. For example, the library
of prefabricated algorithms may be significantly extended, in the form of new
classes derived from the base iAlgorithm class. These new extensions may become
foundations of similar categories of algorithms, which may further simplify the
process of new application implementations. In addition, the PLUTO routing
underlay may be integrated into the iOverlay framework as additional reusable
components in the form of libraries, in order to support algorithms that need
topological knowledge of the underlying IP topology.
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