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Abstract. Eliciting, modeling, and analyzing the requirements are the main
challenges to face up when you want to produce a formal specification for 
distributed systems. The distribution and the race conditions between events
make it difficult to include all the possible scenario combinations and thus to
get a complete specification. Most research about formal methods dealt with
languages and neglected the process of how getting a formal specification. This 
paper describes a scenario-based process to synthesize a formal specification in
the case of a distributed system. The requirements are represented by a set of
use cases where each one is composed of a collection of distributed scenarios.
The architectural assumptions about the communication between the objects of
the distributed system imply some completions and reorganizations in the use 
cases. Then, the latter are composed into a global finite state machine (FSM)
from which we derive a communicating FSM per object in the distributed
system.

Keywords: Use case, Scenario-based approach, Scenario composition, Formal
specification, Distributed systems, FSM

1 Introduction

The computer science community agrees that the requirement elicitation and analysis
is a crucial step in the development process. Nevertheless, most research about formal
methods dealt with languages and neglected the process of how getting a formal
specification. Consequently, there is gap that makes difficult moving from
requirements towards a formal specification. Developers avoid this phase by passing
directly from informal requirements to implementation. Unspecified reception,
service denial, and deadlock are common bugs that may have uncontrolled
consequences in the case of distributed systems. Detecting such bugs during the
validation stage becomes difficult, reducing thus the reliability of the system and
increasing the development costs.

Scenario approaches have been emerged to fill the gap and facilitate the
construction of a formal specification by promoting a “Divide and Conquer” strategy.
A distributed scenario is a sequence of actions representing an execution trace
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describing a partial behavior, and providing a system level functionality. The actions 
represent concurrent interactions between different system objects. The different 
scenarios have to be composed in order to provide a formal specification of the 
system.  

The requirements are widely represented by use cases where each one depicts a 
collection of scenarios. A scenario can be described by a message sequence chart 
(MSC), which emphasizes the interactions among objects. Our objective is to 
synthesize finite state machines (FSMs) from a set of use cases. Constructing 
communicating FSMs from MSCs is a very hard problem because MSCs may 
represent incomplete and inconsistent requirements. Combinatorial complexity makes 
it difficult to express MSCs for all of the possible scenario combination in the system 
behavior. Furthermore, systems may have many infinite traces, which cannot be 
easily captured by having only the MSC model. As a result, during the synthesis of 
FSMs, the analyst uses ad hoc methods based on his creativity and his expertness to 
fill the gaps.  

MSCs and FSMs share some information, but emphasize two different views of the 
system behavior. First, MSCs represent the specification that the system should 
respect while FSMs are a model of the specification. Second, an MSC describes a 
story in which only some objects participate. Hence, it provides an inter-object view 
which makes it suitable for test and validation activities, but not for the 
implementation. In contrast, an FSM shows an intra-objects view where all the stories 
are about the same object [7] and may reflect their implementation. 

Assuming that the system is composed of a set of objects, we aim at automating the 
synthesis of FSMs from use cases. We propose a two-phase method. The first phase 
consists of generating MSCs from use cases for completing them with missing 
scenarios. The intended communicating FSMs should allow infinite runs but use cases 
describe only finite traces about the behavior. Therefore, the second phase consists of 
enriching the use cases with some information that captures loops in the behavior and 
allows a system state characterization used for the automatic synthesis of a 
communicating FSM per object. 

The paper is structured as follows: in Section 2, we give an overview of the 
notation we are using. Section 3 presents the formalization of use cases and scenarios 
using the tree presentation as well as the derivation of their MSCs. In Section 4 and 5 
respectively, we describe the approach we are proposing for decorating use cases and 
synthesizing the communicating FSMs. Discussions on some related work are given 
in Section 6. Finally, Section 7 closes the paper with conclusions and future work.

2 Preliminaries, Definitions and Formal Semantics 

Let Ω= {O1, O2,…, On} be the set of objects in the targeted distributed system, Env its 
environment, and AOi

= (SOi
,SOiinit,TOi

) the FSM of object Oi∈Ω. SOi
 is the set of states 

of Oi, SOiinit is the set of initial states of Oi, and TOi
⊂ SOi

×ΣOi
×SOi

is the set of 
transitions where ΣOi

 is set of labels in the form (Oi,Oj.m) or (Oj,Oi.m). The FSM has a 
powerful capability of abstraction needed during first stages of the development 
process. 
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In this work, the FSMs of objects are assumed to be communicating FSMs 
according to the semantics of input/output automata defined in [12]. Each FSM object 
is autonomous and can communicate with other FSMs by means of message 
exchange. When an FSM object sends a message to another FSM, the latter is 
assumed to be ready to receive this message; otherwise there is an unspecified 
reception fault. The communication between FSMs is modeled by their parallel 
composition FSM denoted by ∏AOi

=(S,Sinit,T). It is defined as the connected 
components of the composition FSM of AO1

,AO2
,… and AOn

, which contains a state 
from Sinit, where S=S1×S2×…×Sn, and Sinit=SO1init×SO2init×…×SOninit. T⊂S×Σ×S is the 
set of transitions of ∏AOi

 defined by the following rules: 

− Rule 1: (si,a,si')∈ TOi
and (a=(O,Oi.m) or a=(Oi,O.m)) and O ∈ {Oi, Env} 

implies ((s1,..,si-1,si,si+1,..,sn),a, (s1,..,si-1,si', si+1,..,sn)) ∈ T 
− Rule 2: let Oi ,Oj ∈Ω and  i<j  

(si,a,si')∈ TOi and (sj,a,sj')∈TOj and (a=(Oi,Oj.m) or a=(Oi,Oj.m)) implies
((s1,..,si,..,sj, ..,sn),a, (s1,..,si',..,sj',..,sn)) ∈ T

Rule 1 treats internal actions or communication with the environment while Rule2 
treats communication among two different objects Oi and Oj.

Message sequence charts (MSCs) [9] are a commonly used visual representation of 
scenarios expressing the interactions among objects, components or processes. An 
MSC focuses on message exchange and shows a partial order of events. A message 
represents an interaction between two objects, a sender and a receiver. MSCs may 
display an order of events which is not always the only case supported by the 
implementation of MSCs. The formalization of MSCs allows the definition of the real 
partial order according to particular architectural communication assumptions. The 
formalization of MSC was traited by many reseachers [3,4], and we propose a similar 
approach.

We formalize an MSC as a structure (I, SE, RE, r, L, p, <D , <m) where

− I ⊂ Ω∪{Env} is a set of objects 
− SE is the set of sending events and RE the set of receiving events. We denote by 

SEO (respectively REO) the set of sending events (respectively the set of 
receiving events) in object O 

− r : SE → RE maps a sending event to its receiving event. r is a bijection. 
− L is a set of labels of the messages in the MSC 
− p : SE∪RE→ I maps a sending event or receiving event to an object from I 
− <D= ∪O∈I <O where <O ⊂ SEO∪REO x SEO∪REO is a total order between the 

local events in object O according to the visual order as displayed in the MSC. 
− <m = {(s, r(s)) | s ∈SE} is an ordering relation which means that a message 

cannot be received before it is sent. 

The previous definition is very general and does not include any assumption about 
the communication architecture in the system. As the behavior described by MSCs 
will be translated into a set of communicating FSMs, their respective semantics 
should be compatible. Since the communication between FSMs, as defined in this 
paper, has no buffering facility, we assume that the FIFO order is preserved when an 
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object receives two or more messages from the same object. Thus, the events should 
fulfill the partial ordering relation <FIFO = {(r(s),r(s')) | (s,s') ∈<D and p(s)=p(s')and 
p(r(s))=p(r(s')) and s∈SE and s'∈SE }. Furthermore, FSMs are modeling autonomous 
objects. Consequently, an object has the control over its sending events. Hence, its 
scheduling of sending events is granted according to the visual order <D.  We also 
grant the local visual order between a receiving event and the next sending events in 
an object. Those facts are expressed by the following control ordering relation: <C

={(e,s) | e ∈ SE∪RE, s ∈SE and (e,s) ∈<O and O∈I}. Finally, the interpretation of an 
MSC is given by the partial order relation < defined as the transitive closure of the 
combination of the three partial ordering <C, <m and <FIFO:

< = (<C ∪ <m ∪ <FIFO)*

3 Formalization of Use Cases and Scenarios 

A use case is used to describe a distributed functionality of the system as seen by 
actors (external users). The analyst usually builds use case diagrams, which 
emphasize the relationships between use cases. Then, she or he provides a textual 
description of the possible scenarios of each use case. This informal description is 
hard to be used in automatic processing of scenarios. Consequently, we conceived a 
formal model, which describes a use case by a tree of actions. The analyst constructs 
the tree of a use case by using either a depth-first or a breadth-first strategy in order to 
get a complete description according to the current requirements.  As the use case tree 
paths are the scenarios of running the use case, the depth-first strategy is more 
convenient from a user point of view. However, the breath-first strategy is suitable to 
check that all of the possible scenarios have already been included in the use case tree 
since after each action all the possible afterward actions are checked. Actions (also 
called messages) are labels like (Oi,Oj.m) where Oi and Oj are objects of the system.
(Oi,Oj.m) means that message m is sent from Oi to Oj.

We will be using a basic telephone system to illustrate our work. Fig. 1 shows use 
case “Make a call” that describes the behavior of the system when a user A calls a 
user B. We will assume that Ω for the telephone system is composed of the following 
objects: A, B and a switch S. Let's now present the formal definition of our use case 
model: 

Definition: A use case Γ is a tree Γ=<Id,M,Mstart,Parent> where:

− Γ.Id is the id of the use case, 
− Γ.M⊂ (Ω∪{Env})×(Ω∪{Env}.Label) is the set of messages in the form 

(O,O'.m), 
− Γ.Mstart⊂Γ.M is the set of starting messages, 
− Γ.Parent is a function that associates to a message the index of its parent 

message. Function Γ.Parent is not defined for starting messages. 

The scenarios of a use case are complete paths starting from a start message and 
ending at one of the tree leaves. From each use case scenario, an MSC is generated. 
The generation of MSCs is only based on the syntax of messages and their order in 
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the use case tree paths. The syntax of message label identifies the sender and the 
receiver objects. The use case tree of Fig.1 contains three scenarios. We have drawn
in Fig. 2 the MSCs generated from use case “Make a call”. 

MSCs are less intuitive than expected. Their visual order does not always represent
all their possible executions as only a partial order of events is garanted according to a 
particular adopted semantics of MSCs. For this reason, researchers defined the notion
of  MSC linearizations [2] [15] to represent the possible executions of an MSC.

In this work, the linearization of an MSC is a total order relation which is
consistent with its  partial order relation <. If an MSC has many linearizations, some
of them may not be included in the use case tree since they may have escaped to the
user requirements. Thus, the partial order of an MSC helps the analyst to detect and 
possibly complete the use case tree by adding those absent linearizations after the user
validation as illustrated in Fig. 3. If the user refuted one of the linearizations of an 
MSC, it means that the use case tree should be modified so that its generated MSCs 
accept no more the refuted linearization.

Fig. 1. The tree of use case “Make a call”

Fig. 2. The MSCs generated from the use case in Fig. 1 
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Fig. 3. Use case completion by adding absent linearizations; step (a): the MSC generation;
step (b): adding a missing linearization to the use case

Fig. 4. Use case reorganization process: (a) Original use case tree. (b) Its generated MSC. 
(c) The proposed reorganized use case tree

The user may sometimes be confused and does not realize that his use case is
composed of a combination of independent traces. To formally define what
independent traces means, let first define the set of minimum event Min of an MSC:

Min={e∈SE | ∀e'∈SE∪RE . (e',e)∉<}

Min denotes the set of sending events where each one may initiate a sequence of
events, called independent trace. If Min is not a singleton, the partial order of an MSC
may be used to find out independent traces.

If the generated MSCs of a use case include many independent traces as shown in
Fig.4 (b), the computation of the set Min allows a reorganization of the use case so
that the causality relationship between the independent traces becomes explicit as
illustrated in Fig.4 (c). However, if the user refuted the proposed reorganization of the
use case, it may mean that there are parts of the use case that are missing and should
establish the causality relationship he intended.

4 Decorating Use Cases with a State Characterization 

The compatibility of use cases and their generated MSCs is reached when both of
them accept the same scenarios. Our goal is to synthesize FSMs from use cases. As
known, it is possible to generate FSMs from a set of traces. However, the behavior
provided by use cases is partial since they don't include infinite traces or repetitive
behaviors. High-level MSCs (HMSCs) are MSC-graphs where each node is an MSC 
[9]. They provide a mean to define how MSCs can be combined and they can express
infinite traces of the system behavior. However, HMSCs specify an explicit
combination of MSCs, available only in an advanced stage during system requirement
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analysis. Therefore, we adopted an alternative strategy that consists of decorating use 
cases with a state characterization. The latter allows not only capturing infinite traces, 
but also recognizing shared states in different scenarios and thus determining their 
relationships as well as the relationship between their respective use cases. 

Decorating use cases gives the analysts the opportunity to add their interpretations 
regarding the state of the system when an action is performed. It consists of 
specifying for each message (action) of the use case partial pre and partial post 
conditions expressed by state variable constraints. Those conditions are qualified to 
be partial because they have to be completed by the fact that this action takes place 
before and after specific actions in the use case. State variables are defined by the 
analyst and their values represent the state of the system. As the latter is composed of 
a set of objects, the state of the system is also composed of the states of its objects. 
Subsequently, the state of an object can be derived from the global system state. 

In practice, state variables have symbolic names. However, we will use here a 
vector-based notation because it is more convenient to present the general case. The 
state of the system is represented by a state vector V=(v1,v2,..,vk) where vi is the value
of state variable V[i] and k is the number of state variables. We write dom(V[i])  the 
finite domain of possible values of state variable V[i]. A state variable may also be 
instantiated with a special value, denoted by nil, which means that its current value is 
not fixed yet in that state. Hence, the space of state vectors is the product set 
DOM=(dom(V[1])∪{nil})×(dom(V[2])∪{nil})×… ×(dom(V[k])∪{nil}). 

Table 1. Decoration of use case “Make a call”. The state vector is composed of the values of 
four variables SigA, StaA, SigB and StaB. SigA describes signals of terminal A, and 
Dom(SigA)={N,DT,D,BT,T} where N means no signal, DT dial tone signal, D dialing signal,
BT busy tone signal and T talking signal. StaA describes the status of terminal A and 
Dom(StaA)={I,B} where B stands for busy and I for idle. Variables SigB and StaB describe 
respectively the signals and the status of terminal B. Dom(SigB)={N,BT,R,T} where R stands 
for ring signal and the other values are the same like in Dom(SigA). Dom(StaB)={B,I}. We have 
also decided that EP is set to False for all messages in this use case tree

Index
(msg) 

Parent 
(msg) 

msg ppre(msg) ppost(msg) 

0 - (A,S.PickUp) SigA=N and StaA=I and 
SigB=nil and StaB=nil 

StaA’=B 

1 0 (S,A.DialTone) True SigA’=DT 
2 1 (A,S.DialB) True SigA’=D 
3 2 (S,A.BusyTone) StaB=B SigA’=BT 
4 3 (A,S.HangUp) True SigA’=N and StaA’=I and 

SigB’=nil and StaB’=nil 
5 2 (S,B.Ring) SigB=N and StaB=I SigB’=R and StaB’=B 
6 5 (B,S.PickUp) True SigB’=T 
7 6 (S,A.Talk) True SigA’=T 
8 7 (B,S.HangUp) True SigB’=nil and StaB’=nil 
9 8 (S,A.BusyTone) True SigA’=BT 

10 9 (A,S.HangUp) True SigA’=N and StaA’=I 
11 7 (A,S.HangUp) True SigA’=N and StaA’=I 
12 11 (S,B.BusyTone) True SigB’=BT 
13 12 (B,S.HangUp) True SigB’=nil and StaB’=nil 
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The decoration of a use case consists of specifying for each message three 
declarative attributes: a partial pre-condition, a partial post-condition, and an 
extension point. The partial pre and post-conditions of a message m are denoted by 
ppre(m) and ppost(m) respectively. The state variables must fulfill the constraints 
ppre(m) before sending message m and ppost(m) after its reception. ppre(m) is a 
conjunction of elementary constraints in the form (V[i]=v) where v is a constant of
dom(V[i]). In contrast, ppost(m) constraints the relation between the vector state  V
before m and V' the state after m. Thus, ppost(m)  is a conjunction where elementary 
constraints are either (V'[i]=v), V'[i]= V[i] op v), or  (V'[i]= V[I]), and where op is
an operator defined on the variables domain.

By default, a non-instantiated variable will be initially set to nil. Afterwards, we 
adopt the STRIPS [5] strategy to deal with the frame problem and assume all that is 
not explicitly changed by an action remains unchanged. Furthermore, whenever we 
have a conjunction1 in the form (V[i]=v and V[i]=nil)  the latter is unified to 
(V[i]=v). This unification is needed later on in the computation of the canonical form 
of the use case. 

Finally, the third element of the decoration is the extension point. Since the analyst 
has to compose many use cases to construct the overall system behavior model, we 
associate to each message m a predicate denoted by EP(m) which stands for extension 
point, similar to use case extension point in UML [16]. EP provides to the analyst a 
mean by which she or he can control how parts of FSMs coming from different use 
cases can be connected. By default, for a message m that it is not a leaf, the value of 
EP(m) is “False” in order to prevent overlapping use case traces. In contrast, the 
analyst decides which value should be assigned to predicate EP for other messages. If 
the EP is "True", it means that the execution of the system continues in the current 
use case. Otherwise, it indicates that the system may exit the current use case and 
continues its execution in another one. In this case, it represents the concatenation of 
use case traces. The decoration use case “Make a call” is presented in Table 1. 

5 Synthesis of Communicating FSMs 

Synthesizing communicating FSMs from decorated use case trees takes three steps: 
(1) transforming use cases into a canonical form, (2) synthesizing a global finite state 
machine (GFSM) from the canonical form of all use cases, (3) deriving from the 
GFSM a communicating FSM for each object in the system. 

Step (1): Canonical Representation of Use Case Trees 

The requirements of a system are composed of a number of use cases. Their overall 
behavior can be implemented by synthesizing communicating FSMs. For this end, we 
need a representation of use cases that not only captures their behavior, but also 
facilitates their merge into a global state model. We adopt thus a canonical 
representation of use cases in the form of a flat set of m-rules. An m-rule is an atomic 

                                                          
1 This conjunction differs from the ordinary logical AND since it provides a rewriting rule 

when a formula contains “V[i]=nil”.
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message rule, which describes the states of the system before a message is sent and 
after it is received. Formally, an m-rule is a 3-tuple mr=(LHS,RHS,lab) where mr.LHS
is the left hand side of the rule and represents the  pre-condition part, mr.RHS is the 
right hand side which is the post-condition part, and mr.lab is the message 
synchronization label of the m-rule. We recall that mr.lab is in the form (Oi,Oj.m).

In order to tag the states and the transitions in the targeted FSMs with the use case 
id from which they come, we extend the set of state variables with a new variable 
called uc. Tagging the FSMs is not only used for traceability reasons, but also to 
implement information given by predicate EP related to the extension points of a use 
case. From now and on, the state vector is composed of all state variable values and 
the value of the recently introduced variable uc. The domain of variable uc is the set 
of use case ids plus a special value denoted by noUc that tags the state vectors that 
may be shared by a certain number of use cases. 

Input  <Γ,pre,post,EP> where Γ=<Id,M,Minit,Parent>
is a decorated tree with ppre, ppost, and EP
Output  <R,Rinit>
(1) R:=∅; Rinit::=∅
(2) For each msg ∈ Γ.M do 
(3)   mr.lab:=msg 
(4)   If msg∈ Γ.Minit then 
(5)    mr.LHS:= ( ppre(msg) and  uc= noUc)  
(6)   Else mr.LHS:=(ppre(msg)and    
   ppost(parent(msg) 
        and uc=Γ.Id )  
(7)   For each msg'∈ Γ.M | msg=parent(msg') do 
(8)    If EP(msg)=False then  
(9)     mr.RHS:= ( ppost(msg) and ppre(msg')  
        and  uc=Γ.Id )  
(10)    Else mr.RHS:= (ppost(msg) and ppre(msg')  
        and uc=noUc)  
(11)    R:=R∪{mr} /*mr is added to R unless
         mr∉R*/
(12)    If msg ∈ Γ.Minit then Rinit:=Rinit∪{mr}
(13)    Done 
(14) Done 

Fig. 5. Computing the canonical form of a use case 

We define the canonical representation of a use case as a pair of m-rule sets 
denoted by <R,Rstart>  and derived from the use case. The algorithm at Fig.5 describes 
how <R,Rstart> is computed from a use case. As shown in lines (8) to (11) in this 
algorithm, the same message may be duplicated into several m-rules such that each 
one would have an RHS that conforms the pre-condition in one of its next messages in 
the use case. Each extracted m-rule is tagged with the use case id by constraining its 
LHS and LRS with either the constraint (uc=Γ.Id) or  the constraint (uc=noUc)
according to the value of the predicate EP in its  message. Hence, state vectors 
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satisfying (uc=Γ.Id) are specific to use case Γ. In contrast, state vectors where we
have (uc=noUc) shared by the use cases where the other state vector components
coincide. Consequently, use cases having such state vectors may have their respective
FSMs connected to each other by those shared state vectors. A conflict is reported to 
the designer whenever there is any m-rule from a use case that has false in either its 
LHS or RHS constraints.

Step (2): Synthesizing a Global Finite State Machine
from Decorated Use Case Trees 

The global finite state machine (GFSM) is an FSM constructed from all use cases.
Assuming that we have a communicating FSM for each object, the GFSM should
represent the FSM of their parallel composition. The GFSM accepts at least all the
complete paths of the use case trees. 

In practice, we directly derive the GFSM of a use case from its canonical 
representation. Let <S,Sinit,T> be the GFSM of a use case for which the canonical
representation is <R,Rinit>. Let [r.LHS] be the set of state vectors which verify the
constraint r.LHS  and [r.RHS] the set of pairs of state vectors that verify the constraint
r.RHS. We define the GFSM <S,Sinit,T> by the following:

( ) [ ]{
[ ] }

{ }
[ ]

startRr
init LHSrS

TVorTVDOMVS
labrlandRHSrVVand

LHSrVRrVlVT

∈

=
∈∈∈=

=∈
∈∈∃=

.
)_,(_,_)_,,(|

..)',(
..|',,

S is the set of states of the GFSM and composed of state vectors, which satisfy 
either the LHS or the RHS of an m-rule. T is the set of transitions. Each one comes
from an m-rule. We point out that the GFSM can be non deterministic. The GFSM of 
use case “Make a call” is drawn in Fig.6, and its state vectors are described in
Table 2. 

We have so far treated the construction of the GFSM of one use case. The
generalization to the case of two or more use cases consists of synthesizing the GFSM
derived from the union of those use cases canonical representation. We define the
union of two canonical representations <R,Rinit> and <R',Rinit'> as <R∪R'
,Rinit∪Rinit'>.

Table 2. State vectors of GFSM of use case “Make a call“

1 2 3 4 5 6 7 8 9 10 11 12
SigA N N DT D BT D D D T T N N
StaA I B B B B B B B B B I I
SigB nil nil nil nil nil N R T T Nil T BT
StatB nil nil nil B B I B B B Nil B B

uc noUc 1 1 1 1 1 1 1 1 1 1 1
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Fig. 6. GFSM of use case “Make a call” Fig. 7. DGFSM of use case “Make a call”

Inputs:
- DGFSM <S,Sinit,T>, { Sinit is a singleton } 
- O an object in Ω

Output:
 -<SO,SOinit, TO>, the FSM of object O 

TO:=∅; SO:=∅; SOinit:=∅
/*Clustering states */ 
For each (V,(Oi,Oj.m),V’) in T do 
 If (Oi≠O and Oj≠O) then

SO:=Cluster(V,V’,SO)
 Else 

SO:=Cluster(V,V,SO)
SO:=Cluster(V’,V’,SO)

 fi 
done
TO:={(C,msg,C’) | (V,msg,V’) ∈ T and V∈C

and V’∈C’}
SOinit:= {C | C∈SO and ∃ V∈Sinit . V∈C}
Return(SO,SOinit,TO)

Where  Cluster(V,V’,CS):
 If (∃ CE ∈ CS such that V∈ CE ) then C:=CE 
 Else C:= ∅
 If (∃ CE’ ∈ CS’ such that V’∈ CE’ ) then C’:=CE’
 Else C:= ∅
 Return(CS\{C,C’}∪{C∪C’∪{V,V’}})

Fig. 8. Construction of the FSM of an Object 
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Fig. 9. The FSM of Terminal A (left side) and the FSM of the Terminal B (right side) 

Step (3): Deriving Communicating FSM for Each Object

The derivation of an FSM for an object consists of clustering some states and 
removing some transitions from the deterministic FSM (DGFSM) which correspond
to the GSFM of all use cases. The DGFSM can be obtained from the GFSM by using
the algorithm given in [1]. We assume that the state of an object is supposed 
unchanged if no action occurs in that object according to the GFSM. Consequently,
the FSM states of an object O are obtained by clustering into the same state all the 
states of the GFSM that are connected with a transition in which object O does not
participate. The transitions of the FSM of an object O are only those transitions of the
GFSM representing messages or actions in which the object O participates. This
algorithm is presented in Fig.8. The FSM of an object implements all the parts of use
cases in which that object participates. Consequently, the FSM of an object
implements the object behavior.

We have constructed from the DGFSM (c.f. Fig.7) the FSMs of objects “Terminal
A”, “Terminal B”, and “Switch”. The FSM of object “Switch S” resulting from that
algorithm is exactly the entire FSM in Fig.7. However, The FSMs of objects
“Terminal A” and “Terminal B” respectively are drawn in Fig.9. 

The FSM of an object represents its behavior as described by the input decorated
use cases and it is not error free. The FSMs can be inspected for some patterns and
may reflect some errors. For example, the states in the FSM of an object should not 
have any self-loop transition. The latter shows that the object accomplishes an action, 
but its state does not change, a contradictory fact to use case decoration assumptions.
With the use case id in the state vector we can trace back exactly where the analyst
should intervene to correct the anomaly.

6 Related Work and Discussion 

Researchers have intensively investigated the transformation of scenarios into
transition-based system model during the last ten years. To deal with these topics, the
key idea is how to identify states at the scenario level such that those states can be 
recognized in different scenarios and then integrated in the target global model. There
are two kinds of state characterization: trace-based [8,10,11,13], and variable (or 
label) state-based characterization [17,18,19]. In this paper we adopted the second
approach to identify the states of the system.
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Harel et al. [8] tackled the problem of synthesizing statecharts from  LSCs (Live 
sequence charts), an extended form of MSCs which support liveness by specifying 
universal and existential scenarios. Their approach consists of synthesizing global 
automaton with accepting states from LSCs using trace-based state characterization. 
The global automaton can be decomposed into an automaton per object. The latter 
constitutes the overall statechart. Since we focus on first stages of requirement 
analysis, we believe that MSCs are easier to use with decoration and to validate. 
Moreover, practicing decoration is not compatible with LSCs because it may threaten 
their notion of universal scenarios. 

The closest approaches, in terms of state characterization, to our are [17,18,20]. In 
the first one, Whittle et al. [20] captured domain information by specifying for each 
message type a pre and a post-condition once for all. Contrarily to what we propose, 
sequence diagrams SDs (a variant of MSCs) are transformed into an FSM per object 
and per SD using a state-variable unification and propagation procedure. However, 
the state unification definition does not consider the causality relation between the 
unified states. The FSMs of an object are then merged into a single FSM based on 
defined state similarities. The authors introduced hierarchy into FSMs based on state 
variable ordering, class diagrams and generalization of transitions. Moreover, 
message passing is assumed to be hand shacking. Thus, the SDs would have only a 
single linearization.  

The work presented in [17,18] shows techniques for synthesizing timed automata 
from scenarios with respect to time constraints. Timed automata allow the description 
of the behavior of real time reactive systems. The scenarios can be seen as an 
enriched form of MSCs. The state characterization is very similar to the one we have 
presented in this paper. In contrast, the state vectors as defined in this paper are 
global, so they capture simultaneously the states of all objects.  Giese [6] presented 
too an approach towards the synthesis of   parametric timed automata from scenarios. 
Un-timed scenario are first derived according to existing approach like the one of 
Uchitel et al. [19], then the timing constraints are added in an incremental manner as 
time boundaries. The approach detects all the timing conflicts that can occur when 
integrating different scenarios, and hence can be adjusted. Contrarily to the approach 
in [18], Giese is synthesizing more than one automaton in the same time.  

In most cases, the composition of scenarios ends up with the creation of 
unexpected implied scenarios. The latter could stress incompleteness in the 
specification so it is useful to add them to the use case, or they express undesired 
behaviors that have to be removed from the targeted model. Many researchers have 
tackled the problem of detection and elimination of implied scenarios [2,13,14,19]. 
Alur et al. [2] have developed an algorithm to transform a set of MSCs into 
communicating state machines. Their approach has the potential of detecting all the 
implied scenarios from a set of MSCs. However, they consider only the case of finite 
traces. Uchitel et al [19] added the HMSCs to the specification so that they introduce 
the infinite execution aspects. Their approach consists of first constructing the labeled 
transition system of each object after what they compose them to obtain the overall 
implementation of the system. Our approach, however, uses the concept of decoration 
to detect loops and hence introducing the infinite behavior aspect in the specification.  

An important issue is whether or not all implied scenario have to be eliminated. 
Some researchers make the choice to produce a specification that is the closest 
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possible to the original use cases. Thus, they conduct their approaches in such a way 
they detect implied scenarios and eliminate them [14,19]. Such decision has the 
advantage to be automatic. However, others [13] make the choice to return back to the 
user to accept or refute a detected implied behavior. The advantage here is the 
enhancement done to the original use case. We opted for the second alternative 
because we believe it has the potential to complete the system behavior.  

Our approach differs substantially from the earlier presented work by the following 
points. We introduced an intermediate level of granularity, which is the level of use 
cases. Use cases themselves include a finer level of granularity represented by 
scenarios. 

Furthermore, from the described behavior in the user case and using its generated 
MSCs, we detect the other unexpected scenarios due to race conditions in a 
distributed system. Those implied scenarios are detected by enumerating all the 
linearizations of the MSCs the use case does not accept. This procedure offers the 
opportunity to remove in an early stage the undesired behaviors and allows the user to 
complete his current use case. In addition, the decoration of a use case by state 
characterization is easier than the decoration of an isolated MSC because a use case 
provides a broader view that shows the relationships between its scenarios. Moreover, 
a message which belongs to several scenarios will be decorated only once in the use 
case.

Our approach distinguishes between two classes of implied scenarios: the intra-use 
case implied scenarios and the inter-use case implied scenarios. We define the former 
as a trace that the GFSM of a use case accepts but not its tree. This trace is the direct 
result of the use case decoration for which the role is to make possible such traces. 
The use case decoration configures the set of accepted traces to fit the user 
expectations. An inter-use-case implied scenario could be defined as a trace, which 
cannot be completed to correspond to a concatenation of complete path from different 
use cases. By construction, we can claim that there are no such implied scenarios in 
the GFSM of the system because of tagging private states in the use cases with their 
respective ids.  

7 Conclusion

We have so far presented a method for constructing a communicating FSM from use 
cases expressed in the form of trees. MSCs are generated from use case trees and 
validated by users. The validation process consists of inviting the user to decide about 
accepting or not each one of the MSC linearizations missing in the use cases. 
Moreover, the user can also be prompted how to reorganize a use case in order to 
move forward a more structured specification. At the end of this stage, the original 
use cases may be modified to reflect more a desired and realizable system behavior. 
Use cases are then decorated for detecting repetitive behaviors and constructing their 
GFSM. Afterward, the latter is decomposed to derive a communicating FSM for each 
object.

The decoration of the use case trees seems difficult at first time, but with practice, 
analysts will develop skills to perform appropriate declarative decoration. Moreover, 
practicing decoration is very helpful for a well understanding of the requirements, 
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especially in the case of distributed systems. Besides, even not explicitly shown, our 
approach preserves the traceability between use cases and the FSMs of objects.  
Hence, for any element (either a state or a transition) in the FSMs, we can retrieve the 
use case it is related to. So, when errors are detected in the FSM level, the analyst will 
be able to trace them back and correct them in the use case level. Our approach would 
be more efficient when implemented as a computer aided design tool with a graphical 
interface, which is under development.  
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