
Automatic Generation of Run-Time Test Oracles

for Distributed Real-Time Systems �

Xin Wang, Ji Wang, and Zhi-Chang Qi

National Laboratory for Parallel and Distributed Processing
300 Lichen Rd., Changsha, 410073 China

xinwang76@yahoo.com.cn, ji.wang@263.net

Abstract. Distributed real-time systems are of one important type of
real-time systems. They are usually characterized by both reactive and
real-time factors and it has long been recognized that how to automati-
cally check such systems’ correctness at run time is still an unaddressed
problem. As one of the main solutions, test oracle is a method usually
used to check whether the system under test has behaved correctly on
a particular execution. Test oracle is not only the indispensable stage of
software testing, but also the weak link of the software testing research.
In this paper, real-time specifications are adopted to describe the proper-
ties of distributed real-time systems and a real-time specification-based
method for automatic run-time test oracles generating is proposed. The
method proposed here is based on tableau construction theory of real-
time model checking, automatically generates timed automata as test or-
acles, which can automatically check system behaviors’ correctness from
real-time specifications written in MITL[0,d].

1 Introduction

With the development of the network, distributed computing has become the
mainstream of the computing technology undoubtedly. As a special kind of real-
time systems, Distributed Real-Time Systems (DRTS) built on network environ-
ment have been applied widely in industry, military and commercial high-tech
areas, especially in power engineering, aviation, real-time control systems, flex-
ible manufacturing system, vision systems, etc [1]. Most of DRTS require high
safety and strict time constraints, though the complexity of DRTS spans the
gamut from very simple control of laboratory experiment, to very complicated
projects such as the fighter avionic. So they are new challenge to the software
testing methods during the software development.

Test oracle is a method for checking whether the system under test has
behaved correctly on a particular execution [2]. It is the indispensable stage of
software testing and also the weak link of the software testing research. The
� This work is supported by the National Natural Science Foundation of China under

Grant No. 60233020 and No. 90104007; the National High Technology Development
863 Program of China under Grant No. 2001AA113202.

D. de Frutos-Escrig and M. Núñez (Eds.): FORTE 2004, LNCS 3235, pp. 199–212, 2004.
c© IFIP International Federation for Information Processing 2004

200 Xin Wang et al.

correctness of DRTS depends not only on the logical result of the computation,
but also on the time when the results are produced [3]. Using run-time test
oracles can not only check whether the system run is correct, but also improve
the efficiency of software testing, set free testers from heavy work of checking
system results.

DRTS are usually command-control systems, so their primary characteris-
tics are event-triggered, complex event sequences, and real-time, precise time
constraints. Temporal logic is the most important formal specification that de-
scribes distributed event-triggered, real-time systems’ properties, and is used
widely during software development. Using test oracles generated from tempo-
ral logic can reduce the costs of rewriting specifications greatly. The properties
about time constraints of DRTS that described by real-time temporal logic are
called real-time specifications. Test oracles generated from real-time specifica-
tions can automatically check if the run sequences of tested systems satisfy their
specifications, if not, they can report corresponding error information.

The method proposed here is based on tableau construction theory of real-
time model checking [4], automatically generates timed automata as test ora-
cles, which can automatically check system behaviors’ correctness, from real-time
specifications written in MITL[0,d]. The remainder of this paper is organized as
follows. Section 2 describes relevant methods of automatically generating test
oracles for reactive, real-time systems and their relative merits. Section 3 intro-
duces the logic and timed automata that we use. Section 4 gives two approaches
to acquire the traces of distributed real-time systems as input of test oracles.
The work presented in core section 5 represents the method of automatically
generating test oracles and case study. Section 6 concludes this paper and points
out future work.

2 Related Work

Based on the generic tableau algorithm that generates specification automata
for model checking, Dillon and Yu have proposed an automata-based method
that can translate a temporal logic formula into a finite state machine as a test
oracle [5, 6]. Once an execution sequence of a program is put into the finite state
machine, the finite state machine can check if this execution sequence satisfies
its specification. Proposition temporal logic can be applied only to describe the
properties of reactive systems, but not real-time systems, because it doesn’t
support time quantifier. Therefore, this method can only be applied to reactive
systems.

Method proposed by Geilen [7] also comes from the idea of model checking,
which is very similar with the algorithm proposed by Kupferman and Vardi.
This method has on-the-fly feature and has the same applicability as Dillon and
Yu’s.

Temporal assertions are proposed by Doron Drusinsky of Time-Rover
Press [8]. The main idea is that temporal logic formulas are translated into some
special kind of assertions (i.e. temporal assertions) as test oracles. Assertions

Automatic Generation of Run-Time Test Oracles 201

are inserted into a tested program manually in order that they can automati-
cally check the program’s correctness at run time. Assertion preprocessor must
insert sub-assertions (assertions get by decomposing temporal assertions) into
all related positions and maintain the relationship among them at run time.
The costs of assertion maintenance will seriously influence the run of real-time
systems and lend to the violation of time constraints, thus this method is more
perfect for reactive systems or real-time simulators that amplify the absolute
time than real-time systems.

John H̊akansson has given an on-line test oracle generation method that is the
only one that can check the correctness of real-time systems at run time [9]. Based
on the rewriting rules of safety properties of real-time systems, this method dis-
cretizes the continuous time and automatically generates test oracles to monitor
systems’ behaviors externally. The test oracles fetch system data through sam-
pling corresponding signals externally and compute the state-of-the-art pattern
of systems at every end of the cycles, and in this way this method can support
relatively strict time constraints. Because time is discretized, some system be-
haviors may be lost or some wrong behaviors may not be checked out if the time
constraints in specifications are not integral multiple of read cycle.

3 Preliminaries

This section introduces the propaedeutics about logic and automata that we will
use when automatically generating test oracles from real-time specifications.

3.1 Timed State Sequences

Let time domain be the non-negative real number set R≥0. An interval I is
a convex subset of R≥0, which has the form [a, b) where a, b∈R≥0 and a≤b. For
a finite interval I, let l(I) and r(I) denote the left and right end of I respectively,
and |I| denote the length of I. Two intervals I, I ′ are adjacent if and only if
r(I) = l(I). We use t + I to denote the interval {t + t′|t′∈I}. Let P be a finite
proposition set and state s be a subset of P . If s⊆P and p ∈s is a proposition
in s, s is called p-state, denoting as s |=p.

Definition 1. [10] A state sequence s̄ = s0s1s2. . . is an infinite sequence of
states si⊆P . An interval sequence Ī = I0I1I2. . . is an infinite sequence of timed
interval such that

[Initiality] I0 is left-closed and l(I0) = 0;
[Adjacency] for all i≥0, the intervals Ii and Ii+1 are adjacent;
[progress] every time t∈R≥0 belongs to some interval Ii.

A timed state sequence τ = (s̄, Ī) is a pair that consists of a state sequence
s̄ and an interval sequence Ī.

202 Xin Wang et al.

3.2 Real-Time Logic MITL[0,d]

MITL is a kind of linear temporal logic that is interpreted over timed state
sequence [10]. In this paper, we only consider the real-time specifications written
in MITL[0,d](d∈R≥0), a restrict version of MITL.

Definition 2. The formulas of MITL[0,d] can be inductively defined as follows:
φ ::= true| p | ¬φ | φ1 ∧ φ2 | φ1U[0,d]φ2

The semantics of MITL[0,d] is presented in [10].
We also use dual operators “∨” and “V ” to define φ1 ∨ φ2 � ¬(¬φ1 ∧ ¬φ2)

and φ1V[0,d]φ2 � ¬(¬φ1U[0,d]¬φ2). Similar with the “Always (‘�’)” and “Some-
time (‘♦’)” operators in LTL(Linear Temporal Logic), we use operators “Always
in the interval [0,d] (‘�[0,d]’)” and “Sometime in the interval [0,d] (‘♦[0,d]’)” to
define �[0,d]φ �falseV[0,d]φ and ♦[0,d]φ �trueU[0,d]φ.

Definition 3. [10] Let φ be a formula of MITL[0,d]. We call interval sequence
Ī is φ-fine if for every sub-formula ψ of φ, every k≥0 and every t1, t2 ∈ Ī(k),
τ t1 |= ψ if and only if τ t2 |= ψ. We call a timed state sequence τ = (s̄, Ī) is
φ-fine if the Ī in (s̄, Ī) is φ-fine.

In [11], Lemma 4.11 is shown that the intervals of any timed state sequence
can always be refined to be fine for any MITL formula. It holds for the subset
of MITL, MITL[0,d] too.

The tableau construction theory of real-time model checking requires that
the truth value of the formulas interpreted over the time state sequence (s̄, Ī)
can’t change during a single interval of Ī, i.e. the timed state sequence (s̄, Ī)
must be φ-fine.

3.3 Timed Automata

The test oracles studied here are a variant of timed automata originally proposed
by Alur and Dill [11] to serve as our test oracles. Timed automata use clocks
whose values are positive real number to record the points when real-time speci-
fications become true and when states change. Give a clock set C, clock interpre-
tation function v∈CInt(C) and clock setting function CS ∈ Cset(C) are partial
mappings from C to R≥0. For some d ∈ R≥0 and every x ∈ dom(v), v+d denotes
the clock interpretation that assigns v(x) + d to any clock x in the domain of v,
and CS(v) denotes that CS(x)(if defined)or v(x) is assigned to CS(v)(x). For a
subset γ of C, we use CS[γ := n] to denote the clock setting that maps all clocks
in γ to n and keeps other clocks unchanged. Clock condition set CCond(C) over
clock set C is {x := t, x ≥ d, 0 ≤ t < d, x ≤ t < d + x, y := t − x | x, y, t ∈ C}.
Definition 4. Let P be a priority function. For a set I = {c1, c2, . . .cn}
(i∈N , ci∈CCond(C)) and the natural number set N , we define:

• sorting function o : I �→ < ci1 , ci2 , . . .cin > for ir∈{1, 2, . . .n} such that for ev-
ery 1≤ir≤is≤n, P (cir)<P (cis) holds or their is no comparability between cir

and cis ;

Automatic Generation of Run-Time Test Oracles 203

• o’s inverse function o−1 : {c1, c2, . . .cn}�→I such that o−1◦ o(I) = I.

Definition 5. Let P be a set of proposition constraints. A finite-input timed
automaton < S, S0, C, Q, CC, OCC, T ran, se > over P is defined as follow:

• S is a finite set of states;
• C is a finite set of clocks;
• S0 is a finite set of initial extended states, (s0, v0)∈S0⊆S×CInt(C);
• Q : S→2P is a state labelling function which maps a state to a proposition

constraint subset, i.e. Q(s)⊆2P ;
• CC : S→2CCond(C) is also a state labelling function which maps a state to

a clock condition subset;
• OCC : S→o(2CCond(C)) is an another kind of state labelling which maps

a state to an ordered clock condition subset;
• Tran⊆S × CSet(C) × S is a set of transitions, each of which labels with

a clock setting function;
• Se ∈ S is a set of finite states.

Definition 6. A run of a finite-input timed automaton < S, S0, C, Q, CC, OCC,

T ran, Se > is a finite sequence
v0→
γ0

(s0, t0)
v1→
γ1

(s1, t1)
v2→
γ2
· · ·vr→

γr

(sr, tr)
vr+1→
γr+1

· · ·vn→
γn

(sn, tn)

of states si∈S (0 ≤ i ≤ n), clock t ∈ C, clock sets γi ⊆ C and a sequence of clock
interpretation function v̄ = (v0, v1, . . . , vn−1) satisfying the following constraints:

• (s0, v0) ∈ S0, sn ∈ Se;
• For every 0 ≤ k < n, there exists some (sk, CSk+1, sk+1) such that for every

c ∈ C,

vk+1(c) =

⎧⎨⎩ tk+1 c = t
CSk+1[γk+1 := 0](c) c
= t and CS(c) is defined
vk(c) otherwise

;

• For every 0 ≤ k < n, every c ∈ C, vk(c) satisfies CCk(sk) and OCCk(sk).

Definition 7. Let τ = (s̄, Ī) be a timed state sequence and be φ-fine, A is
a finite-input timed automaton < S, S0, C, Q, CC, OCC, T ran, Se >. We say
that τ = (s̄, Ī) can be accepted by A, if:

• for ε → 0+ there is some r ∈ N such that
v0→
C

(s0, r(I0) − ε)
v1→
γ1

(s1, r(I1) −
ε)

v2→
γ2
· · ·vr→

γr

(sr, r(Ir) − ε) is a run of A;

• for every k ∈ Z+, we have s̄k ⊆ Q(u(k)) if u(k) is a state of A which
corresponds to the k-th position of the above run.

In fact, the acceptable input of a timed automaton is not timed sequences,
but the sequences of state-time pairs like (s0s1 . . . sn, t0t1 . . . tn). Thereby, we
must translate the timed state sequences into the above format. With this end
of view, we introduce ε(ε → 0+) and use r(Ii) − ε to replace the right end of

204 Xin Wang et al.

the interval Ii. In the field of real number, it is not holds to treat r(Ii) − ε as
the right end of Ii, because no matter how close ε approximates to zero, ε/2 < ε
always holds. But from the fact that the run of computers is step by step, i.e.
the time is discrete, the interval (r(Ii) − ε, r(Ii)) doesn’t exist if the value of ε
is small enough, such as let ε equal to or smaller than the minimal click of the
clock in a real-time system.

4 Traces Acquisition from DRTS

The behaviors that we want to acquire from DRTS are decided by the atomic
formulas of real-time specifications. There are only two methods that can acquire
the behaviors of DRTS and their occurring time; one is acquiring traces from
outside of DRTS, another is acquiring traces from inside.

If all system behaviors involved by real-time specifications can be detected
from outside of the DRTS, the first method can be used. Some kind of program
module serves as monitor, detecting observable signals from outside of systems
periodically and sending them to test oracles. The point when the output signals
change is the left end of interval, and the point when the output signals change
next time is the right end of interval; the interval is left-closed and right-open.

If real-time specifications involve internal states of systems, the second
method must be used, i.e. some kind of assertions are inserted into proper posi-
tions (such as where the related states maybe change) of DRTS; assertions will
send the information on which states change and when they change as soon as
the true value of assertions change to test oracles. The point when the output
signals change is the left end of interval, and the point when the output sig-
nals change next time is the right end of interval; the interval is left-closed and
right-open.

Example: We consider the Carrier Sense, Multiple Access with Collision De-
tection protocol, or CSMA/CD for short [12, 13] which is widely used on LANs
in the MAC sublayer. One safety property of CSMA/CD can be described as
�[0,∞]((Trans1 ∧ Trans2) ⇒ �[0,σ]coll) written in MITL that means whenever
both senders begin transmitting, a collision is inevitably detected within σ. The
value of varies with the network on which the protocol runs. For instance, for
a 10 Mbps Ethernet with a typical worst case round trip propagation delay of
51.2μs, we set σ to be 25.6μs. We can get three system events from the above
property: Trans1, Trans2 and coll.

Fig.1 is the oscillogram of Trans1, Trans2 and coll. While the three traces
come to test oracles, one part of test oracles must arrange them into one trace
according to the time they happen and assure the trace is φ-fine. Suppose that
the vertical dash lines denote the right end of the refined intervals, we can get
following timed state sequence from Fig. 1:

({¬Trans1,¬Trans2,¬coll}[0, t1)) ({¬Trans1,¬Trans2,¬coll}[t1, t2))
({Trans1,¬Trans2,¬coll}[t2, t3)) ({Trans1, T rans2,¬coll}[t3, t4))

Automatic Generation of Run-Time Test Oracles 205

tt1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

2Trans

1Trans

coll

Fig. 1. The oscillogram of events Trans1, Trans2 and coll

({Trans1, T rans2,¬coll}[t4, t5)) ({¬Trans1, T rans2,¬coll}[t5, t6))
({¬Trans1, T rans2, coll}[t6, t7)) ({Trans1, T rans2, coll}[t7, t8))
({Trans1, T rans2, coll}[t8, t9)) ({Trans1, T rans2,¬coll}[t9, t10))
({¬Trans1, T rans2,¬coll}[t10, t11)) . . .

The refinement procedure is done from the inner sub-formulas to outer sub-
formulas, which give in [10]. In out example, as long as we get an event, we should
refine the interval of coll first, then refine the interval of Trans1 ∧ Trans2 and
the refined interval of coll. In this way, one interval may be cut into several
smaller intervals which act as the actual input of the test oracles.

In this example, there must be three assertions corresponding to the three
events. The assertions should be put on the neck of the statements that can
cause the event status to change, such as readin, assignment, output statement
and etc. In each of the assertions, there must be two variables to record the value
before the current point and at the current point respectively. When the values
of the two variables don’t equal, the assertions should output the current values
of the events and the time acquired from the system clock or specific external
clock.

5 Automatic Generation of Run-Time Test Oracles

Generating run-time test oracles automatically is to construct timed automata
based on real-time specifications written in MITL[0,d]. Differing from speci-
fication automata in real-time model checking, the automata constructed for
software testing need only accept finite state sequences. We say that a timed
state sequence satisfies its specifications if this timed state sequence can reach
the final states of automata constructed based on its specifications, i.e. it can

206 Xin Wang et al.

Rearrange
Timed State

Sequences
received from

netw ork Test Oracles

Netw orkNetw ork

Fig. 2. The role of test oracle in software testing

pass through test oracles. The role of test oracles generated by our method in
software testing is represented in Fig.2.

5.1 Rewrite Rules

The procedure that generates automata automatically from logic formulas often
has to use rewrite rules. Based on rewrite rules, a logic formula can be equiva-
lently decomposed tow parts: constraints that can be computed in current state
and constraints that will be computed in subsequent states. Rewrite rules usu-
ally use “©” operator to denote the constraints that will be computed in the
subsequent states. In order to express the constraints that will be computed after
some time point in MITL[0,d], we define similarly operator “©” and extend the
syntax of MITL[0,d].

Extended MITL[0,d] In order to rewrite the formulas of MITL[0,d], we use
“©” operator, clocks, clock conditions and clock interpretation function to ex-
tend the syntax and semantics of basic MITL[0,d].

Definition 8. Based on the formulas of basic MITL[0,d], the formulas of
EMITL[0,d] can be defined inductively as follows, where φ, φ1 and φ2 are for-
mulas of MITL[0,d], x and t are clocks, d ∈ R≥0:
ϕ ::= φ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | CS.ϕ | x≥d | 0≤t≤d | x≤t≤x + d | x := t | y :=
t − x | φ1U[0,d]xφ2 | φ1V[0,d]xφ2 | φ1V[x,d]φ2 | φ1V[y,d]xφ2 | ©ϕ

Definition 9. The satisfiability relationship τ |=v φ denotes that the timed state
sequence τ satisfies φ in context of the clock interpretation v. The semantics of
EMITL[0,d] is extended as follows:

• τ |=v φ iff τ |= φ;
• τ |=v ϕ1 ∨ ϕ2 iff τ |=v ϕ1 or τ |=v ϕ2;
• τ |=v ϕ1 ∧ ϕ2 iff τ |=v ϕ1 and τ |=v ϕ2;
• τ |=v CS.ϕ iff τ |=CS(v) ϕ;
• τ |=v x ≥ d iff v(x) ≥ d;

Automatic Generation of Run-Time Test Oracles 207

Table 1. Rules for decomposing a basic MITL[0,d] formula φ

φ = Φ ∪ {φ}reduces to

φ1Ξφ2 Φ ∪ {φ}
φ1Δφ2 Φ ∪ {φ1, φ2}

• τ |=v 0 ≤ t ≤ d iff 0 ≤ v(t) ≤ d;
• τ |=v x ≤ t ≤ x + d iff v(x) ≤ v(t) ≤ v(x) + d;
• τ |=v x := t iff v(x) := v(t);
• τ |=v y := t − x iff v(y) := v(t) − v(x);
• τ |=v φ1U[0,d]xφ2 iff there is some d1 ∈ [v(x), v(x) + d], such that τd1 |=v+d1

φ2 and for every d2 ∈ [v(x), d1], τd2 |=v+d2 φ1;
• τ |=v φ1V[x,d]φ2 iff for every d1 ∈ [v(x), d], τd1 |=v+d1 φ2, or there is

some d2 ∈ [v(x), d1], such that τd2 |=v+d2 φ1;
• τ |=v φ1V[0,d]xφ2 iff for every d1 ∈ [v(x), v(x) + d], τd1 |=v+d1 φ2, or there is

some d2 ∈ [v(x), d1], such that τd2 |=v+d2 φ1;
• τ |=v φ1V[y,d]xφ2 iff for every d1 ∈ [v(x) + v(y), v(x) + d], τd1 |=v+d1 φ2, or

there is some d2 ∈ [v(x) + v(y), d1], such that τd2 |=v+d2 φ1;
• τ |=v ©ϕ iff (s̄1, Ī1) |=v+|I0| ϕ.

For a basic formula of MITL[0,d], we use operator“∨”and “V[0,d]” to push
all negations inward until they reach atomic propositions. When mentioning
the basic formulas of MITL[0,d] in rest of this paper, we mean the formulas of
MITL[0,d] whose negations have been pushed inward.

Then we must define the clocks for the temporal operators in basic MITL[0,d]

formulas. The decomposition rules is presented in Table 1 for a basic MITL[0,d]

formula φ, Ξ ∈ {U[0,d], V[0,d]} and Δ ∈ {∧,∨}.
Definition 10. Let φ be a basic MITL[0,d] formula. The set of the clocks of the
temporal operators in φ can be defined recursively using following steps:

1. Let Φ0 = {φ}. As long as one of the rule in Table 1 can be applied to any
terms in Φn, then apply one to a term to obtain Φn+1. When no more rules
can be applied, we get a set of sub-formulas of φ. In this set, each element
either is a proposition, or has a temporal operator as outermost operator.

2. For each element whose outermost operator is a temporal operator, we de-
fine a clock x for the outermost temporal operator and an null ancestor set
AncSetx for every clock.

3. For each element ϕ in Φn+1, let Φ0 = {ϕ1, ϕ2} and repeat step 1 if its form
is ϕ1Ξϕ2. As a result, we will get a set similar to the one in step 1. For each
element which has an outermost temporal operator, the clock of its outermost
temporal operator is y |x if the clock of the operator Ξ is x, i.e. a clock y
whose value is relative to clock x, the ancestor set of the clock AncSety equals
{x} ∪ AncSetx.

4. Repeat step 3 until all elements of all sets generated by these steps are propo-
sitions.

208 Xin Wang et al.

Rewrite rules The aim of using rewrite rules is to transform a basic MITL[0,d]

formula φ into normal form: φ = ∨
i
CSi.(cci∧φi ∧©ϕi), where CSi denotes that

current clocks are set by clock setting function, cci are conjunctions and “ordered
conjunctions” of clock conditions, φi are conjunctions of atomic propositions, and
ϕi are subsequent formulas, i.e. conjunctions of EMITL[0,d].

While constructing timed automaton, we use triple < CS, Now, Next > to
denote φ = ∨

i
CSi.(cci ∧ φi ∧©ϕi), where CS denotes the labels of transitions,

Now includes clock conditions and propositional φi that must be satisfied in cur-
rent state, and Next includes subsequent formulas that will be satisfied. The data
structure of Now is the same as the labels of the states of the timed automata,
i.e. Now =< D, E >, where D is a set of clock conditions and propositions, E
is an order set of clock conditions. Thereby, we must define the priorities for the
clock conditions.

Definition 11. A priority function P : CCond(C) × CCond(C) → {>} is de-
fined as follows:

• if x ∈ C and x := t, x ≥ d ∈ CCond(C), P (x := t) > P (x ≥ d);
• if x, y ∈ C and x := t, y := t − x ∈ CCond(C), P (y := t − x) > P (x := t);

Definition 12. Based on the sorting function o, its inverse function o−1 from
Definition 4, we define operations ⊕ : Now × Now �→ Now and � : Now ×
Now �→ Now as follows, where Prop ∈ 2P is a proposition constraint subset,
CCS, {e1, e2, . . . , en} ⊆ CCond(C):

• Now⊕ < Prop ∪ CCS, o({e1, e2, . . . , en}) >=
< Now.D ∪ Prop ∪ CCS, o(o−1(Now.E) ∪ {e1, e2, . . . , en}) >;

• Now� < Prop ∪ CCS, o({e1, e2, . . . , en}) >=
< Now.D \ (Prop ∪ CCS), o(o−1(Now.E) \ {e1, e2, . . . , en}) >.

Definition 13. For the clock x of a temporal operator, we define an assignment
set AssSetx = {y := t, y := t − z | y, z ∈ AncSetx and z ∈ AncSety}.

5.2 Algorithm of Constructing Timed Automaton

Definition 14. If Ψ is a set of MITL[0,d] formulas, the normal form NF (Ψ) of
Ψ is computed with the following procedure. Let P0 = {< ∅, < {φ}, ∅ >, ∅ >}.
As long as one of the rewrite rules in Table 2 1can be applied to any of the terms
in Now.D of Pn, then apply one to a term to obtain Pn+1. The normal form
NF (Ψ) is obtained from Pn when no more rules can be applied.

Lemma 1. The equivalences between the basic MITL[0,d] formulas and their
rewritten forms hold and the value of clocks is the time when the truth values of
the sub-formulas within their domains are true until now.
1 The clocks mentioned in this table is the clocks binding with its temporal operators

defined in Definition 10.

Automatic Generation of Run-Time Test Oracles 209

Table 2. Rewrite rules

φ = Conditions Φ ∪ {< CS, Now⊕ < {φ}, ∅ >, Next >}reduces to
true Φ ∪ {< CS, Now, Next >}
false Φ

φ1 ∨ φ2
Φ ∪ {< CS, Now⊕ < {φ1}, ∅ >, Next >,
< CS, Now⊕ < {φ2}, ∅ >, Next >}

φ1 ∧ φ2 Φ ∪ {< CS, Now⊕ < {φ1, φ2}, ∅ >, Next >}
φ1V[0,d]φ2 Φ ∪ {< CS[x := 0], Now⊕ < {φ1V[x,d]φ2} >}, ∅ >, Next >

φ1V[x,d]φ2

Φ ∪ {< CS, Now⊕ < {φ1, φ2}, < x := t >>, Next >,
< CS, Now⊕ < {φ2}, < x := t >>, Next ∪ {φ1V[x,d]φ2} >,
< CS, Now⊕ < {φ2}, < x := t, x ≥ d >>, Next >}

φ1V[0,d]xφ2 Φ ∪ {< CS[y := 0], Now⊕ < {φ1V[y,d]xφ2}, ∅ >, Next >>}

φ1V[y,d]xφ2

Φ ∪ {< CS, Now⊕ < {φ1, φ2}, < y := t − x >>, Next >,
< CS, Now� < ∅, o(AssSety) > ⊕ < {φ2},
< y := t − x >>, Next ∪ {φ1V[y,d]xφ} >, < CS, Now⊕
< {φ2}, < y := t − x, y ≥ d >>, Next >}

φ1U[0,d]φ2

φ2 ∈ Now.D Φ ∪ {< CS, Now, Next >}

φ2 /∈ Now.D
Φ ∪ {< CS, Now⊕ < {φ2}, < x := t >>, Next >,
< CS, Now⊕ < {φ1, 0 ≤ t < d}, < x := t >>,
Next ∪ {φ1U[0,d]φ2} >}

φ1U[0,d]xφ2

φ2 ∈ Now.D Φ ∪ {< CS, Now, Next >}

φ2 /∈ Now.D
Φ ∪ {< CS, Now⊕ < {φ2}, < y := t − x >>, Next >,
< CS, Now� < ∅, o(AssSety) > ⊕ < {φ1, x ≤ t < x + d},
< y := t − x >>, Next ∪ {φ1U[0,d]φ2} >}

Definition 15. Let φ be a basic MITL[0,d] formula, P be the set of propositions
that occur in φ. The tableau automaton Aφ is the finite-input timed automaton
< S, S0, C, Q, CC, OCC, T ran, Se > over 2P , where

• C is the set of all clocks computed by Definition 10;
• S, S0, Tran and Se can be computed by the procedure depicted in Fig. 3.
• Q(s) = {φ ∈ 2P | ∀p∈P p ∈ Now.D ⇒ p ∈ φ,¬p ∈ Now.D ⇒ p /∈ φ}
• CC(s) = {η ∈ CCond(C) | η ∈ Now.D}
• OCC(s) = o{η ∈ CCond(C) | η ∈ Now.E}

The algorithm presented above is correct and it can be stated by the following
theorem.

Theorem 1. Let φ be an MITL[0,d] formula and timed automaton Aφ be the
corresponding tableau automaton, then for every timed state sequence τ , Aφ ac-
cepts τ iff τ |= φ.

Case Study We consider the CSMA/CD protocol in section 4 again. While test-
ing, we need presuppose the max testing time, such as 1010μs. So above property
can be rewritten as �[0,1010]((Trans1∧Trans2) → �[0,60]coll) in MITL[0,d]. Us-
ing our method, we can get the tableau automaton for the above property, which
consists of 18 states and 70 transitions. But the state and transition amount of
the resulting automaton can be decreased to 12 and 35 ulteriorly, if we treat the
sub-formula Trans1 ∧ Trans2 from the example of CSMA/CD protocol as an
atomic formula. And what we must modify is the component of rearrangement.
For clarity we only draw the smaller automaton as Fig. 4, in which the round-
corner rectangles denote states, the arrowed lines denote transitions. Every state

210 Xin Wang et al.

0

0

: {(,) | , ()};

: {(,) | (,) };

: , : ;
New

S Now Next Now Next NF

S Now Next Now Next S

S Tran

φ= < >∈
= ∈

=∅ =∅
while

NewS ≠ ∅ do
{

Let (,) NewNow Next S∈ ;

: \{(,)};

: {(,)};
New NewS S Now Next

S S Now Next

=
= ∪

for every (', ') ()Now Next NF Next∈ do
{

if (', ') (, ,)Now Next = ∅ ∅ ∅ then

: (,)e eS S Now Next= ∪ ;

: {((,),(', '))}Tran Tran Now Next Now Next= ∪ ;
if (', ')Now Next S∉ then : {(', ')}S S Now Next= ∪ ;

}
}

Fig. 3. Algorithm for constructing the states and transitions of the tableau automaton

is divided into two parts, the upper of which denotes Now.D, and the lower of
which denotes Now.E. In order to simplifying the representation, only the for-
mulas in Now have been depicted. The initial extended states are represented
by an arrow not originating form any state, and the finite states are denoted by
a filled circle inside a slightly larger unfilled circle put in the lower part of the
states.

6 Conclusions and Future Work

This paper presents a new method that can automatically generate run-time test
oracles for DRTS. Test oracles can check whether a distributed real-time sys-
tem’s traces are correct, based on real-time specifications written in MITL[0,d]

formulas. If the test oracles can accept the timed event sequences, we can say
that the runs are correct, i.e. the system runs correctly. Otherwise, if all cur-
rent states can’t accept any subsequence timed events that violate state or time
constraints, or the tail of some trace does not arrive at final state, we say the
system has some errors or some real-time specifications errors exist.

Compared with [9], whose computation is done at each end of cycles, our
method does computation only if necessary (i.e. when system states change) so
as to save precious computing time. Assertions inserted into the different parts
of DRTS not only can obtain the inner events of DRTS, send out the values of
states only when they change, but also can get the precise occurrence time of
events.

Automatic Generation of Run-Time Test Oracles 211

1 2

3 4 5 6

7 8

9 10 11 12

coll

:x t=

:x t= :x t=

:x t=

:x t= :x t= :x t=

60x t x≤ ≤ +
60x t x≤ ≤ +

60x t x≤ ≤ +

60x t x≤ ≤ + 60x t x≤ ≤ +

:y t x= − :y t x= −

:y t x= −

:y t x= − :y t x= −

1010x ≥ 1010x ≥

1010x ≥

1010x ≥

(1 2)Trans Trans¬ ∧ coll: 0x = : 0x =

: 0x =
: 0x =

(1 2)Trans Trans¬ ∧ (1 2)Trans Trans¬ ∧

(1 2)Trans Trans¬ ∧ coll

(1 2)Trans Trans¬ ∧ (1 2)Trans Trans¬ ∧
coll (1 2)Trans Trans¬ ∧

: 0x =

: 0x =

:x t= :y t x= −

:y t x= −

:y t x= −

:y t x= −

1010x ≥

Fig. 4. The Optimized tableau automata of �[0,1010]((Trans1∧Trans2) → �[0,60]coll)

The ongoing works include:

1. The method of automatic test oracles generating needs to be optimized in
order to reduce the complexity of tableau automata and checking costs. This
can be done by optimizing rewrite rules and timed automata.

2. The real-time specifications used in this paper is the restrict version of MITL,
MITL[0,d], that limits the ability of logic expression for properties of DRTS.
For example, �[0,100](�[10,20]p) can not be transformed into a test oracle. So
how to extend the detection capability of test oracles is the main problem
of future work.

3. DRTS are running on networked environments, so we must consider the delay
of network transmission while acquiring the system traces. When the events
and their timestamps reach the test oracle, there must be a special part to
arrange them so that the whole timed sequence is reordered by time and are
φ-fine.

4. We must evaluate the computing costs of assertions inserted into the DRTS
so as to assure that assertions will not influence the normal running of DRTS.
The computing costs of assertions are decided by the amount and the data
structures of assertions. And the next works must include it.

5. Finally, more experiments in real environments are required.

212 Xin Wang et al.

References

[1] (http://www.ii.uj.edu.pl/progroz/dishard/home.html) 199
[2] Baresi, L., Young, M.: Test Oracles. Technical Report, CIS-TR01-02, Dept. of

Computer and Information Science, Univ. of Oregon (Aug.2001) 199
[3] J.A.Stankovic: Misconceptions about real-time computing - a serious problem for

next generation systems, IEEE Computer (1998) 200
[4] Geilen, M.: Formal Techniques for Verification of Complex Real-Time Systems.

PhD thesis, Eindhoven University of Technology (2002) 200
[5] Dillon, L., Yu, Q.: Oracles for checking temporal properties of concurrent systems.

In: Proceedings of the ACM SIGSOFT ’94 Symposium on the Foundations of
Software Engineering. (1994) 200

[6] Dillon, L., Ramakrishna, Y.: Generating oracles from your favorite temporal logic
specifications. In: Proceedings of the Fourth ACM SIGSOFT Symposium on the
Foundations of Software Engineering. (1996) 200

[7] Geilen, M.: On the construction of monitors for temporal logic properties. In: K.
Havelund and G. Rosu, editors, Proceedings of RV’01 - FirstWorkshop on Run-
time Verification. Satellite Workshop of CAV’01, Electronic Notes in Theoretical
Computer Science 55(2), Amsterdam, 2001. Elsevier Science, Paris, France (2001)
200

[8] Drusinsky, D.: The temporal rover and the atg rover. In: SPIN Model Checking
and Software Verification, Proc, 7th SPIN Workshop, 1885 of Springer-Verlag
Lecture Notes in Computer Science, Springer Verlag, Stanford, California (2000)
200

[9] H̊akansson, J.: Automated generation of test scripts from temporal logic specifi-
cation. Master’s thesis, Uppsala University (2000) 201, 210

[10] R. Alur, T. F., Henzinger, T.: The benefits of relaxing punctuality. Journal of the
ACM 43 (January 1996) 116–146 201, 202, 205

[11] Alur, R.: Techniques of Automatic Verification of Real-Time Systems. PhD thesis,
Stanford University (1991) 202

[12] IEEE: ANSI/IEEE 802.3, ISO/DIS 8802/3. IEEE Computer Society Press (1985)
204

[13] Tanenbaum, A. S.: Computer Networks. Prentice-Hall, Englewood Cliffs, second
edition (1989) 204

	Automatic Generation of Run-Time Test Oracles for Distributed Real-Time Systems

