
Witness and Counterexample Automata

for ACTL

Robert Meolic1, Alessandro Fantechi2, and Stefania Gnesi3

1 Faculty of Electrical Engineering and Computer Science
University of Maribor, Maribor, Slovenia

meolic@uni-mb.si
2 Dipartimento di Sistemi e Informatica

Università degli Studi di Firenze, Firenze, Italy
fantechi@dsi.unifi.it
3 ISTI-CNR, Pisa, Italy
gnesi@isti.cnr.it

Abstract. Witnesses and counterexamples produced by model checkers
provide a very useful source of diagnostic information. They are usually
returned in the form of a single computation path along the model of the
system. However, a single computation path is not enough to explain all
reasons of a validity or a failure. Our work in this area is motivated by the
application of action-based model checking algorithms to the test case
generation for models formally specified with a CCS-like process algebra.
There, only linear and finite witnesses and counterexamples are useful
and for the given formula and model an efficient representation of the set
of witnesses (counterexamples) explaining all reasons of validity (failure)
is needed. This paper identifies a fragment of action computation tree
logic (ACTL) that can be handled in this way. Moreover, a suitable form
of witnesses and counterexamples is proposed and witness and counterex-
ample automata are introduced, which are finite automata recognizing
them. An algorithm for generating such automata is given.

1 Introduction

Witnesses that show why a formula is satisfied and (more often) counterexam-
ples that show why it is not satisfied over a model have been used as useful
diagnostic information since the first applications of model checking technology.
They are usually returned by model checkers in the form of a computation path.
However, only for certain kinds of formulae a computation path is able to ex-
plain completely the reason of satisfaction or missed satisfaction. Only recently,
a greater interest was raised on the study of the relations between the formulae
and their counterexamples, on one side looking for richer forms, such as tree-like
counterexamples [4] or proof-like counterexamples [10], on the other side estab-
lishing the subsets of the logics whose formulae guarantee linear computation
paths as counterexamples which completely explain the failure [1, 12].

Our work in this field has been motivated by another trend that has con-
solidated in the recent years, that is the usage of counterexamples as an help

D. de Frutos-Escrig and M. Núñez (Eds.): FORTE 2004, LNCS 3235, pp. 259–275, 2004.
c© IFIP International Federation for Information Processing 2004

260 Robert Meolic et al.

to generate test cases [6, 7, 8, 11, 14, 15]. When testing or simulation does not
reach an adequate level of coverage (defined by some code coverage metrics, such
as statement coverage and branch coverage) new test cases have to be defined,
but the process of manually producing test cases for ”corner-case” scenarios is
time consuming and error prone. Model checking and counterexamples can help:
if we have a model of the system, and we model-check on it a formula expressing
”there is no uncovered point”, a counterexample returns a computation path
with enough information to generate the proper test case. In [7] it is shown that
in the adoption of this principle with a “conquer and divide” approach in order
to attack the typical state space explosion problem, a more effective option is
to have the model checker generating not a single counterexample, but all the
counterexamples for the given formula. We refer to [7] for more details, while
here we focus on the problem of the efficient representation and generation of
the set of counterexamples of a given formula.

Action computation tree logic (ACTL1) [13] is an action-based version of the
branching time temporal logic CTL [3]. ACTL is suitable to express properties
of reactive systems whose behaviour is characterized by the actions they perform
and whose semantics is defined by means of LTS’s. ACTL is adequate with re-
spect to strong bisimulation equivalence, this means that if p ∼ q, then p and q
satisfy the same set of ACTL formulae. To define ACTL an auxiliary logic of
actions is introduced. We limit our study to a subset of ACTL that guarantees
linear witnesses and counterexamples; we address both witnesses and counterex-
amples, since one can switch between them using negated formulae. Moreover,
we observe that for the purpose of practical applications (e.g. test case discov-
ery) only finite linear witnesses and counterexamples are interesting. Further,
we prove that the set of the desired finite linear witnesses and finite linear coun-
terexamples forms a regular language and therefore they can be represented as
automata, that will be called witness automaton and counterexample automaton,
respectively.

Formal definitions are given in Section 2. In Section 3, we introduce a viable
classes of witnesses and counterexamples for application in the field of test case
generation and define witness and counterexample automata, such that the sets
of witnesses and counterexamples recognized by them form such a viable class.
In Section 4 an algorithm to generate witness and counterexample automata is
reported and comprehensively explained on examples. Section 5 discusses com-
plexity, implementation, and several directions of possible extension of our work.
In Appendix, we show some additional examples of generated automata.

2 Definitions

Definition 1. (Labelled transition system)
A labelled transition system (LTS) is a quadruple M = (S, Act, D, s0), where S

1 The acronym ACTL is also used to denote the universal fragment of the CTL,
whose original name used in [2] was ∀CTL, later its name has changed for easiness
of writing, but generating a conflict with the already used name for Action CTL.

Witness and Counterexample Automata for ACTL 261

is a set of states, Act is a set of observable actions (an unobservable action τ is
not in Act), D ⊆ S × Act ∪ {τ} × S is the transition relation, and s0 ∈ S is the
initial state.

For A⊆Act, we let DA(s) denote the set of successors of the state s reachable
by an action from the set A. Moreover, we let Dτ

A(s) denote DA∪{τ}(s). If π is
a computation path in an LTS, then π(0) is the first state on π and π(i+1) is
the state on the path π immediately after the state π(i).

Definition 2. (Action formulae)
The syntax of action formulae over Act is defined by the following grammar
where χ, χ′, range over action formulae, and a ∈ Act:

χ ::= a | ¬χ | χ ∧ χ

The satisfaction of an action formula χ by an action a, a |= χ, is inductively
defined as follows:

a |= b iff a = b;
a |= ¬χ iff a
|= χ;
a |= χ ∧ χ′ iff a |= χ and a |= χ′

We write false for α ∧ ¬α, where α is some arbitrarily chosen action, and
true stands for ¬false. Moreover, we will write χ∨χ′ for ¬(¬χ∧¬χ′). An action
formula permits the expression of constraints on the actions that can be observed
(along a path or after next step); for instance, a ∨ b says that the only possible
observations are a or b, while true stands for ”all actions are allowed” and false
for ”no actions can be observed”, that is only silent actions can be performed.

Definition 3. (Action computation tree logic)
The syntax of ACTL is defined by the following grammar, where χ, χ′ range
over action formulae, ∃, ∀ are path quantifiers, and X, U are next and until
operators, respectively:

ϕ ::= true | ¬ϕ | ϕ ∧ ϕ | ∃γ | ∀γ

γ ::= Xχ ϕ |Xτ ϕ | ϕ Uχ ϕ | ϕ χUχ′ ϕ

Let κ(χ) = {a | a |= χ}. Being interpreted over an LTS M = (S, Act, D, s0)
with total transition relation the satisfaction of a state formula ϕ by a state s,
s |=M ϕ, and path formula γ by a path π, π |=M γ, is inductively defined by:

s |=M true always;
s |=M ¬ϕ iff s �|=M ϕ;
s |=M ϕ ∧ ϕ′ iff s |=M ϕ and s |=M ϕ′;
s |=M ∃ γ iff there exists a path π such that π(0) = s and π |=M γ;
s |=M ∀ γ iff for all paths π such that π(0) = s, π |=M γ;
π |=M Xχ ϕ iff there exists π(1) such that π(1) ∈ Dκ(χ)(π(0)) and π(1) |=M ϕ;
π |=M Xτ ϕ iff there exists π(1) such that π(1) ∈ D{τ}(π(0)) and π(1) |=M ϕ;

262 Robert Meolic et al.

π |=M ϕ χU ϕ′ iff there exists i≥0 such that π(i) |=M ϕ′,
and for all 0 ≤ j ≤ i−1: π(j) |=M ϕ and π(j+1) ∈ Dτ

κ(χ)(π(j));

π |=M ϕχUχ′ϕ′ iff there exists i≥1 such that
π(0) |=M ϕ, π(i) |=M ϕ′, π(i) ∈ Dκ(χ′)(π(i−1)), and for all 1≤j≤ i−1:
π(j) |=M ϕ and π(j) ∈ Dτ

κ(χ)(π(j−1)).

We write false for ¬true and ϕ ∨ ϕ′ for ¬(¬ϕ ∧ ¬ϕ′). When the transition
system is clear from the context, we write s |= ϕ instead of s |=M ϕ. If a |= χ
and t |= ϕ then transition (s, a, t) is called a (χ, ϕ)-transition. Transitions, which
are not (χ, ϕ)-transitions, are called ¬(χ, ϕ)-transitions. If s |= ϕ we say that ϕ
holds in state s. An ACTL formula ϕ is satisfied over a given LTS M (M |= ϕ)
iff ϕ holds in the initial state of M. The satisfaction of ACTL formulae over LTS
Mf having a not total transition relation (i.e. Mf contains deadlocked states)
is given as follows: let ϕ be an ACTL formula and M′

f be an LTS obtained from
Mf by adding τ -loops in all its deadlocked-states; then Mf |= ϕ if M′

f |= ϕ.

Several useful modalities can be defined, starting from the basic ones:

– ∃Fϕ for ∃(truetrueUϕ), and ∀Fϕ for ∀(truetrueUϕ) (eventually operators);
– <χ> ϕ for ∃Xχ ϕ, and [χ] ϕ for ¬∃Xχ ¬ϕ (Hennessy-Milner modalities2);
– ∃G ϕ for ¬∀F ¬ϕ, and ∀G ϕ for ¬∃F ¬ϕ (always operators).

Given a model M and a formula ϕ such that M |= ϕ (M
|= ϕ), a witness
(counterexample) is a structure R, in relation with M, that completely shows
one of the possible reasons why M |= ϕ (M
|= ϕ). A reason why M |= ϕ will
be called a reason of validity and a reason why M
|= ϕ will be called a reason
of failure. The type of the relation between R and M determines the nature of
the witnesses and countererexamples. Linear witnesses and counterexamples are
finite or infinite computation paths over M. More complex forms of witnesses
and counterexamples [4, 10] are defined as non-linear structures related to the
original model M. In our approach, M is an LTS and ϕ is an ACTL formula.
Further, we formally define linear witnesses and counterexamples for an ACTL
formula over an LTS; richer forms of witnesses and counterexamples are not
directly addressed in this paper.

Definition 4. (Linear witness and counterexample for ACTL formula over LTS)
Given an LTS M and an ACTL formula ϕ such that M |= ϕ (M
|= ϕ), a linear
witness (counterexample) for ϕ over M is a sequence of actions that completely
shows one of the possible reasons why M |= ϕ (M
|= ϕ).

3 Witness and Counterexample Automata

In [4], it has been recognized that for practical end-applications not all witnesses
and counterexamples are usable. For example, the whole LTS is always a witness
or a counterexample. Following the interpretation of [4], a viable class of witnesses
(counterexamples) V meets the criteria of:
2 In [13], < χ > ϕ and [χ] ϕ are defined and used instead as the weak version of the

diamond and box operators of Hennessy-Milner logic.

Witness and Counterexample Automata for ACTL 263

– Completeness. Every reason of validity (failure), which is important for
end-application, can be explained by a witness (counterexample) in V .

– Intelligibility. Witnesses (counterexamples) in V are specific enough to suit
the end-application (e.g. simple enough to be analysed by engineers).

– Effectiveness. There exist effective algorithms for generating and manipu-
lating witnesses (counterexamples) in V .

Note, that these criteria need to be adapted to the end-application. The test
case generation approach in [7] is based on finite linear counterexamples, which
are no longer than necessary, i.e. they contain only transitions, which contribute
to the explanation of a particular reason of failure. Thus, we formally define the
viability criteria in the field of test case generation as follows.
Definition 5. (Viability criteria in the field of test case generation)
The class of witnesses (counterexamples) V is a viable class for application in
the field of test case generation iff for the given ACTL formula ϕ and LTS M
there exists a suitable witness (counterexample) in V , which

1. explains all reasons of validity (failure) of ϕ over M explainable by finite
linear witnesses (counterexamples),

2. is as small as possible, and
3. is computable by an effective algorithm.

Let M be an LTS. In general, all reasons of validity (failure) of an arbi-
trary ACTL formula ϕ over M cannot be explained with finite linear witnesses
(counterexamples). We avoid the problem of completeness by restricting the ap-
proach to the ACTL formulae which guarantee linearity and finiteness, i.e. for
which all reasons of validity (failure) can be explained with finite linear witnesses
(counterexamples) over all models.
Theorem 1. ACTL formulae of kind ϕ (ψ) as given by the grammar, when sat-
isfied (not satisfied) over an LTS, guarantee linear witnesses (counterexamples):

ϕ ::= true | ¬ψ | ϕ ∨ ϕ | ∃(true χU ϕ) | ∃(true χUχ ϕ) | ∃Xχ ϕ | ∃Xτ ϕ

ψ ::= false | ¬ϕ | ψ ∧ ψ | ∀(ψ χU true) | ∀(ψ χUχ true) | ∀Xχ ψ | ∀Xτ ψ

Proof. Theorem 1 can be proved by induction on subformulae. The basic cases
are formulae true and false, and every path contains sufficient information for
explaining them. Due to a short space, we give a proof only for ACTL formulae
of kind ∃(true χUχϕ). Let M be an LTS, γ = true χUχ′ ϕ′, ϕ = ∃γ, and M |= ϕ.
According to Definition 3, the reason of validity is the existence of paths starting
in the initial state of M, which satisfy path formula γ. Thus, a witness is a proof
that a particular path π satisfies path formula γ. If the path π itself contains
sufficient information to show why π |= γ then π is a linear witness. According
to Definition 3 again, for each π |= γ there exists i≥1 such that π(i) |= ϕ′ and
π(i) ∈ Dκ(χ′)(π(i−1)), and for all 0 ≤ j≤ i−1 : π(j) ∈ Dτ

κ(χ)(π(j−1)). Now, the
path from the first state until state π(i) needs no additional explanation. We
must only show π(i) |= ϕ′. But, due to the induction hypothesis, subformula ϕ′

guarantees linear witnesses and therefore the suffix of the path from state π(i)

264 Robert Meolic et al.

contains sufficient information for explaining π(i) |= ϕ′. Hence, any path π such
that π |= γ is a linear witness.

Some formulae with derived modalities can also be used in the presented
approach. Indeed, formulae ∃F ϕ and <χ> ϕ guarantee linear witnesses, while
formulae ∀G ψ and [χ]ψ guarantee linear counterexamples.

Theorem 1 assures linearity but not finiteness. In fact, all ACTL formulae
of the given sublogic, except those of kind ∀(ψ χUχ true), guarantee also finite-
ness. Therefore, we exclude formulae of this kind from this approach. We also
exclude ACTL formulae of kind ∀(ψ χU true), as they always hold and have no
linear witnesses and no linear counterexamples. For all other kind of formuale
of the given sublogic and an LTS M with total transition relation, we define in
a constructive way V-witnesses and V-counterexamples, respectively.
Definition 6. (V-witness and V-counterexample)

(a) A V-witness for ACTL formula true is a path consisting of only one state
and no transitions.

(b) A path π in M is a V-witness for ACTL formula ϕ=¬ψ iff π is a V-counter-
example for ACTL formula ψ.

(c) A path π in M is a V-witness for ACTL formula ϕ = ϕ1 ∨ ϕ2 iff π is a V-
witness for ϕ1 (ϕ2) and no proper prefix of π is a V-witness for ϕ2 (resp.
ϕ1).

(d) A path π in M is a V-witness for ACTL formula ϕ = ∃(true χUϕ′) iff there
exists i≥ 0 such that suffix of π starting in π(i) is a V-witness for ACTL
formula ϕ′, and for all 0 ≤ j ≤ i−1: π(j+1) ∈ Dτ

κ(χ)(π(j)) and π(j)
|=M ϕ′.
(e) A path π in M is a V-witness for ACTL formula ϕ = ∃(true χUχ′ ϕ′) iff

there exists i ≥ 1 such that π(i) ∈ Dκ(χ′)(π(i−1)) and suffix of π starting
in π(i) is a V-witness for ACTL formula ϕ′, and for all 0 ≤ j ≤ i−1:
π(j) ∈ Dτ

κ(χ)(π(j−1)), and also π(j)
∈ Dκ(χ′)(π(j−1)) or π(j)
|=M ϕ′.
(f) A path π in M is a V-witness for ACTL formula ϕ = ∃Xχ ϕ′ iff π(1) ∈

Dκ(χ)(π(0)) and suffix of π starting in π(1) is a V-witness for ACTL formula
ϕ′.

(g) A path π in M is a V-witness for ACTL formula ϕ = ∃Xτ ϕ′ iff π(1) ∈
D{τ}(π(0)) and suffix of π starting in π(1) is a V-witness for ACTL formula
ϕ′.

(h) A V-counterexample for ACTL formula false is a path consisting of only one
state and no transitions.

(i) A path π in M is a V-counterexample for ACTL formula ψ = ¬ϕ iff π is
a V-witness for ACTL formula ϕ.

(j) A path π in M is a V-counterexample for ACTL formula ψ = ψ1 ∧ ψ2

iff π is a V-counterexample for ψ1 (ψ2) and no proper prefix of π is a V-
counterexample for ψ2 (resp. ψ1).

(k) A path π in M is a V-counterexample for ACTL formula ψ = ∀Xχ ψ′ iff
π(1)
∈ Dκ(χ)(π(0)) and π contains only two states, or π(1) ∈ Dκ(χ)(π(0))
and suffix of π starting in π(1) is a V-counterexample for ACTL formula ϕ′.

Witness and Counterexample Automata for ACTL 265

(l) A path π in M is a V-counterexample for ACTL formula ψ = ∀Xτ ψ′ iff
π(1)
∈ D{τ}(π(0)) and π contains only two states, or π(1) ∈ D{τ}(π(0)) and
suffix of π starting in π(1) is a V-counterexample for ACTL formula ϕ′.

It is straightforward to show that all V-witnesses (V-counterexamples) are
finite linear witnesses (counterexamples). The following theorem shows that they
are suitable for our approach.
Theorem 2. Let π be a finite linear witness (counterexample) explaining a
reason of validity (failure) of an ACTL formula ϕ (ψ) over an LTS M. Then,
there exists V-witness (V-counterexample), which shows that M |= ϕ (M
|= ψ).
Proof. We claim, that the smallest (not necessary proper and therefore always
existing) prefix of π, which shows that M |= ϕ (M
|= ψ) is a V-witness (V-
counterexample). To show this, we observe finite linear witnesses (counterexam-
ples), which are not V-witnesses (V-counterexamples) and prove, that a proper
prefix of them exists, which explain M |= ϕ (M
|= ψ). We omit the details of
the proof due to the lack of space.

Further, we show that we can characterize not only a single V-witness and
V-counterexample, but also the set of all the possible ones. Actually, the number
of the possible V-witnesses and V-counterexamples may be infinite and we are
interested to a finite representation of them all.
Theorem 3. Let M be a finite state LTS and ϕ (ψ) an ACTL formula such that
M |= ϕ (M
|= ψ). Then, there exists a finite-state automaton which recognizes
all V-witnesses (V-counterexamples) for formula ϕ (ψ) over M.
Proof. In order to check whether a path is a V-witness (V-counterexample), we
just need to see whether it is a path over M and if it has the form given in Defi-
nition 6. Since the characterizations given in Definition 6 are given with a single
right recursion, they can be expressed as a regular grammar. The language of
V-witnesses (V-counterexamples) is the intersection of the regular language rec-
ognized by this grammar and the regular language of the finite paths over M.
Hence, it is a regular language and can be recognized by a finite state automaton.
Definition 7. (Witness and counterexample automata)
A witness (counterexample) automaton for an LTS M and an ACTL formula
ϕ is an automaton which recognizes the language of all V-witnesses (V-counter-
examples) of ϕ over M.

Now, only an effective algorithm for generation of witness and counterexam-
ple automata is missing to fit the viability criteria in Definition 5.

4 Implementation

We present here an elegant recursive algorithm that, given a LTS and a for-
mula ϕ from the subset of ACTL given in Theorem 1, generates the witness
or counterexample automaton WCA for the formula ϕ over the given LTS. If
the formula ϕ holds in the initial state of LTS, the generated WCA is a wit-
ness automaton, otherwise, it is a counterexample automaton. The algorithm is

266 Robert Meolic et al.

WCAgenerator (LTS, ϕ) {
forall subformulae ϕ′ of formula ϕ {

create subset of LTS states Sϕ′ in which formula ϕ′ holds;
create empty relation Rϕ′ ;

}
let s be the initial state of LTS;
create empty automaton WCA;
create the initial state t in WCA;
if (s ∈ Sϕ) generate (LTS, ϕ, s, t, witness);

else generate (LTS, ϕ, s, t, counterexample);
}
generate (LTS, ϕ, s, t, type) {

if (type == null) {
add t to the set of WCA final states;

} else {
add the pair (t, s) to Rϕ ;
if (type == witness) WAgen (LTS, ϕ, s, t);
if (type == counterexample) CAgen (LTS, ϕ, s, t);

}
}
conbuild (LTS, ϕ, a, s′, t, type) {

if ((type == null) || (there is no state related to state s′ in Rϕ)) {
create a new state t′ in WCA;
if not exists, add the transition (t, a, t′) to WCA;
generate (LTS, ϕ, s′, t′, type);

} else {
let t′ be a state in WCA related to state s′ in Rϕ;
if not exists, add the transition (t, a, t′) to WCA;

}
}

Fig. 1. Main function and two auxiliary functions of the algorithm

a direct implementation of the definitions of V-witnesses and V-counterexamples
and it is given in a C-like pseudocode. It consists of the main function WCA-
generator, two auxiliary functions generate and conbuild (Fig. 1), and functions
processing ACTL formulae (Fig.2, 3). For the purpose of further work, the part
for generation of counterexample automata is extended with formulae of type
∀(ψ χUχ true). For them, V-counterexamples have not been defined. Computa-
tion paths recognized by the obtained automaton for this kind of ACTL formulae
explain only those reasons of failure which can be explained with finite linear
counterexamples. Due to the lack of space, we are not able to discuss details of
this feature.

Witness and Counterexample Automata for ACTL 267

WAgen (LTS, ϕ, s, t) {
case ϕ == true:
generate (LTS, ϕ, s, t, null);
break;

case ϕ == ¬ϕ′:
generate (LTS, ϕ′, s, t, counterexample);
break;

case ϕ == ϕ1 ∨ ϕ2:
if (s ∈ Sϕ1) generate (LTS, ϕ1, s, t, witness);
if (s ∈ Sϕ2) generate (LTS, ϕ2, s, t, witness);
break;

case ϕ == ∃Xχ ϕ′:
WAbuild (LTS, ϕ, s, t, false, false, χ, ϕ′);
break;

case ϕ == ∃Xτ ϕ′:
if (s is a deadlocked state) generate (LTS, ϕ′, s, t, witness);

else WAbuild (LTS, ϕ, s, t, false, false, τ , ϕ′);
break;

case ϕ == ∃(true χU ϕ′):
if (s ∈ Sϕ′) generate (LTS, ϕ′, s, t, witness);
WAbuild (LTS, ϕ, s, t, (χ ∨ τ), true, (χ ∨ τ), ϕ′);
break;

case ϕ == ∃(true χUχ′ ϕ′):
WAbuild (LTS, ϕ, s, t, (χ ∨ τ), true, χ′, ϕ′);
break;

}
WAbuild (LTS, ϕ, s, t, χ1, ϕ1, χ2, ϕ2) {

let δ1 be the set of ¬(χ2, ϕ2)-trans. from s which are (χ1, ϕ1)-trans.;
forall transitions (s, a, s′) ∈ δ1 {

if (s′ ∈ Sϕ) conbuild (LTS, ϕ, a, s′, t, witness);
}
let δ2 be the set of (χ2, ϕ2)-transitions from s;
forall transitions (s, a, s′) ∈ δ2 {
conbuild (LTS, ϕ2, a, s′, t, witness);

}
}

Fig. 2. The part of the algorithm, which generates witness automaton

The algorithm proceeds by visiting a portion of the state space of LTS. The
visit is guided by the structural analysis of the formula itself, hence it is termi-
nated when the leaves of the formula are reached. In ACTL, leaves can only be
the formula true or the formula false. LTS is unfolded if a sequence of subformulae
of ϕ matches with a loop in it. The visit is implemented by a depth-first search by
recursion, and hence it has to be remembered which states of LTS have already
been visited with a particular subformula of ϕ. Unfortunately, the resulting au-

268 Robert Meolic et al.

CAgen (LTS, ϕ, s, t) {
case ϕ == false:
generate (LTS, ϕ, s, t, null);
break;

case ϕ == ¬ϕ′:
generate (LTS, ϕ′, s, t, witness);
break;

case ϕ == ϕ1 ∧ ϕ2:
if (s
∈ Sϕ1) generate (LTS, ϕ1, s, t, counterexample);
if (s
∈ Sϕ2) generate (LTS, ϕ2, s, t, counterexample);
break;

case ϕ == ∀Xχ ϕ′:
if (s is a deadlocked state) generate (LTS, ϕ, s, t, null);

else CAbuild (LTS, ϕ, s, t, false, false, χ, ϕ′);
break;

case ϕ == ∀Xτ ϕ′:
if (s is a deadlocked state) generate (LTS, ϕ′, s, t, counterexample);

else CAbuild (LTS, ϕ, s, t, false, false, τ , ϕ′);
break;

case ϕ == ∀(ϕ′
χUχ′ true):

if (s is a deadlocked state) generate (LTS, ϕ, s, t, null);
if (s
∈ Sϕ′) generate (LTS, ϕ′, s, t, counterexample);
CAbuild (LTS, ϕ, s, t, (χ ∨ τ), ϕ′, χ′, true);
break;

}
CAbuild (LTS, ϕ, s, t, χ1, ϕ1, χ2, ϕ2) {

let δ1 be the set of ¬(χ2, ϕ2)-trans. from s which are (χ1, ϕ1)-trans.;
forall transitions (s, a, s′) ∈ δ1 do {

if (s′
∈ Sϕ) conbuild (LTS, ϕ, a, s′, t, counterexample);
}
let δ2 be the set of ¬(χ2, ϕ2)-trans. from s which are ¬(χ1, ϕ1)-trans.;
forall transitions (s, a, s′) ∈ δ2 {

if (a
|= χ1 ∧ a
|= χ2) conbuild (LTS, ϕ, a, s′, t, null);
if (a |= χ1) conbuild (LTS, ϕ1, a, s′, t, counterexample);
if (a |= χ2) conbuild (LTS, ϕ2, a, s′, t, counterexample);

}
}

Fig. 3. The part of the algorithm, which generates counterexample automaton

tomaton can be slightly incorrect. It may recognize some paths, which are finite
linear witnesses (counterexamples) but not V-witnesses (V-counterexamples).
However, it can always be minimized to fit Definition 7. We will discuss about
this in the next section.

The algorithm is further explained in details using a simple LTS and two
simple ACTL formulae (Fig. 4). It starts in function WCAgenerator. The first

Witness and Counterexample Automata for ACTL 269

bb
s1 s2 s3

bb
wc4

(c) Witness automaton for ∃F ∃Xb true

wc2

wc3
a

b
wc1

aa
wc2 wc3wc1

(b) Witness automaton for ∃Xa ∃Xa true

a

(a) The model: S = a.S + b.b.nil

Fig. 4. Two examples of generated witness automata. For the second ACTL formula,
the resulting automaton must be properly minimized to obtain the correct witness
automaton indicated by a dashed polygon

action is actually a call to a model checker, which computes S and initializes R
for all subformulae of ϕ. S contains for each subformula the subset of states that
satisfy the subformula. Thus, the algorithm takes for granted the information
about validity of the subformulae on each state. R is a relation implemented
as a set of pairs, where for each state of the LTS visited with a particular
subformula the related state in WCA is stored. Variables WCA, S, and R are
global, all others are local. Here is a program trace for the example in Fig. 4b.

ACTL model checking on S

EX{a} EX{a} true ==> TRUE

@@ WCAgenerator: created empty witness automaton WC1S

@@ WCAgenerator: created initial state wc1

@@ generate: starting formula ‘EX{a} EX{a} true’ for (s=s1, t=wc1)

@@ generate: added pair (wc1,s1) to R for the current formula

@@ WAbuild: chosen transition s1-a->s1 from delta2

@@ conbuild: created state wc2, created transition wc1-a->wc2

@@ generate: starting formula ‘EX{a} true’ for (s=s1, t=wc2)

@@ generate: added pair (wc2,s1) to R for the current formula

@@ WAbuild: chosen transition s1-a->s1 from delta2

@@ conbuild: created state wc3, created transition wc2-a->wc3

@@ generate: starting formula ‘true’ for (s=s1, t=wc3)

@@ generate: added pair (wc3,s1) to R for the current formula

@@ generate: state wc3 marked as final

@@ Witness automaton has been constructed.

270 Robert Meolic et al.

After an ACTL model checker determines that formula ∃Xa ∃Xa true holds
in the initial state s1 of S, a generation of the witness automaton is started.
A new automaton WC1S and its initial state wc1 are created. Function generate
makes initial states of S and WC1S to be related for the formula ∃Xa ∃Xa true.
Then, function WAgen is started. The outermost operator is ∃Xa and therefore
function WAbuild is called with parameters χ1 = false, ϕ1 = false, χ2 = a, and
ϕ2 = ∃Xa true. Set δ1 is empty, because there is no (χ1, ϕ1)-transition. Set δ2

contains only the transition (s1, a, s1). State s1 has not been visited with
formula ∃Xa true, yet, and therefore there is no state in WC1S related to it.
Function conbuild creates a new state wc2 and the transition (wc1, a, wc2) in
WC1S. Then, function generate is recursively called for the formula ∃Xa true. In
this call, subformula ϕ2 = true. Again, set δ1 is empty, while set δ2 contains
the transition (s1, a, s1). Because state s1 has not been visited with formula
true, yet, function conbuild creates a new state wc3 and transition (wc2, a, wc3).
Further, state wc3 is marked as final and the recursive calls end.

The usage of relation R is better shown on a program trace for ACTL formula
∃F∃Xb true. Actually, this is an abbreviation of formula ∃(truetrueU ∃Xb true).

ACTL model checking on S

EF EX{b} true ==> TRUE

@@ WCAgenerator: created empty witness automaton WC2S

@@ WCAgenerator: created initial state wc1

@@ generate: starting formula ‘EF EX{b} true’ for (s=s1, t=wc1)

@@ generate: added pair (wc1,s1) to R for the current formula

@@ generate: starting formula ‘EX{b} true’ for (s=s1, t=wc1)

@@ generate: added pair (wc1,s1) to R for the current formula

@@ WAbuild: chosen transition s1-b->s2 from delta2

@@ conbuild: created state wc2, created transition wc1-b->wc2

@@ generate: starting formula ‘true’ for (s=s2, t=wc2)

@@ generate: added pair (wc2,s2) to R for the current formula

@@ generate: state wc2 marked as final

@@ WAbuild: chosen transition s1-b->s2 from delta2

@@ conbuild: created state wc3, created transition wc1-b->wc3

@@ generate: starting formula ‘EX{b} true’ for (s=s2, t=wc3)

@@ generate: added pair (wc3,s2) to R for the current formula

@@ WAbuild: chosen transition s2-b->s3 from delta2

@@ conbuild: created state wc4, created transition wc3-b->wc4

@@ generate: starting formula ‘true’ for (s=s3, t=wc4)

@@ generate: added pair (wc4,s3) to R for the current formula

@@ generate: state wc4 marked as final

@@ WAbuild: chosen transition s1-a->s1 from delta2

@@ conbuild: created transition wc1-a->wc1

@@ Witness automaton has been constructed.

Because subformula ∃Xb true holds in the initial state of S, first a V-witness
for it is generated. State wc2 and transition (wc1, b, wc2) are created. Then,
function WAgen continues and calls function WAbuild with parameters χ1 =true,
ϕ1 = true, χ2 = true, and ϕ2 = ∃Xb true. Set δ1 is empty, while set δ2 contains

Witness and Counterexample Automata for ACTL 271

transitions (s1, a, s1) and (s1, b, s2). The transition with action b is chosen
first. Formula ∃Xb true has been already visited in state s1, but not in state
s2. Therefore, state wc3 and transition (wc1, b, wc3) are created. Afterwards,
the algorithm continues in the state s2. State wc4 and transition (wc3, b, wc4)
are created. Because subformula true has been reached, state wc4 is marked as
final and the path is finished. Now, function WAbuild must also process tran-
sition (s1, a, s1) from δ2. State s1 has been visited with formula ∃F ∃Xb true
before, thus a new state is not created. State s1 is related to state wc1 in rela-
tion R∃F ∃Xb true, therefore transition (wc1, a, wc1) is created without further
recursive calls.

5 Discussion

The algorithm for witness and counterexample automata generation basically
works by following the given LTS and using unfolding when necessary, with an
unfolding depth of at most the length of the formula. Therefore, the complexity
is not higher than the size of the LTS (states and transitions) times the length of
the formula. This is exactly the same complexity of an explicit model checking
algorithm which has to be employed to compute the labeling of the LTS.

We have implemented the algorithm as an extension of a BDD-based ACTL
model checker. Although LTSs are represented by BDDs and BDD-based func-
tions are used for navigating the LTS, the algorithm indirectly still involves an
implicit enumeration in functions WAbuild and CAbuild, where transitions are
chosen from δ1 and δ2 one by one and then for each next state on the path
a new recursive call is made. An open question remains whether a more efficient
symbolic algorithm exists.

The last example in the previous section and some of the examples given
in Appendix clearly show that the resulting automata may contain redundancy.
In fact, there are two different kinds of redundancy. At first, some equal paths
may be presented more than once. This is not very disturbing and among other
reasons it appears because the program does not identify two semantic equal
subformulae as the same one. For example, in the witness automaton generated
for the ACTL formula (∃Xχ ϕ) ∨ (∃Xχ ϕ), all paths are doubled. The second
type of redundancy is much more problematic as it leads to the incorrect result.
It appears due to the fact, that during the generation of the automaton the
algorithm does not check, whether one of the created paths explaining one reason
of validity (failure) is a proper prefix of another created paths explaining another
reason of validity (failure). In such case, only the shorter path is a V-witness (V-
counterexample) and thus the generated automaton should recognize only the
shorter one and not both. The ACTL formulae, which are subject to this kind
of redundancy are all those which contain Boolean operator ∨ or ∧, explicitely
or implicitely as, for example, formula ∃(true χU ϕ′) and derived formula ∃F ϕ.
To obtain the correct automaton, all extra paths must be later eliminated by
a proper minimization.

272 Robert Meolic et al.

A result which is related to our work is the definition of more expressive
tree-like counterexamples for Kripke Structures and CTL; such counterexamples
are used as a support to guide a refinement technique [4]. The main difference
with respect to our approach is that a tree-like counterexample is in its entirety
a proof that the formula is not satisfied. Our counterexample automaton gives
instead the set of linear counterexamples, each of which can be taken separately
as a traditional counterexample. An evolution of tree-like counterexamples is
represented by proof-like counterexamples [10], used to extract proofs for the non
satisfiability of a formula over a model. Closer to our approach is the multiple
counterexamples generation of [5, 9], which generates all the counterexamples
up to a given length, expressed as a single counterexample trace annotated with
possible values of binary variables.

There are some possible directions for further work. We have considered only
finite witnesses and counterexamples, which are the ones suitable to be used as
actual test cases (see [7]). Having more rich notions of acceptance than linear
languages could provide the possibility of characterizing sets of more informative
witnesses and counterexamples. In order to deal with infinite counterexamples
and witnesses the same approach can be followed, for example, using Büchi au-
tomata for recognizing a language of infinite words. In this way, if the transition
relation is total and if witnesses and counterexamples are extended to become
infinite paths, our work becomes adequate to the work presented for CTL in [1].

An interesting extension of the given algorithm would be a generation of
non-linear forms of witnesses and counterexamples. The core of the algorithm
are functions WAbuild and CAbuild. We implemented them in a more general
form w.r.t. what needed in this approach. For example, function WAbuild will
also process ACTL formula ∃(ϕ1 χUχ′ ϕ2), where parameter ϕ1 is not just a sim-
ple formula true or false, although a witness for this formula is not always a linear
computation path. The algorithm will produce an automaton recognizing linear
witnesses and the main paths (sometimes referred as backbones) of non-linear
witnesses. There will be no extra information given about which recognized
witness completely explains the validity and which one is only a main path of
a non-linear witness. Such general implementation allows extensions. If param-
eter ϕ1 is not a simple formula true or false and if an explanation of validity is
added to all states on the main path, we get richer non-linear forms of witnesses.
Thus, the given algorithm can serve also as a basis for generation of tree-like
witnesses and counterexamples. Note that for the formulae which guarantee lin-
earity and finiteness of witnesses (counterexamples) the presented witness and
counterexample automata explain all reasons of validity (failure) over a given
model and thus they are equivalent to the tree-like witnesses and counterexam-
ples, respectively.

6 Conclusions

We have defined witness and counterexample automata, which are intended to be
used in the field of test case generation. These automata recognize V-witnesses

Witness and Counterexample Automata for ACTL 273

and V-counterexamples which are finite linear witnesses and counterexamples
for a given formula over a given LTS. The main result of the paper is the al-
gorithm for generating witness and counterexample automata for a given LTS
and a given ACTL formula from a subset of ACTL formulae which guaran-
tee finite linear witnesses and counterexamples. The algorithm has been imple-
mented and a stand-alone demo application has been made available online on
http://fmt.isti.cnr.it/WCA/.

It seems reasonable that the given approach works as well with a state based
formalism (such as Kripke structures) and a state based temporal logic (such
as CTL). This needs to be verified: the very definition of witnesses, counterex-
amples, and automata recognizing them is actually highly sensitive to the logic
used and to the assumptions on the models.

Acknowledgements

This work has been partially supported by Italian MIUR PRIN 2002 COVER
project. The first author has been partially supported by a grant from Govern-
ment of Italy through Italian Cultural Institute in Slovenia. We wish to thank
Gianluca Trentanni for his help in the realization of the on-line demo application.

References

[1] F. Buccafurri, T. Eiter, G. Gottlob, N. Leone. On ACTL formulas having linear
counterexamples. Journal of computer and syst. sciences, 62(3), 2001, pp. 463–
515. 259, 272

[2] E.M. Clarke, O. Grumberg, D.E. Long. Model Checking and Abstraction ACM
Transaction on Programming Languages and Systems, (16)5, 1994, pp. 1512-1542.
260

[3] E.M. Clarke, E.A. Emerson, A.P. Sistla. Automatic Verification of Finite State
Concurrent Systems using Temporal Logic Specifications. ACM Transaction on
Programming Languages and Systems, 8(2), 1986, pp. 244–263. 260

[4] E.M. Clarke, S. Jha, Y. Lu, H. Veith. Tree-like Counterexamples in Model Check-
ing. In 17th IEEE Symp. on Logic in Computer Science (LICS), 2002, pp. 19–29.
259, 262, 272

[5] F. Copty, A. Irron, O. Weissberg, N. Kropp, G. Kamhi. Efficient Debugging in
a Formal Verification Environment. In Conf. On Correct Hardware Design and
Verification Methods (CHARME), LNCS 2144, 2001, pp. 275–292. 272

[6] A. Časar, Z. Brezočnik, T. Kapus. Exploiting Symbolic Model Checking for Sens-
ing Stuck-at Faults in Digital Circuits. Informacije MIDEM, 32(3), 2002, pp.
171–180. 260

[7] A. Fantechi, S. Gnesi, A. Maggiore. Enhancing test coverage by back-tracing
model-checker counterexamples. In Int. Workshop on Test and Analysis of Com-
ponent Based Syst. (TACOS), 2004, to appear in Electronic Notes in Theoretical
Computer Science. 260, 263, 272

[8] D. Geist, M. Farkas, A. Landver, Y. Lichenstein, S. Ur, Y. Wolfsthal. Coverage-
Directed Test Generation Using Symbolic Techniques. In First Int. Conf. on
Formal Method in Computer-Aided Design (FMCAD), LNCS 1166, 1996, pp. 143-
158. 260

274 Robert Meolic et al.

[9] M. Glusman, G. Kamhi, S. Mador-Heim, R. Fraer, M. Vardi. Multiple-Counter-
example Guided Iterative Abstraction Refinement: An Industrial Evaluation. In
Tools and Algorithms for the construction and analysis of syst. (TACAS), LNCS
2619, 2003, pp. 176-191. 272

[10] A. Gurfinkel, M. Chechik. Proof-Like Counter-Examples. In Tools and Algorithms
for the construction and analysis of syst. (TACAS), LNCS 2619, 2003, pp. 160-
175. 259, 262, 272

[11] P.H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco, J. Taylor, J.
Long. Smart Simulation Using Collaborative Formal and Simulation Engines. In
Int. Conf. on Computer Aided Design (ICCAD), 2000. 260

[12] M. Maidl. The Common Fragment of CTL and LTL. In Proc. 41th Symp. on
Foundations of Computer Science (FOCS), pp. 643-652, 2000. 259

[13] R. De Nicola, F.W. Vaandrager. Actions versus State Based Logics for Transition
Systems. Proc. Ecole de Printemps on Semantics of Concurrency, Lecture Notes
in Computer Science, vol. 469, 1990, pp. 407-419. 260, 262

[14] G. Ratzaby, S. Ur, Y. Wolfsthal, Coverability Analysis Using Symbolic Model
Checking. In Conf. On Correct Hardware Design and Verification Methods
(CHARME), LNCS 2144, 2001. 260

[15] G. Ratsaby, B. Sterin, S. Ur. Improvements in Coverabiliy Analysis. In Int. Symp.
of Formal Methods Europe (FME), LNCS 2391, 2002. 260

Witness and Counterexample Automata for ACTL 275

Appendix

NOTE: Automata in dashed polygon are obtained by a minimization.

a a

a

a

a

τc

a

ac

a

c τ a

c a

baa

τ

∃F ∃Xa true
(e) Witness automaton for(d) Witness automaton for

∀Xa true
(f) Counterexample automaton for

(h) Counterexample automaton for
∀G ∀Xa true

(g) Counterexample automaton for

(i) An automaton generated for

aa ba a

τ a
a

∀(true aUb true)

∀Xτ ∀Xa true

∃(true aUb true)

a τ

a

τ a

a b
τ

c

c

(b) Witness automaton for ∃Xa true (c) Witness automaton for ∃Xa ∃Xa true

(a) The model: S = a.S + τ.a.S + a.b.nil + c.nil

	Witness and Counterexample Automata for ACTL

