Skip to main content

Parallel Mechanisms and Robots

  • Reference work entry
Book cover Springer Handbook of Robotics

Abstract

This chapter presents an introduction to the kinematics and dynamics of parallel mechanisms, also referred to as parallel robots. As opposed to classical serial manipulators, the kinematic architecture of parallel robots includes closed-loop kinematic chains. As a consequence, their analysis differs considerably from that of their serial counterparts. This chapter aims to presenting the fundamental formulations and techniques used in their analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCT:

conservative congruence transformation

DOF:

degree of freedom

STS:

superior temporal sulcus

References

  1. J.E. Gwinnett: Amusement device, Patent 1789680 (1931)

    Google Scholar 

  2. V.E. Gough: Contribution to discussion of papers on research in automobile stability, control and tyre performance, 1956-1957. Proc. Auto Div. Inst. Mech. Eng

    Google Scholar 

  3. D. Stewart: A platform with 6 degrees of freedom, Proc. Inst. Mech. Eng. 180(1,15), 371–386 (1965)

    Google Scholar 

  4. I.A. Bonev: The true origins of parallel robots. http://www.parallemic.org/Reviews/Review007.html , (2003)

  5. J. Albus, R. Bostelman, N. Dagalakis: The NIST ROBOCRANE, J. Robot. Syst. 10(5), 709–724 (1993)

    Article  Google Scholar 

  6. R. Clavel: DELTA, a fast robot with parallel geometry. In: 18th Int. Symp. on Industrial Robots (ISIR), Lausanne, (1988) pp. 91–100

    Google Scholar 

  7. K.H. Hunt: Structural kinematics of in parallel actuated robot arms, J. Mech. Transmiss. Automation Design 105(4), 705–712 (1983)

    Article  Google Scholar 

  8. J.M. Hervé: Group mathematics and parallel link mechanisms. In: 9th IFToMM World Congress on the Theory of Machines and Mechanisms, Milan, (1995) pp. 2079–2082

    Google Scholar 

  9. X. Kong, C.M. Gosselin: Type synthesis of parallel mechanisms (Springer Tracts in Advanced Robotics, Heidelberg 2007), Vol. 33

    MATH  Google Scholar 

  10. www-sop.inria.fr/coprin/equipe/merlet/Archi/archirobot.html

  11. P. Dietmaier: The Stewart-Gough platform of general geometry can have 40 real postures. In: ARK, Strobl, (1998) pp. 7–16

    Google Scholar 

  12. M.L. Husty: An algorithm for solving the direct kinematic of Stewart-Gough-type platforms, Mechanism Machine Theory 31(4), 365–380 (1996)

    Article  Google Scholar 

  13. M. Raghavan: The Stewart platform of general geometry has 40 configurations, ASME J. Mech. Des. 115(2), 277–282 (1993)

    Article  Google Scholar 

  14. J.C. Faugère, D. Lazard: The combinatorial classes of parallel manipulators, Mechanism Machine Theory 30(6), 765–776 (1995)

    Article  Google Scholar 

  15. T.-Y. Lee, J.-K. Shim: Improved dyalitic elimination algorithm for the forward kinematics of the general Stewart-Gough platform, Mechanism Machine Theory 38(6), 563–577 (2003)

    Article  MATH  Google Scholar 

  16. F. Rouillier: Real roots counting for some robotics problems. In: Computational Kinematics, ed. by J.-P. Merlet, B. Ravani (Kluwer, Dordrecht 1995) pp. 73–82

    Google Scholar 

  17. J.-P. Merlet: Solving the forward kinematics of a Gough-type parallel manipulator with interval analysis, Int. J. Robot. Res. 23(3), 221–236 (2004)

    Article  Google Scholar 

  18. D. Manocha: Algebraic and Numeric Techniques for Modeling and Robotics. Ph.D. Thesis (University of California, Berkeley 1992)

    Google Scholar 

  19. A.J. Sommese, C.W. Wampler: Numerical Solutions of Polynomial Systems Arising in Engineering and Science (World Scientific, Singapore 2005)

    Book  Google Scholar 

  20. J-P. Merlet, D. Daney: Dimensional synthesis of parallel robots with a guaranteed given accuracy over a specific workspace. In: IEEE Int. Conf. on Robotics and Automation, Barcelona, (2005)

    Google Scholar 

  21. L. Baron, J. Angeles: The direct kinematics of parallel manipulators under joint-sensor redundancy, IEEE Trans. Robot. Automat. 16(1), 12–19 (2000)

    Article  Google Scholar 

  22. J-P. Merlet: Closed-form resolution of the direct kinematics of parallel manipulators using extra sensors data. In: IEEE Int. Conf. on Robotics and Automation, Atlanta, (1993) pp. 200–204

    Google Scholar 

  23. R. Stoughton, T. Arai: Kinematic optimization of a chopsticks-type micro-manipulator. In: Japan-USA Symp. on Flexible Automation, San Fransisco, (1993) pp. 151–157

    Google Scholar 

  24. J.-P. Merlet: Jacobian, manipulability,condition number, and accuracy of parallel robots. ASME J. Mech. Design 128(1), 199–206 (2006)

    Article  Google Scholar 

  25. F-T. Niaritsiry, N. Fazenda, R. Clavel: Study of the source of inaccuracy of a 3 dof flexure hinge-based parallel manipulator. In: IEEE Int. Conf. on Robotics and Automation, New Orleans, (2004) pp. 4091–4096

    Google Scholar 

  26. G. Pritschow, C. Eppler, T. Garber: Influence of the dynamic stiffness on the accuracy of PKM. In: 3rd Chemnitzer Parallelkinematik Seminar, Chemnitz, (2002) pp. 313–333

    Google Scholar 

  27. V. Parenti-Castelli, S. Venanzi: On the joint clearance effects in serial and parallel manipulators. In: Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Québec, (2002) pp. 215–223

    Google Scholar 

  28. A. Pott, M. Hiller: A new approach to error analysis in parallel kinematic structures. In: ARK, Sestri-Levante, (2004)

    Google Scholar 

  29. K. Wohlhart: Degrees of shakiness, Mechanism Machine Theory 34(7), 1103–1126 (1999)

    Article  MATH  Google Scholar 

  30. K. Tönshoff, B. Denkena, G. Günther, H.-C. Möhring: Modelling of error effects on the new hybrid kinematic DUMBO structure. In: 3rd Chemnitzer Parallelkinematik Seminar, Chemnitz, (2002) pp. 639–653

    Google Scholar 

  31. U. Sellgren: Modeling of mechanical interfaces in a systems context. In: Int. ANSYS Conf., Pittsburgh, (2002)

    Google Scholar 

  32. W. Khalil, S. Besnard: Identificable parameters for the geometric calibration of parallel robots, Arch. Control Sci. 11(3-4), 263–277 (2001)

    MATH  MathSciNet  Google Scholar 

  33. C.W. Wampler, J.M. Hollerbach, T. Arai: An implicit loop method for kinematic calibration and its application to closed-chain mechanisms, IEEE Trans. Robot. Autom. 11(5), 710–724 (1995)

    Article  Google Scholar 

  34. D. Daney, Y. Papegay, A. Neumaier: Interval methods for certification of the kinematic calibration of parallel robots. In: IEEE Int. Conf. on Robotics and Automation, New Orleans, (2004) pp. 1913–1918

    Google Scholar 

  35. D. Daney, N. Andreff, Y. Papegay: Interval method for calibration of parallel robots: a vision-based experimentation. In: Computational Kinematics, Cassino, (2005)

    Google Scholar 

  36. A. Nahvi, J.M. Hollerbach: The noise amplification index for optimal pose selection in robot calibration. In: IEEE Int. Conf. on Robotics and Automation, Minneapolis, (1996) pp. 647–654

    Google Scholar 

  37. G. Meng, L. Tiemin, Y. Wensheng: Calibration method and experiment of Stewart platform using a laser tracker. In: Int. Conf on Systems, Man and Cybernetics, The Hague, (2003) pp. 2797–2802

    Google Scholar 

  38. D. Daney: Optimal measurement configurations for Gough platform calibration. In: IEEE Int. Conf. on Robotics and Automation, Washington, (2002) pp. 147–152

    Google Scholar 

  39. C. Gosselin, J. Angeles: Singularity analysis of closed-loop kinematic chains, IEEE Trans. Robot. Automation 6(3), 281–290 (1990)

    Article  Google Scholar 

  40. D. Zlatanov, R.G. Fenton, B. Benhabib: A unifying framework for classification and interpretation of mechanism singularities, ASME J. Mech. Des. 117(4), 566–572 (1995)

    Article  Google Scholar 

  41. D. Zlatanov, I.A. Bonev, C.M. Gosselin: Constraint singularities of parallel mechanisms. In: IEEE Int. Conf. on Robotics and Automation, Washington, (2002) pp. 496–502

    Google Scholar 

  42. G. Liu, Y. Lou, Z. Li: Singularities of parallel manipulators: a geometric treatment, IEEE Trans. Robot. Autom. 19(4), 579–594 (2003)

    Article  Google Scholar 

  43. I.A. Bonev, D. Zlatanov: The mystery of the singular SNU translational parallel robot. www.parallemic.org/Reviews/Review004.html, (2001)

  44. H. Li., C.M. Gosselin, M.J. Richard, B. St-Onge Mayer: Analytic form of the six-dimensional singularity locus of the general Gough-Stewart platform, ASME J. Mech. Des. 128(1), 279–287 (2006)

    Article  Google Scholar 

  45. B. St-Onge Mayer, C.M. Gosselin: Singularity analysis and representation of the general Gough-Stewart platform, Int. J. Robot. Res. 19(3), 271–288 (2000)

    Article  Google Scholar 

  46. J.-P. Merlet: Singular configurations of parallel manipulators and Grassmann geometry, Int. J. Robot. Res. 8(5), 45–56 (1989)

    Article  Google Scholar 

  47. J-P. Merlet: On the infinitesimal motion of a parallel manipulator in singular configurations. In: IEEE Int. Conf. on Robotics and Automation, Nice, (1992) pp. 320–325

    Google Scholar 

  48. H. Pottmann, M. Peternell, B. Ravani: Approximation in line space. Applications in robot kinematics. In: ARK, Strobl, (1998) pp. 403–412

    Google Scholar 

  49. P.A. Voglewede, I. Ebert-Uphoff: Measuring "closeness" to singularities for parallel manipulators. In: IEEE Int. Conf. on Robotics and Automation, New Orleans, (2004) pp. 4539–4544

    Google Scholar 

  50. J.-P. Merlet, D. Daney: A formal-numerical approach to determine the presence of singularity within the workspace of a parallel robot. In: Computational Kinematics, ed. by F.C. Park, C.C. Iurascu (EJCK, Seoul 2001) pp. 167–176

    Google Scholar 

  51. S. Bhattacharya, H. Hatwal, A. Ghosh: Comparison of an exact and an approximate method of singularity avoidance in platform type parallel manipulators, Mechanism Machine Theory 33(7), 965–974 (1998)

    Article  MATH  Google Scholar 

  52. D.N. Nenchev, M. Uchiyama: Singularity-consistent path planning and control of parallel robot motion through instantaneous-self-motion type. In: IEEE Int. Conf. on Robotics and Automation, Minneapolis, (1996) pp. 1864–1870

    Google Scholar 

  53. R. Ranganath, P.S. Nair, T.S. Mruthyunjaya, A. Ghosal: A force-torque sensor based on a Stewart platform in a near-singular configuration, Mechanism Machine Theory 39(9), 971–998 (2004)

    Article  MATH  Google Scholar 

  54. M.L. Husty, A. Karger: Architecture singular parallel manipulators and their self-motions. In: ARK, Piran, (2000) pp. 355–364

    Google Scholar 

  55. A. Karger: Architecture singular planar parallel manipulators, Mechanism Machine Theory 38(11), 1149–1164 (2003)

    Article  MATH  Google Scholar 

  56. K. Wohlhart: Mobile 6-SPS parallel manipulators, J. Robot. Syst. 20(8), 509–516 (2003)

    Article  MATH  Google Scholar 

  57. C. Innocenti, V. Parenti-Castelli: Direct kinematics of the 6-4 fully parallel manipulator with position and orientation uncoupled. In: European Robotics and Intelligent Systems Conf., Corfou, (1991)

    Google Scholar 

  58. G. Gogu: Mobility of mechanisms: a critical review, Mechanism Machine Theory 40(10), 1068–1097 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  59. I. Zabalza, J. Ros, J.J. Gil, J.M. Pintor, J.M. Jimemenz: Tri-Scott. A new kinematic structure for a 6-dof decoupled parallel manipulator. In: Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Québec, (2002) pp. 12–15

    Google Scholar 

  60. C. Gosselin: Determination of the workspace of 6-dof parallel manipulators, ASME J. Mech. Des. 112(3), 331–336 (1990)

    Article  Google Scholar 

  61. J-P. Merlet: Geometrical determination of the workspace of a constrained parallel manipulator. In: ARK, Ferrare, (1992) pp. 326–329

    Google Scholar 

  62. F.A. Adkins, E.J. Haug: Operational envelope of a spatial Stewart platform, ASME J. Mech. Des. 119(2), 330–332 (1997)

    Article  Google Scholar 

  63. E.J. Haugh, F.A. Adkins, C.M. Luh: Operational envelopes for working bodies of mechanisms and manipulators, ASME J. Mech. Des. 120(1), 84–91 (1998)

    Article  Google Scholar 

  64. J.-P. Merlet: Determination of 6D workspaces of Gough-type parallel manipulator and comparison between different geometries, Int. J. Robot. Res. 18(9), 902–916 (1999)

    Article  Google Scholar 

  65. P. Wenger, D. Chablat: Workspace and assembly modes in fully parallel manipulators: a descriptive study. In: ARK, Strobl, (1998) pp. 117–126

    Google Scholar 

  66. J. Hesselbach, C. Bier, A. Campos, H. Löwe: Parallel robot specific control fonctionalities. In: 2nd Int. Colloquium, Collaborative Research Centre 562, Braunschweig, (2005) pp. 93–108

    Google Scholar 

  67. J-P. Merlet: An efficient trajectory verifier for motion planning of parallel machine. In: Parallel Kinematic Machines Int. Conf., Ann Arbor, (2000)

    Google Scholar 

  68. J. Cortés, T. Siméon: Probabilistic motion planning for parallel mechanisms. In: IEEE Int. Conf. on Robotics and Automation, Taipei, (2003) pp. 4354–4359

    Google Scholar 

  69. J.H. Yakey, S.M. LaValle, L.E. Kavraki: Randomized path planning for linkages with closed kinematic chains, IEEE Trans. Robot. Autom. 17(6), 951–958 (2001)

    Article  Google Scholar 

  70. J-P. Merlet, M-W. Perng, D. Daney: Optimal trajectory planning of a 5-axis machine tool based on a 6-axis parallel manipulator. In: ARK, Piran, (2000) pp. 315–322

    Google Scholar 

  71. D. Shaw, Chen Y-S. Cutting path generation of the Stewart platform-based milling machine using an end-mill, Int. J. Prod. Res. 39(7), 1367–1383 (2001)

    Google Scholar 

  72. Z. Wang, Z. Wang, W. Liu, Y. Lei: A study on workspace, boundary workspace analysis and workpiece positioning for parallel machine tools, Mechanism Machine Theory 36(6), 605–622 (2001)

    Article  MATH  Google Scholar 

  73. D.R. Kerr: Analysis, properties, and design of a Stewart-platform transducer, J. Mech. Transmiss. Autom. Des. 111(1), 25–28 (1989)

    Article  MathSciNet  Google Scholar 

  74. C.C. Nguyen, S.S. Antrazi, Z.L. Zhou: Analysis and experimentation of a Stewart platform-based force/torque sensor, Int. J. Robot. Autom. 7(3), 133–141 (1992)

    Google Scholar 

  75. C. Reboulet, A. Robert: Hybrid control of a manipulator with an active compliant wrist. In: 3rd ISRR, Gouvieux, France, (1985) pp. 76–80

    Google Scholar 

  76. J. Duffy: Statics and Kinematics with Applications to Robotics (Cambridge University Press, New-York 1996)

    Book  Google Scholar 

  77. C. Huang, W-H. Hung, I. Kao: New conservative stiffness mapping for the Stewart-Gough platform. In: IEEE Int. Conf. on Robotics and Automation, Washington, (2002) pp. 823–828

    Google Scholar 

  78. J.L. Herder: Energy-Free Systems: Theory, Conception and Design of Statically Balanced Spring Mechanisms. Ph.D. Thesis, Delft University of Technology, Delft, (2001)

    Google Scholar 

  79. G.R. Dunlop, T.P. Jones: Gravity counter balancing of a parallel robot for antenna aiming. In: 6th ISRAM, Montpellier, (1996) pp. 153–158

    Google Scholar 

  80. M. Jean, C. Gosselin: Static balancing of planar parallel manipulators. In: IEEE Int. Conf. on Robotics and Automation, Minneapolis, (1996) pp. 3732–3737

    Google Scholar 

  81. I. Ebert-Uphoff, C.M. Gosselin, T. Laliberté: Static balancing of spatial parallel platform-revisited, ASME J. Mech. Des. 122(1), 43–51 (2000)

    Article  Google Scholar 

  82. C.M. Gosselin, J. Wang: Static balancing of spatial six-degree-of-freedom parallel mechanisms with revolute actuators, J. Robot. Syst. 17(3), 159–170 (2000)

    Article  MATH  Google Scholar 

  83. M. Leblond, C.M. Gosselin: Static balancing of spatial and planar parallel manipulators with prismatic actuators. In: ASME Design Engineering Technical Conferences, Atlanta, (1998)

    Google Scholar 

  84. B. Monsarrat, C.M. Gosselin: Workspace analysis and optimal design of a 3-leg 6-DOF parallel platform mechanism, IEEE Trans. Robot. Autom. 19(6), 954–966 (2003)

    Article  Google Scholar 

  85. J. Wang, C.M. Gosselin: Static balancing of spatial three-degree-of-freedom parallel mechanisms, Mechanism Machine Theory 34(3), 437–452 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  86. Y. Wu, C.M. Gosselin: Synthesis of reactionless spatial 3-dof and 6-dof mechanisms without separate counter-rotations, Int. J. Robot. Res. 23(6), 625–642 (2004)

    Article  Google Scholar 

  87. M. Ait-Ahmed: Contribution à la modélisation géométrique et dynamique des robots parallèles. Ph.D. Thesis (Université Paul Sabatier, Toulouse 1993)

    Google Scholar 

  88. M.-J. Liu, C.-X. Li, C.-N. Li: Dynamics analysis of the Gough-Stewart platform manipulator, IEEE Trans. Robot. Autom. 16(1), 94–98 (2000)

    Article  Google Scholar 

  89. G.F. Liu, X.Z. Wu, Z.X. Li: Inertial equivalence principle and adaptive control of redundant parallel manipulators. In: IEEE Int. Conf. on Robotics and Automation, Washington, (2002) pp. 835–840

    Google Scholar 

  90. R. Clavel: Conception dʼun robot parallèle rapide à 4 degrés de liberté. Ph.D. Thesis (EPFL, Lausanne 1991), no 925

    Google Scholar 

  91. J. Gallardo, J.M. Rico, A. Frisoli, D. Checcacci, M. Bergamasco: Dynamics of parallel manipulators by means of screw theory, Mechanism Machine Theory 38(11), 1113–1131 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  92. L.-W. Tsai: Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work, ASME J. Mech. Des. 122(1), 3–9 (2000)

    Article  Google Scholar 

  93. J. Wang, C.M. Gosselin: A new approach for the dynamic analysis of parallel manipulators, Multibody Syst. Dyn. 2(3), 317–334 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  94. Z. Geng, L.S. Haynes: On the dynamic model and kinematic analysis of a class of Stewart platforms, Robot. Auton. Syst. 9(4), 237–254 (1992)

    Article  Google Scholar 

  95. K. Liu, F. Lewis, G. Lebret, D. Taylor: The singularities and dynamics of a Stewart platform manipulator, J. Intell. Robot. Syst. 8, 287–308 (1993)

    Article  Google Scholar 

  96. K. Miller, R. Clavel: The Lagrange-based model of Delta-4 robot dynamics, Robotersysteme 8(1), 49–54 (1992)

    Google Scholar 

  97. K. Miller: Optimal design and modeling of spatial parallel manipulators, Int. J. Robot. Res. 23(2), 127–140 (2004)

    Article  Google Scholar 

  98. A. Codourey, E. Burdet A body oriented method for finding a linear form of the dynamic equations of fully parallel robot. In: IEEE Int. Conf. on Robotics and Automation, Albuquerque, (1997) pp. 1612–1618

    Google Scholar 

  99. B. Dasgupta, P. Choudhury: A general strategy based on the Newton–Euler approach for the dynamic formulation of parallel manipulators, Mechanism Machine Theory 34(6), 801–824 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  100. P. Guglielmetti: Model-Based control of fast parallel robots: a global approach in operational space. Ph.D. Thesis (EPFL, Lausanne 1994)

    Google Scholar 

  101. K. Harib, K. Srinivasan: Kinematic and dynamic analysis of Stewart platform-based machine tool structures, Robotica 21(5), 541–554 (2003)

    Article  Google Scholar 

  102. W. Khalil, O. Ibrahim: General solution for the dynamic modeling of parallel robots. In: IEEE Int. Conf. on Robotics and Automation, New Orleans, (2004) pp. 3665–3670

    Google Scholar 

  103. C. Reboulet, T. Berthomieu: Dynamic model of a six degree of freedom parallel manipulator. In: ICAR, Pise, (1991) pp. 1153–1157

    Google Scholar 

  104. H. Abdellatif, B. Heimann: Adapted time-optimal trajectory planning for parallel with full dynamic modelling. In: IEEE Int. Conf. on Robotics and Automation, Barcelona, (2005) pp. 413–418

    Google Scholar 

  105. S. Tadokoro: Control of parallel mechanisms, Adv. Robot. 8(6), 559–571 (1994)

    Article  Google Scholar 

  106. M. Honegger, A. Codourey, E. Burdet: Adaptive control of the Hexaglide, a 6 dof parallel manipulator. In: IEEE Int. Conf. on Robotics and Automation, Albuquerque, (1997) pp. 543–548

    Google Scholar 

  107. S. Bhattacharya, H. Hatwal, A. Ghosh: An on-line estimation scheme for generalized Stewart platform type parallel manipulators, Mechanism Machine Theory 32(1), 79–89 (1997)

    Article  MATH  Google Scholar 

  108. J. Hesselbach, O. Becker, M. Krefft, I. Pietsch, N. Plitea: Dynamic modelling of plane parallel robot for control purposes. In: 3rd Chemnitzer Parallelkinematik Seminar, Chemnitz, (2002) pp. 391–409

    Google Scholar 

  109. P. Guglielmetti, R. Longchamp: A closed-form inverse dynamics model of the Delta parallel robot. In: 4th IFAC Symp. on Robot Control, Syroco, Capri, (1994) pp. 51–56

    Google Scholar 

  110. K. Miller: Modeling of dynamics and model-based control of DELTA direct-drive parallel robot, J. Robot. Mechatron. 17(4), 344–352 (1995)

    Google Scholar 

  111. E. Burdet, M. Honegger, A. Codourey: Controllers with desired dynamic compensation and their implementation on a 6 dof parallel manipulator. In: IEEE Int. Conf. on Intelligent Robots and Systems (IROS), Takamatsu, (2000)

    Google Scholar 

  112. K. Yamane, M. Okada, N. Komine, Y. Nakamura: Parallel dynamics computation and h !!!*AMP*!!!#8734; acceleration control of parallel manipulators for acceleration display, J. Dyn. Syst. Meas. Control 127(2), 185–191 (2005)

    Article  Google Scholar 

  113. J.E. McInroy: Modeling and design of flexure jointed Stewart platforms for control purposes, IEEE/ASME Trans. Mechatron. 7(1), 95–99 (2002)

    Article  Google Scholar 

  114. F. Xi: Dynamic balancing of hexapods for high-speed applications, Robotica 17(3), 335–342 (1999)

    Article  Google Scholar 

  115. J. Angeles The robust design of parallel manipulators. In: 1st Int. Colloquium, Collaborative Research Centre 562, Braunschweig, (2002) pp. 9–30

    Google Scholar 

  116. S. Bhattacharya, H. Hatwal, A. Ghosh: On the optimum design of a Stewart platform type parallel manipulators, Robotica 13(2), 133–140 (1995)

    Article  Google Scholar 

  117. K.E. Zanganeh, J. Angeles: Kinematic isotropy and the optimum design of parallel manipulators, Int. J. Robot. Res. 16(2), 185–197 (1997)

    Article  Google Scholar 

  118. H. Fang, J.-P. Merlet: Multi-criteria optimal design of parallel manipulators based on interval analysis, Mechanism Machine Theory 40(2), 151–171 (2005)

    Google Scholar 

  119. www-nads-sc.uiowa.edu

  120. www.sop.inria.fr/coprin/equipe/merlet/merlet_eng.html

  121. www.parallemic.org

  122. J.-P. Merlet: Parallel Robots (Springer, Heidelberg 2006)

    MATH  Google Scholar 

  123. L.-W. Tsai: Robot Analysis: The Mechanics of Serial and Parallel Manipulators (Wiley, Hoboken 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Pierre Merlet or Clément Gosselin Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Merlet, JP., Gosselin, C. (2008). Parallel Mechanisms and Robots. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics