
Formal Composition of Distributed Scenarios

Aziz Salah1, Rabeb Mizouni2, Rachida Dssouli3, and Benoît Parreaux4

1 Department of C.S., University of Quebec at Montreal
salah.aziz@uqam.ca

2 Electrical & Computer Engineering, Concordia University
mizouni@ece.concordia.ca

3 Institute For Information System Engineering, Concordia University
dssouli@ciise.concordia.ca

4 France Telecom R&D, Lannion, France
benoit.parreaux@rd.francetelecom.com

Abstract. Eliciting, modeling, and analyzing the requirements are the main
challenges to face up when you want to produce a formal specification for
distributed systems. The distribution and the race conditions between events
make it difficult to include all the possible scenario combinations and thus to
get a complete specification. Most research about formal methods dealt with
languages and neglected the process of how getting a formal specification. This
paper describes a scenario-based process to synthesize a formal specification in
the case of a distributed system. The requirements are represented by a set of
use cases where each one is composed of a collection of distributed scenarios.
The architectural assumptions about the communication between the objects of
the distributed system imply some completions and reorganizations in the use
cases. Then, the latter are composed into a global finite state machine (FSM)
from which we derive a communicating FSM per object in the distributed
system.

Keywords: Use case, Scenario-based approach, Scenario composition, Formal
specification, Distributed systems, FSM

1 Introduction

The computer science community agrees that the requirement elicitation and analysis
is a crucial step in the development process. Nevertheless, most research about formal
methods dealt with languages and neglected the process of how getting a formal
specification. Consequently, there is gap that makes difficult moving from
requirements towards a formal specification. Developers avoid this phase by passing
directly from informal requirements to implementation. Unspecified reception,
service denial, and deadlock are common bugs that may have uncontrolled
consequences in the case of distributed systems. Detecting such bugs during the
validation stage becomes difficult, reducing thus the reliability of the system and
increasing the development costs.

Scenario approaches have been emerged to fill the gap and facilitate the
construction of a formal specification by promoting a “Divide and Conquer” strategy.
A distributed scenario is a sequence of actions representing an execution trace

D. de Frutos-Escrig and M. Núñez (Eds.): FORTE 2004, LNCS 3235, pp. 213-228, 2004.
© IFIP International Federation for Information Processing 2004

214 Aziz Salah et al.

describing a partial behavior, and providing a system level functionality. The actions
represent concurrent interactions between different system objects. The different
scenarios have to be composed in order to provide a formal specification of the
system.

The requirements are widely represented by use cases where each one depicts a
collection of scenarios. A scenario can be described by a message sequence chart
(MSC), which emphasizes the interactions among objects. Our objective is to
synthesize finite state machines (FSMs) from a set of use cases. Constructing
communicating FSMs from MSCs is a very hard problem because MSCs may
represent incomplete and inconsistent requirements. Combinatorial complexity makes
it difficult to express MSCs for all of the possible scenario combination in the system
behavior. Furthermore, systems may have many infinite traces, which cannot be
easily captured by having only the MSC model. As a result, during the synthesis of
FSMs, the analyst uses ad hoc methods based on his creativity and his expertness to
fill the gaps.

MSCs and FSMs share some information, but emphasize two different views of the
system behavior. First, MSCs represent the specification that the system should
respect while FSMs are a model of the specification. Second, an MSC describes a
story in which only some objects participate. Hence, it provides an inter-object view
which makes it suitable for test and validation activities, but not for the
implementation. In contrast, an FSM shows an intra-objects view where all the stories
are about the same object [7] and may reflect their implementation.

Assuming that the system is composed of a set of objects, we aim at automating the
synthesis of FSMs from use cases. We propose a two-phase method. The first phase
consists of generating MSCs from use cases for completing them with missing
scenarios. The intended communicating FSMs should allow infinite runs but use cases
describe only finite traces about the behavior. Therefore, the second phase consists of
enriching the use cases with some information that captures loops in the behavior and
allows a system state characterization used for the automatic synthesis of a
communicating FSM per object.

The paper is structured as follows: in Section 2, we give an overview of the
notation we are using. Section 3 presents the formalization of use cases and scenarios
using the tree presentation as well as the derivation of their MSCs. In Section 4 and 5
respectively, we describe the approach we are proposing for decorating use cases and
synthesizing the communicating FSMs. Discussions on some related work are given
in Section 6. Finally, Section 7 closes the paper with conclusions and future work.

2 Preliminaries, Definitions and Formal Semantics

Let Ω= {O1, O2,…, On} be the set of objects in the targeted distributed system, Env its
environment, and AOi

= (SOi
,SOiinit,TOi

) the FSM of object Oi∈Ω. SOi
 is the set of states

of Oi, SOiinit is the set of initial states of Oi, and TOi
⊂ SOi

×ΣOi
×SOi

is the set of
transitions where ΣOi

 is set of labels in the form (Oi,Oj.m) or (Oj,Oi.m). The FSM has a
powerful capability of abstraction needed during first stages of the development
process.

Formal Composition of Distributed Scenarios 215

In this work, the FSMs of objects are assumed to be communicating FSMs
according to the semantics of input/output automata defined in [12]. Each FSM object
is autonomous and can communicate with other FSMs by means of message
exchange. When an FSM object sends a message to another FSM, the latter is
assumed to be ready to receive this message; otherwise there is an unspecified
reception fault. The communication between FSMs is modeled by their parallel
composition FSM denoted by ∏AOi

=(S,Sinit,T). It is defined as the connected
components of the composition FSM of AO1

,AO2
,… and AOn

, which contains a state
from Sinit, where S=S1×S2×…×Sn, and Sinit=SO1init×SO2init×…×SOninit. T⊂S×Σ×S is the
set of transitions of ∏AOi

 defined by the following rules:

− Rule 1: (si,a,si')∈ TOi
and (a=(O,Oi.m) or a=(Oi,O.m)) and O ∈ {Oi, Env}

implies ((s1,..,si-1,si,si+1,..,sn),a, (s1,..,si-1,si', si+1,..,sn)) ∈ T
− Rule 2: let Oi ,Oj ∈Ω and i<j

(si,a,si')∈ TOi and (sj,a,sj')∈TOj and (a=(Oi,Oj.m) or a=(Oi,Oj.m)) implies
((s1,..,si,..,sj, ..,sn),a, (s1,..,si',..,sj',..,sn)) ∈ T

Rule 1 treats internal actions or communication with the environment while Rule2
treats communication among two different objects Oi and Oj.

Message sequence charts (MSCs) [9] are a commonly used visual representation of
scenarios expressing the interactions among objects, components or processes. An
MSC focuses on message exchange and shows a partial order of events. A message
represents an interaction between two objects, a sender and a receiver. MSCs may
display an order of events which is not always the only case supported by the
implementation of MSCs. The formalization of MSCs allows the definition of the real
partial order according to particular architectural communication assumptions. The
formalization of MSC was traited by many reseachers [3,4], and we propose a similar
approach.

We formalize an MSC as a structure (I, SE, RE, r, L, p, <D , <m) where

− I ⊂ Ω∪{Env} is a set of objects
− SE is the set of sending events and RE the set of receiving events. We denote by

SEO (respectively REO) the set of sending events (respectively the set of
receiving events) in object O

− r : SE → RE maps a sending event to its receiving event. r is a bijection.
− L is a set of labels of the messages in the MSC
− p : SE∪RE→ I maps a sending event or receiving event to an object from I
− <D= ∪O∈I <O where <O ⊂ SEO∪REO x SEO∪REO is a total order between the

local events in object O according to the visual order as displayed in the MSC.
− <m = {(s, r(s)) | s ∈SE} is an ordering relation which means that a message

cannot be received before it is sent.

The previous definition is very general and does not include any assumption about
the communication architecture in the system. As the behavior described by MSCs
will be translated into a set of communicating FSMs, their respective semantics
should be compatible. Since the communication between FSMs, as defined in this
paper, has no buffering facility, we assume that the FIFO order is preserved when an

216 Aziz Salah et al.

object receives two or more messages from the same object. Thus, the events should
fulfill the partial ordering relation <FIFO = {(r(s),r(s')) | (s,s') ∈<D and p(s)=p(s')and
p(r(s))=p(r(s')) and s∈SE and s'∈SE }. Furthermore, FSMs are modeling autonomous
objects. Consequently, an object has the control over its sending events. Hence, its
scheduling of sending events is granted according to the visual order <D. We also
grant the local visual order between a receiving event and the next sending events in
an object. Those facts are expressed by the following control ordering relation: <C

={(e,s) | e ∈ SE∪RE, s ∈SE and (e,s) ∈<O and O∈I}. Finally, the interpretation of an
MSC is given by the partial order relation < defined as the transitive closure of the
combination of the three partial ordering <C, <m and <FIFO:

< = (<C ∪ <m ∪ <FIFO)*

3 Formalization of Use Cases and Scenarios

A use case is used to describe a distributed functionality of the system as seen by
actors (external users). The analyst usually builds use case diagrams, which
emphasize the relationships between use cases. Then, she or he provides a textual
description of the possible scenarios of each use case. This informal description is
hard to be used in automatic processing of scenarios. Consequently, we conceived a
formal model, which describes a use case by a tree of actions. The analyst constructs
the tree of a use case by using either a depth-first or a breadth-first strategy in order to
get a complete description according to the current requirements. As the use case tree
paths are the scenarios of running the use case, the depth-first strategy is more
convenient from a user point of view. However, the breath-first strategy is suitable to
check that all of the possible scenarios have already been included in the use case tree
since after each action all the possible afterward actions are checked. Actions (also
called messages) are labels like (Oi,Oj.m) where Oi and Oj are objects of the system.
(Oi,Oj.m) means that message m is sent from Oi to Oj.

We will be using a basic telephone system to illustrate our work. Fig. 1 shows use
case “Make a call” that describes the behavior of the system when a user A calls a
user B. We will assume that Ω for the telephone system is composed of the following
objects: A, B and a switch S. Let's now present the formal definition of our use case
model:

Definition: A use case Γ is a tree Γ=<Id,M,Mstart,Parent> where:

− Γ.Id is the id of the use case,
− Γ.M⊂ (Ω∪{Env})×(Ω∪{Env}.Label) is the set of messages in the form

(O,O'.m),
− Γ.Mstart⊂Γ.M is the set of starting messages,
− Γ.Parent is a function that associates to a message the index of its parent

message. Function Γ.Parent is not defined for starting messages.

The scenarios of a use case are complete paths starting from a start message and
ending at one of the tree leaves. From each use case scenario, an MSC is generated.
The generation of MSCs is only based on the syntax of messages and their order in

Formal Composition of Distributed Scenarios 217

the use case tree paths. The syntax of message label identifies the sender and the
receiver objects. The use case tree of Fig.1 contains three scenarios. We have drawn
in Fig. 2 the MSCs generated from use case “Make a call”.

MSCs are less intuitive than expected. Their visual order does not always represent
all their possible executions as only a partial order of events is garanted according to a
particular adopted semantics of MSCs. For this reason, researchers defined the notion
of MSC linearizations [2] [15] to represent the possible executions of an MSC.

In this work, the linearization of an MSC is a total order relation which is
consistent with its partial order relation <. If an MSC has many linearizations, some
of them may not be included in the use case tree since they may have escaped to the
user requirements. Thus, the partial order of an MSC helps the analyst to detect and
possibly complete the use case tree by adding those absent linearizations after the user
validation as illustrated in Fig. 3. If the user refuted one of the linearizations of an
MSC, it means that the use case tree should be modified so that its generated MSCs
accept no more the refuted linearization.

Fig. 1. The tree of use case “Make a call”

Fig. 2. The MSCs generated from the use case in Fig. 1

218 Aziz Salah et al.

Fig. 3. Use case completion by adding absent linearizations; step (a): the MSC generation;
step (b): adding a missing linearization to the use case

Fig. 4. Use case reorganization process: (a) Original use case tree. (b) Its generated MSC.
(c) The proposed reorganized use case tree

The user may sometimes be confused and does not realize that his use case is
composed of a combination of independent traces. To formally define what
independent traces means, let first define the set of minimum event Min of an MSC:

Min={e∈SE | ∀e'∈SE∪RE . (e',e)∉<}

Min denotes the set of sending events where each one may initiate a sequence of
events, called independent trace. If Min is not a singleton, the partial order of an MSC
may be used to find out independent traces.

If the generated MSCs of a use case include many independent traces as shown in
Fig.4 (b), the computation of the set Min allows a reorganization of the use case so
that the causality relationship between the independent traces becomes explicit as
illustrated in Fig.4 (c). However, if the user refuted the proposed reorganization of the
use case, it may mean that there are parts of the use case that are missing and should
establish the causality relationship he intended.

4 Decorating Use Cases with a State Characterization

The compatibility of use cases and their generated MSCs is reached when both of
them accept the same scenarios. Our goal is to synthesize FSMs from use cases. As
known, it is possible to generate FSMs from a set of traces. However, the behavior
provided by use cases is partial since they don't include infinite traces or repetitive
behaviors. High-level MSCs (HMSCs) are MSC-graphs where each node is an MSC
[9]. They provide a mean to define how MSCs can be combined and they can express
infinite traces of the system behavior. However, HMSCs specify an explicit
combination of MSCs, available only in an advanced stage during system requirement

Formal Composition of Distributed Scenarios 219

analysis. Therefore, we adopted an alternative strategy that consists of decorating use
cases with a state characterization. The latter allows not only capturing infinite traces,
but also recognizing shared states in different scenarios and thus determining their
relationships as well as the relationship between their respective use cases.

Decorating use cases gives the analysts the opportunity to add their interpretations
regarding the state of the system when an action is performed. It consists of
specifying for each message (action) of the use case partial pre and partial post
conditions expressed by state variable constraints. Those conditions are qualified to
be partial because they have to be completed by the fact that this action takes place
before and after specific actions in the use case. State variables are defined by the
analyst and their values represent the state of the system. As the latter is composed of
a set of objects, the state of the system is also composed of the states of its objects.
Subsequently, the state of an object can be derived from the global system state.

In practice, state variables have symbolic names. However, we will use here a
vector-based notation because it is more convenient to present the general case. The
state of the system is represented by a state vector V=(v1,v2,..,vk) where vi is the value
of state variable V[i] and k is the number of state variables. We write dom(V[i]) the
finite domain of possible values of state variable V[i]. A state variable may also be
instantiated with a special value, denoted by nil, which means that its current value is
not fixed yet in that state. Hence, the space of state vectors is the product set
DOM=(dom(V[1])∪{nil})×(dom(V[2])∪{nil})×… ×(dom(V[k])∪{nil}).

Table 1. Decoration of use case “Make a call”. The state vector is composed of the values of
four variables SigA, StaA, SigB and StaB. SigA describes signals of terminal A, and
Dom(SigA)={N,DT,D,BT,T} where N means no signal, DT dial tone signal, D dialing signal,
BT busy tone signal and T talking signal. StaA describes the status of terminal A and
Dom(StaA)={I,B} where B stands for busy and I for idle. Variables SigB and StaB describe
respectively the signals and the status of terminal B. Dom(SigB)={N,BT,R,T} where R stands
for ring signal and the other values are the same like in Dom(SigA). Dom(StaB)={B,I}. We have
also decided that EP is set to False for all messages in this use case tree

Index
(msg)

Parent
(msg)

msg ppre(msg) ppost(msg)

0 - (A,S.PickUp) SigA=N and StaA=I and
SigB=nil and StaB=nil

StaA’=B

1 0 (S,A.DialTone) True SigA’=DT
2 1 (A,S.DialB) True SigA’=D
3 2 (S,A.BusyTone) StaB=B SigA’=BT
4 3 (A,S.HangUp) True SigA’=N and StaA’=I and

SigB’=nil and StaB’=nil
5 2 (S,B.Ring) SigB=N and StaB=I SigB’=R and StaB’=B
6 5 (B,S.PickUp) True SigB’=T
7 6 (S,A.Talk) True SigA’=T
8 7 (B,S.HangUp) True SigB’=nil and StaB’=nil
9 8 (S,A.BusyTone) True SigA’=BT

10 9 (A,S.HangUp) True SigA’=N and StaA’=I
11 7 (A,S.HangUp) True SigA’=N and StaA’=I
12 11 (S,B.BusyTone) True SigB’=BT
13 12 (B,S.HangUp) True SigB’=nil and StaB’=nil

220 Aziz Salah et al.

The decoration of a use case consists of specifying for each message three
declarative attributes: a partial pre-condition, a partial post-condition, and an
extension point. The partial pre and post-conditions of a message m are denoted by
ppre(m) and ppost(m) respectively. The state variables must fulfill the constraints
ppre(m) before sending message m and ppost(m) after its reception. ppre(m) is a
conjunction of elementary constraints in the form (V[i]=v) where v is a constant of
dom(V[i]). In contrast, ppost(m) constraints the relation between the vector state V
before m and V' the state after m. Thus, ppost(m) is a conjunction where elementary
constraints are either (V'[i]=v), V'[i]= V[i] op v), or (V'[i]= V[I]), and where op is
an operator defined on the variables domain.

By default, a non-instantiated variable will be initially set to nil. Afterwards, we
adopt the STRIPS [5] strategy to deal with the frame problem and assume all that is
not explicitly changed by an action remains unchanged. Furthermore, whenever we
have a conjunction1 in the form (V[i]=v and V[i]=nil) the latter is unified to
(V[i]=v). This unification is needed later on in the computation of the canonical form
of the use case.

Finally, the third element of the decoration is the extension point. Since the analyst
has to compose many use cases to construct the overall system behavior model, we
associate to each message m a predicate denoted by EP(m) which stands for extension
point, similar to use case extension point in UML [16]. EP provides to the analyst a
mean by which she or he can control how parts of FSMs coming from different use
cases can be connected. By default, for a message m that it is not a leaf, the value of
EP(m) is “False” in order to prevent overlapping use case traces. In contrast, the
analyst decides which value should be assigned to predicate EP for other messages. If
the EP is "True", it means that the execution of the system continues in the current
use case. Otherwise, it indicates that the system may exit the current use case and
continues its execution in another one. In this case, it represents the concatenation of
use case traces. The decoration use case “Make a call” is presented in Table 1.

5 Synthesis of Communicating FSMs

Synthesizing communicating FSMs from decorated use case trees takes three steps:
(1) transforming use cases into a canonical form, (2) synthesizing a global finite state
machine (GFSM) from the canonical form of all use cases, (3) deriving from the
GFSM a communicating FSM for each object in the system.

Step (1): Canonical Representation of Use Case Trees

The requirements of a system are composed of a number of use cases. Their overall
behavior can be implemented by synthesizing communicating FSMs. For this end, we
need a representation of use cases that not only captures their behavior, but also
facilitates their merge into a global state model. We adopt thus a canonical
representation of use cases in the form of a flat set of m-rules. An m-rule is an atomic

1 This conjunction differs from the ordinary logical AND since it provides a rewriting rule

when a formula contains “V[i]=nil”.

Formal Composition of Distributed Scenarios 221

message rule, which describes the states of the system before a message is sent and
after it is received. Formally, an m-rule is a 3-tuple mr=(LHS,RHS,lab) where mr.LHS
is the left hand side of the rule and represents the pre-condition part, mr.RHS is the
right hand side which is the post-condition part, and mr.lab is the message
synchronization label of the m-rule. We recall that mr.lab is in the form (Oi,Oj.m).

In order to tag the states and the transitions in the targeted FSMs with the use case
id from which they come, we extend the set of state variables with a new variable
called uc. Tagging the FSMs is not only used for traceability reasons, but also to
implement information given by predicate EP related to the extension points of a use
case. From now and on, the state vector is composed of all state variable values and
the value of the recently introduced variable uc. The domain of variable uc is the set
of use case ids plus a special value denoted by noUc that tags the state vectors that
may be shared by a certain number of use cases.

Input <Γ,pre,post,EP> where Γ=<Id,M,Minit,Parent>
is a decorated tree with ppre, ppost, and EP
Output <R,Rinit>
(1) R:=∅; Rinit::=∅
(2) For each msg ∈ Γ.M do
(3) mr.lab:=msg
(4) If msg∈ Γ.Minit then
(5) mr.LHS:= (ppre(msg) and uc= noUc)
(6) Else mr.LHS:=(ppre(msg)and
 ppost(parent(msg)
 and uc=Γ.Id)
(7) For each msg'∈ Γ.M | msg=parent(msg') do
(8) If EP(msg)=False then
(9) mr.RHS:= (ppost(msg) and ppre(msg')
 and uc=Γ.Id)
(10) Else mr.RHS:= (ppost(msg) and ppre(msg')
 and uc=noUc)
(11) R:=R∪{mr} /*mr is added to R unless
 mr∉R*/
(12) If msg ∈ Γ.Minit then Rinit:=Rinit∪{mr}
(13) Done
(14) Done

Fig. 5. Computing the canonical form of a use case

We define the canonical representation of a use case as a pair of m-rule sets
denoted by <R,Rstart> and derived from the use case. The algorithm at Fig.5 describes
how <R,Rstart> is computed from a use case. As shown in lines (8) to (11) in this
algorithm, the same message may be duplicated into several m-rules such that each
one would have an RHS that conforms the pre-condition in one of its next messages in
the use case. Each extracted m-rule is tagged with the use case id by constraining its
LHS and LRS with either the constraint (uc=Γ.Id) or the constraint (uc=noUc)
according to the value of the predicate EP in its message. Hence, state vectors

222 Aziz Salah et al.

satisfying (uc=Γ.Id) are specific to use case Γ. In contrast, state vectors where we
have (uc=noUc) shared by the use cases where the other state vector components
coincide. Consequently, use cases having such state vectors may have their respective
FSMs connected to each other by those shared state vectors. A conflict is reported to
the designer whenever there is any m-rule from a use case that has false in either its
LHS or RHS constraints.

Step (2): Synthesizing a Global Finite State Machine
from Decorated Use Case Trees

The global finite state machine (GFSM) is an FSM constructed from all use cases.
Assuming that we have a communicating FSM for each object, the GFSM should
represent the FSM of their parallel composition. The GFSM accepts at least all the
complete paths of the use case trees.

In practice, we directly derive the GFSM of a use case from its canonical
representation. Let <S,Sinit,T> be the GFSM of a use case for which the canonical
representation is <R,Rinit>. Let [r.LHS] be the set of state vectors which verify the
constraint r.LHS and [r.RHS] the set of pairs of state vectors that verify the constraint
r.RHS. We define the GFSM <S,Sinit,T> by the following:

() []{
[] }

{ }
[]

startRr
init LHSrS

TVorTVDOMVS
labrlandRHSrVVand

LHSrVRrVlVT

∈

=
∈∈∈=

=∈
∈∈∃=

.
)_,(_,_)_,,(|

..)',(
..|',,

S is the set of states of the GFSM and composed of state vectors, which satisfy
either the LHS or the RHS of an m-rule. T is the set of transitions. Each one comes
from an m-rule. We point out that the GFSM can be non deterministic. The GFSM of
use case “Make a call” is drawn in Fig.6, and its state vectors are described in
Table 2.

We have so far treated the construction of the GFSM of one use case. The
generalization to the case of two or more use cases consists of synthesizing the GFSM
derived from the union of those use cases canonical representation. We define the
union of two canonical representations <R,Rinit> and <R',Rinit'> as <R∪R'
,Rinit∪Rinit'>.

Table 2. State vectors of GFSM of use case “Make a call“

1 2 3 4 5 6 7 8 9 10 11 12
SigA N N DT D BT D D D T T N N
StaA I B B B B B B B B B I I
SigB nil nil nil nil nil N R T T Nil T BT
StatB nil nil nil B B I B B B Nil B B

uc noUc 1 1 1 1 1 1 1 1 1 1 1

Formal Composition of Distributed Scenarios 223

Fig. 6. GFSM of use case “Make a call” Fig. 7. DGFSM of use case “Make a call”

Inputs:
- DGFSM <S,Sinit,T>, { Sinit is a singleton }
- O an object in Ω

Output:
 -<SO,SOinit, TO>, the FSM of object O

TO:=∅; SO:=∅; SOinit:=∅
/*Clustering states */
For each (V,(Oi,Oj.m),V’) in T do
 If (Oi≠O and Oj≠O) then

SO:=Cluster(V,V’,SO)
 Else

SO:=Cluster(V,V,SO)
SO:=Cluster(V’,V’,SO)

 fi
done
TO:={(C,msg,C’) | (V,msg,V’) ∈ T and V∈C

and V’∈C’}
SOinit:= {C | C∈SO and ∃ V∈Sinit . V∈C}
Return(SO,SOinit,TO)

Where Cluster(V,V’,CS):
 If (∃ CE ∈ CS such that V∈ CE) then C:=CE
 Else C:= ∅
 If (∃ CE’ ∈ CS’ such that V’∈ CE’) then C’:=CE’
 Else C:= ∅
 Return(CS\{C,C’}∪{C∪C’∪{V,V’}})

Fig. 8. Construction of the FSM of an Object

224 Aziz Salah et al.

Fig. 9. The FSM of Terminal A (left side) and the FSM of the Terminal B (right side)

Step (3): Deriving Communicating FSM for Each Object

The derivation of an FSM for an object consists of clustering some states and
removing some transitions from the deterministic FSM (DGFSM) which correspond
to the GSFM of all use cases. The DGFSM can be obtained from the GFSM by using
the algorithm given in [1]. We assume that the state of an object is supposed
unchanged if no action occurs in that object according to the GFSM. Consequently,
the FSM states of an object O are obtained by clustering into the same state all the
states of the GFSM that are connected with a transition in which object O does not
participate. The transitions of the FSM of an object O are only those transitions of the
GFSM representing messages or actions in which the object O participates. This
algorithm is presented in Fig.8. The FSM of an object implements all the parts of use
cases in which that object participates. Consequently, the FSM of an object
implements the object behavior.

We have constructed from the DGFSM (c.f. Fig.7) the FSMs of objects “Terminal
A”, “Terminal B”, and “Switch”. The FSM of object “Switch S” resulting from that
algorithm is exactly the entire FSM in Fig.7. However, The FSMs of objects
“Terminal A” and “Terminal B” respectively are drawn in Fig.9.

The FSM of an object represents its behavior as described by the input decorated
use cases and it is not error free. The FSMs can be inspected for some patterns and
may reflect some errors. For example, the states in the FSM of an object should not
have any self-loop transition. The latter shows that the object accomplishes an action,
but its state does not change, a contradictory fact to use case decoration assumptions.
With the use case id in the state vector we can trace back exactly where the analyst
should intervene to correct the anomaly.

6 Related Work and Discussion

Researchers have intensively investigated the transformation of scenarios into
transition-based system model during the last ten years. To deal with these topics, the
key idea is how to identify states at the scenario level such that those states can be
recognized in different scenarios and then integrated in the target global model. There
are two kinds of state characterization: trace-based [8,10,11,13], and variable (or
label) state-based characterization [17,18,19]. In this paper we adopted the second
approach to identify the states of the system.

Formal Composition of Distributed Scenarios 225

Harel et al. [8] tackled the problem of synthesizing statecharts from LSCs (Live
sequence charts), an extended form of MSCs which support liveness by specifying
universal and existential scenarios. Their approach consists of synthesizing global
automaton with accepting states from LSCs using trace-based state characterization.
The global automaton can be decomposed into an automaton per object. The latter
constitutes the overall statechart. Since we focus on first stages of requirement
analysis, we believe that MSCs are easier to use with decoration and to validate.
Moreover, practicing decoration is not compatible with LSCs because it may threaten
their notion of universal scenarios.

The closest approaches, in terms of state characterization, to our are [17,18,20]. In
the first one, Whittle et al. [20] captured domain information by specifying for each
message type a pre and a post-condition once for all. Contrarily to what we propose,
sequence diagrams SDs (a variant of MSCs) are transformed into an FSM per object
and per SD using a state-variable unification and propagation procedure. However,
the state unification definition does not consider the causality relation between the
unified states. The FSMs of an object are then merged into a single FSM based on
defined state similarities. The authors introduced hierarchy into FSMs based on state
variable ordering, class diagrams and generalization of transitions. Moreover,
message passing is assumed to be hand shacking. Thus, the SDs would have only a
single linearization.

The work presented in [17,18] shows techniques for synthesizing timed automata
from scenarios with respect to time constraints. Timed automata allow the description
of the behavior of real time reactive systems. The scenarios can be seen as an
enriched form of MSCs. The state characterization is very similar to the one we have
presented in this paper. In contrast, the state vectors as defined in this paper are
global, so they capture simultaneously the states of all objects. Giese [6] presented
too an approach towards the synthesis of parametric timed automata from scenarios.
Un-timed scenario are first derived according to existing approach like the one of
Uchitel et al. [19], then the timing constraints are added in an incremental manner as
time boundaries. The approach detects all the timing conflicts that can occur when
integrating different scenarios, and hence can be adjusted. Contrarily to the approach
in [18], Giese is synthesizing more than one automaton in the same time.

In most cases, the composition of scenarios ends up with the creation of
unexpected implied scenarios. The latter could stress incompleteness in the
specification so it is useful to add them to the use case, or they express undesired
behaviors that have to be removed from the targeted model. Many researchers have
tackled the problem of detection and elimination of implied scenarios [2,13,14,19].
Alur et al. [2] have developed an algorithm to transform a set of MSCs into
communicating state machines. Their approach has the potential of detecting all the
implied scenarios from a set of MSCs. However, they consider only the case of finite
traces. Uchitel et al [19] added the HMSCs to the specification so that they introduce
the infinite execution aspects. Their approach consists of first constructing the labeled
transition system of each object after what they compose them to obtain the overall
implementation of the system. Our approach, however, uses the concept of decoration
to detect loops and hence introducing the infinite behavior aspect in the specification.

An important issue is whether or not all implied scenario have to be eliminated.
Some researchers make the choice to produce a specification that is the closest

226 Aziz Salah et al.

possible to the original use cases. Thus, they conduct their approaches in such a way
they detect implied scenarios and eliminate them [14,19]. Such decision has the
advantage to be automatic. However, others [13] make the choice to return back to the
user to accept or refute a detected implied behavior. The advantage here is the
enhancement done to the original use case. We opted for the second alternative
because we believe it has the potential to complete the system behavior.

Our approach differs substantially from the earlier presented work by the following
points. We introduced an intermediate level of granularity, which is the level of use
cases. Use cases themselves include a finer level of granularity represented by
scenarios.

Furthermore, from the described behavior in the user case and using its generated
MSCs, we detect the other unexpected scenarios due to race conditions in a
distributed system. Those implied scenarios are detected by enumerating all the
linearizations of the MSCs the use case does not accept. This procedure offers the
opportunity to remove in an early stage the undesired behaviors and allows the user to
complete his current use case. In addition, the decoration of a use case by state
characterization is easier than the decoration of an isolated MSC because a use case
provides a broader view that shows the relationships between its scenarios. Moreover,
a message which belongs to several scenarios will be decorated only once in the use
case.

Our approach distinguishes between two classes of implied scenarios: the intra-use
case implied scenarios and the inter-use case implied scenarios. We define the former
as a trace that the GFSM of a use case accepts but not its tree. This trace is the direct
result of the use case decoration for which the role is to make possible such traces.
The use case decoration configures the set of accepted traces to fit the user
expectations. An inter-use-case implied scenario could be defined as a trace, which
cannot be completed to correspond to a concatenation of complete path from different
use cases. By construction, we can claim that there are no such implied scenarios in
the GFSM of the system because of tagging private states in the use cases with their
respective ids.

7 Conclusion

We have so far presented a method for constructing a communicating FSM from use
cases expressed in the form of trees. MSCs are generated from use case trees and
validated by users. The validation process consists of inviting the user to decide about
accepting or not each one of the MSC linearizations missing in the use cases.
Moreover, the user can also be prompted how to reorganize a use case in order to
move forward a more structured specification. At the end of this stage, the original
use cases may be modified to reflect more a desired and realizable system behavior.
Use cases are then decorated for detecting repetitive behaviors and constructing their
GFSM. Afterward, the latter is decomposed to derive a communicating FSM for each
object.

The decoration of the use case trees seems difficult at first time, but with practice,
analysts will develop skills to perform appropriate declarative decoration. Moreover,
practicing decoration is very helpful for a well understanding of the requirements,

Formal Composition of Distributed Scenarios 227

especially in the case of distributed systems. Besides, even not explicitly shown, our
approach preserves the traceability between use cases and the FSMs of objects.
Hence, for any element (either a state or a transition) in the FSMs, we can retrieve the
use case it is related to. So, when errors are detected in the FSM level, the analyst will
be able to trace them back and correct them in the use case level. Our approach would
be more efficient when implemented as a computer aided design tool with a graphical
interface, which is under development.

Ackowledgements

This work has been supported France Telecom R&D through a contract between
France Telecom and Concordia University. Aziz Salah is also supported by an
NSERC grant.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles, techniques, and tools.
Reading, Mass.: Addison Wesley, 1986.

[2] R. Alur, K. Etessami, and M. Yannakakis, "Inference of message sequence charts,"
presented at 22nd International Conference on Software Engineering, 2000.

[3] R. Alur, G. Holzmann, and D. Peled, "An Analyzer for Message Sequence Charts,"
Software: Concepts and Tools, vol. 17, pp. 70-77, 1996.

[4] H. Ben-Abdallah and S. Leue, "Syntactic Detection of Process Divergence and Non-
local Choice inMessage Sequence Charts," in TACAS, 1997, pp. 259-274.

[5] R. Fikes and N. J. Nilsson, "STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving," Artif. Intell., vol. 2, pp. 189-208, 1971.

[6] H. Giese, "Towards Scenario-Based Synthesis for Parametric Timed Automata,"
presented at the 2nd International Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools, ICSE, Portland, USA, 2003.

[7] D. Harel, "From Play-In Scenarios To Code: An Achievable Dream," IEEE Computer,
vol. 34, pp. 53-60, 2001.

[8] D. Harel and H. Kugler, "Synthesizing State-Based Object Systems from LSC
Specifications," Int. J. of Foundations of Computer Science, vol. 13, pp. 5-51, 2002.

[9] ITU, Recommendation Z.120: Message Sequence Chart (MSC), 1999,.
[10] K. Koskimies and E. Mäkinen, "Automatic Synthesis of State Machines from Trace

Diagrams," Software-Practice and Experience, vol. 24, pp. 643-658, 1994.
[11] I. Krüger, R. Grosu, P. Scholz, and M. Broy, "From MSCs to Statecharts," presented at

Distributed and Parallel Embedded Systems, 1998.
[12] N. Lynch, "I/O Automata: A model for discrete event systems," presented at 22nd

Annual Conference on Information Sciences and Systems, Princeton University,
Princeton, N.J., 1988.

[13] E. Mäkinen and T. Systä, "MAS – An Interactive Synthesizer to Support Behavioral
Modeling in UML," presented at ICSE 2001, Toronto, Canada, 2001.

[14] H. Muccini, "Detecting Implied Scenarios analyzing non-local Branching Choices,"
presented at Conf. on Fundamental Approaches to Software Engineering (FASE 2003),
ETAPS2003, Warsaw, Poland, 2003.

[15] M. Mukund, K. N. Kumar, and M. A. Sohoni, "Synthesizing distributed finite-state
systems from MSCs," presented at Proc. CONCUR '00, 2000.

228 Aziz Salah et al.

[16] OMG, "Unified Modeling Language (UML) specification v1.5," OMG document
ad/2003-03-01, March 2003.

[17] A. Salah, R. Dssouli, and G. Lapalme, "Compiling real-time scenarios into a Timed
Automaton," presented at FORTE XIV/PSTV XXI, 2001.

[18] S. Somé, R. Dssouli, and J. Vaucher, "Toward an Automation of Requirements
Engineering using Scenarios," Journal of Computing and Information, vol. 2, pp. 1110-
1132, 1996.

[19] S. Uchitel, J. Kramer, and J. Magee, "Synthesis of behavioral models from scenarios,"
IEEE Transactions on Software Engineering, vol. 29, pp. 99-115, 2003.

[20] J. Whittle and J. Schumann, "Generating statechart designs from scenarios," presented at
22nd International Conference on Software, 2000.

	Formal Composition of Distributed Scenarios

