Skip to main content

Robot Hands

  • Reference work entry

Abstract

Multifingered robot hands have a potential capability for achieving dexterous manipulation of objects by using rolling and sliding motions. This chapter addresses design, actuation, sensing and control of multifingered robot hands. From the design viewpoint, they have a strong constraint in actuator implementation due to the space limitation in each joint. After briefly introducing the overview of anthropomorphic end-effector and its dexterity in Sect. 15.1, various approaches for actuation are provided with their advantages and disadvantages in Sect. 15.2. The key classification is (1) remote actuation or build-in actuation and (2) the relationship between the number of joints and the number of actuator. In Sect. 15.3, actuator and sensors used for multifingered hands are described. In Sect. 15.4, modeling and control are introduced by considering both dynamic effects and friction. Applications and trends are given in Sect. 15.5. Finally, this chapter is closed with conclusions and further reading.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

IT:

inferotemporal

IT:

intrinsic tactile

JPL:

Jet Propulsion Laboratory

NASA:

National Aeronautics and Space Agency

TDT:

tension differential type

References

  1. T. Okada: Object-handling system for manual industry, IEEE Trans. Syst. Man Cybern. 2, 79–86 (1979)

    Article  Google Scholar 

  2. K.S. Salisbury, B. Roth: Kinematics and force analysis of articulated mechanical hands, J. Mechan. Trans. Actuat. Des. 105, 35–41 (1983)

    Google Scholar 

  3. S.C. Jacobsen, E.K. Lversen, D.F. Knutti, R.T. Lohnsan, K.B. Biggers: Design of the Utah/MIT dexterous hand, Proc. IEEE Int. Conf. Robot. Autom. ICRA86 (1986)

    Google Scholar 

  4. J. Butterfass, G. Hirzinger, S. Knoch, H. Liu: DLRʼs multisensory articulated hand. Part I: Hard- and software architecture, Proc. IEEE Int. Conf. Robot. Autom. ICRA99 (1999)

    Google Scholar 

  5. C. Melchiorri, G. Vassura: Mechanical and control features of the university of Bologna hand version 2, Proc. IEEE/RSJ Int. Conf. Int. Robot. Syst. IROSʼ92 (Raleigh 1992) pp. 187–193

    Google Scholar 

  6. W.T. Townsend: MCB – industrial robot feature article- Barrett hand grasper, Ind. Robot. 27(3), 181–188 (2000)

    Article  MathSciNet  Google Scholar 

  7. H. Kawasaki, T. Komatsu, K. Uchiyama: Dexterous anthropomophic robot hand with distributed tactile sensor: Gifu hand II, IEEE/ASME Trans. Mechatron. 7(3), 296–303 (2002)

    Article  Google Scholar 

  8. T.J. Doll, H.J. Scneebeli: The Karlsruhe hand, Preprint IFAC Symp. Robot Contr. SYROCO (1988) pp. 1–6

    Google Scholar 

  9. N. Fukaya, S. Toyama, T. Asfour, R. Dillmann: Design of the TUAT/Karlsruhe humanoid Hand, Intell. Robot. Syst. 3, 1754–1759 (2000)

    Google Scholar 

  10. A. Bicchi, A. Marigo: Dexterous grippers: putting nonholonomy to work for fine manipulation, Int. J. Robot. Res. 21(5-6), 427–442 (2002)

    Article  Google Scholar 

  11. M.C. Carrozza, C. Suppo, F. Sebastiani, B. Massa, F. Vecchi, R. Lazzarini, M.R. Cutkosky, P. Dario: The SPRING hand: development of a self-adaptive prosthesis for restoring natural grasping, Auton. Robots 16(2), 125–141 (2004)

    Article  Google Scholar 

  12. J.L. Pons, E. Rocon, R. Ceres, D. Reynaerts, B. Saro, S. Levin, W. Van Moorleghem: The MANUS-hand dextrous robotics upper limb prosthesis: mechanical and manipulation aspects, Auton. Robots 16(2), 143–163 (2004)

    Article  Google Scholar 

  13. T. Iberall, C.L. MacKenzie: Opposition space and human prehension. In: Dextrous Robot Hands, ed. by T. Iberall, S.T. Venkataraman (Springer, New York 1990)

    Google Scholar 

  14. A. Bicchi: Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity, IEEE Trans. Robot. Autom. 16(6), 652–662 (2000)

    Article  Google Scholar 

  15. M.R. Cutkosky: On grasp choice, grasp models, and the design of hands for manufacturing tasks, IEEE Trans. Robot. Autom. 5(3), 269–279 (1989)

    Article  MathSciNet  Google Scholar 

  16. J. Butterfass, M. Grebenstein, H. Liu, G. Hirzinger: DLR-hand ii: next generation of a dextrous robot hand, Proc. IEEE Int. Conf. Robot. Autom. ICRA01 (Seoul 2001)

    Google Scholar 

  17. C. Melchiorri, G. Vassura: Mechanical and control features of the UB hand version II, Proc. IEEE/RSJ Int. Conf. Int. Robot. Syst. IROSʼ92 (1992)

    Google Scholar 

  18. R.O. Ambrose, H. Aldridge, R.S. Askew, R.R. Burridge, W. Bluethmann, M. Diftler, C. Lovchik, D. Magruder, F. Rehnmark: Robonaut: NASAʼs space humanoid, IEEE Int. Syst. (2000)

    Google Scholar 

  19. L. Birglen, C.M. Gosselin: Kinetostatic analysis of underactuated fingers, IEEE Trans. Robot. Autom. 20(2), 211 (2004)

    Article  Google Scholar 

  20. I. Yamano, T. Maeno: Five-fingered robot hand using ultrasonic motors and elastic elements, Proc. IEEE Int. Conf. Robot. Autom. (2005) pp. 2684–2689

    Google Scholar 

  21. Shadow Dexterous Hand, (Shadow Robot Ltd., London 2007) http://www.shadow.org.uk/

    Google Scholar 

  22. M. Kaneko, M. Higashimori, R. Takenaka, A. Namiki, M. Ishikawa: The 100G capturing robot -too fast to see, Proc. 8th Int. Symp. Artif. Life Robot. (2003) pp. 291–296

    Google Scholar 

  23. W. Paetsch, M. Kaneko: A three fingered multijointed gripper for experimental use, Proc. IEEE Int. Workshop Int. Robot. Syst. IROSʼ90 (1990) pp. 853–858

    Google Scholar 

  24. H. Maekawa, K. Yokoi, K. Tanie, M. Kaneko, N. Kimura, N. Imamura: Development of a three-fingerd robot hand with stiffness control capability, Mechatronics 2(5), 483–494 (1992)

    Article  Google Scholar 

  25. A. Bicchi: A Criterion for optimal design of multiaxis force sensors, J. Robot. Auton. Syst. 10(4), 269–286 (1992)

    Article  Google Scholar 

  26. A. Pugh: Robot Sensors: Tactile and Non-Vision, Vol. 2 (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  27. H.R. Nicholls, M.H. Lee: A survey of robot tactile sensing technology, Int. J. Robot. Res., 8(3), 3–30 (1989)

    Article  Google Scholar 

  28. W.T. Townsend, J.K. Salisbury: Mechanical bandwidth as a guideline to high-performance manipulator design, Proc. IEEE Int. Conf. Robot. Autom. ICRA89 (1989)

    Google Scholar 

  29. S.D. Eppinger, W.P. Seering: Three dynamic problems in robot force control, IEEE Trans. Robot. Autom. 8(6), 751–758 (1992)

    Article  Google Scholar 

  30. W.T. Townsend, J.K. Salisbury: The effect of coulomb friction and stiction on force control, Proc. IEEE Int. Conf. Robot. Autom. ICRA87 (1987)

    Google Scholar 

  31. M. Kaneko, T. Yamashita, K. Tanie: Basic considerations on transmission characteristics for tendon drive robots, Proc. 5th Int. Conf. Adv. Robot. (1991), 827–832

    Google Scholar 

  32. R.M. Murray, Z. Li, S.S. Sastry: A Mathematical Introduction to Robotic Manipulation (CRC, Boca Raton 1994)

    MATH  Google Scholar 

  33. J. Mason, J.K. Salisbury: Robot Hands and the Mechanics of Manipulation (MIT Press, Cambridge 1985)

    Google Scholar 

  34. M.R. Cutkosky: Robotic Grasping and Fine Manipulation (Springer, New York 1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claudio Melchiorri Prof or Makoto Kaneko Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Melchiorri, C., Kaneko, M. (2008). Robot Hands. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics