Skip to main content

Cooperative Manipulators

  • Reference work entry

Abstract

This chapter is devoted to cooperative manipulation of a common object by means of two or more robotic arms. The chapter opens with a historical overview of the research on cooperative manipulation, ranging from early 1970s to very recent years. Kinematics and dynamics of robotic arms cooperatively manipulating a tightly grasped rigid object are presented in depth. As for the kinematics and statics, the chosen approach is based on the so-called symmetric formulation; fundamentals of dynamics and reduced-order models for closed kinematic chains are discussed as well. A few special topics, such as the definition of geometrically meaningful cooperative task space variables, the problem of load distribution, and the definition of manipulability ellipsoids, are included to give the reader a complete picture of modeling and evaluation methodologies for cooperative manipulators. Then, the chapter presents the main strategies for controlling both the motion of the cooperative system and the interaction forces between the manipulators and the grasped object; in detail, fundamentals of hybrid force/position control, proportional–derivative (PD)-type force/position schemes, feedback linearization techniques, and impedance control approaches are given. In the last section further reading on advanced topics related to control of cooperative robots is suggested; in detail, advanced nonlinear control strategies are briefly discussed (i.e., intelligent control approaches, synchronization control, decentralized control); also, fundamental results on modeling and control of cooperative systems possessing some degree of flexibility are briefly outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

PD:

proportional-derivative

References

  1. S. Fujii, S. Kurono: Coordinated computer control of a pair of manipulators, Proc. 4th IFToMM World Congress (Newcastle upon Tyne 1975) pp. 411–417

    Google Scholar 

  2. E. Nakano, S. Ozaki, T. Ishida, I. Kato: Cooperational control of the anthropomorphous manipulator ʼMELARMʼ, Proc. 4th Int. Symp. Ind. Robots (Tokyo 1974) pp. 251–260

    Google Scholar 

  3. K. Takase, H. Inoue, K. Sato, S. Hagiwara: The design of an articulated manipulator with torque control ability, Proc. 4th Int. Symp. Ind. Robots (Tokyo 1974) pp. 261–270

    Google Scholar 

  4. S. Kurono: Cooperative control of two artificial hands by a mini-computer, Prepr. 15th Joint Conf. on Automatic Control (1972) pp. 365–366, (in Japanese)

    Google Scholar 

  5. A.J. Koivo, G.A. Bekey: Report of workshop on coordinated multiple robot manipulators: planning, control, and applications, IEEE J. Robot. Autom. 4(1), 91–93 (1988)

    Google Scholar 

  6. P. Dauchez, R. Zapata: Co-ordinated control of two cooperative manipulators: the use of a kinematic model, Proc. 15th Int. Symp. Ind. Robots (Tokyo 1985) pp. 641–648

    Google Scholar 

  7. N.H. McClamroch: Singular systems of differential equations as dynamic models for constrained robot systems, Proc. 1986 IEEE Int. Conf. on Robotics and Automation (San Francisco 1986) pp. 21–28

    Google Scholar 

  8. T.J. Tarn, A.K. Bejczy, X. Yun: New nonlinear control algorithms for multiple robot arms, IEEE Trans. Aerosp. Electron. Syst. 24(5), 571–583 (1988)

    Article  Google Scholar 

  9. S. Hayati: Hybrid position/force control of multi-arm cooperating robots, Proc. 1986 IEEE Int. Conf. on Robotics and Automation (San Francisco 1986) pp. 82–89

    Google Scholar 

  10. M. Uchiyama, N. Iwasawa, K. Hakomori: Hybrid position/force control for coordination of a two-arm robot, Proc. 1987 IEEE Int. Conf. on Robotics and Automation (Raleigh 1987) pp. 1242–1247

    Google Scholar 

  11. M. Uchiyama, P. Dauchez: A symmetric hybrid position/force control scheme for the coordination of two robots, Proc. 1988 IEEE Int. Conf. on Robotics and Automation (Philadelphia 1988) pp. 350–356

    Google Scholar 

  12. M. Uchiyama, P. Dauchez: Symmetric kinematic formulation and non-master/slave coordinated control of two-arm robots, Adv. Robot. 7(4), 361–383 (1993)

    Article  Google Scholar 

  13. I.D. Walker, R.A. Freeman, S.I. Marcus: Analysis of motion and internal force loading of objects grasped by multiple cooperating manipulators, Int. J. Robot. Res. 10(4), 396–409 (1991)

    Article  Google Scholar 

  14. R.G. Bonitz, T.C. Hsia: Force decomposition in cooperating manipulators using the theory of metric spaces and generalized inverses, Proc. 1994 IEEE Int. Conf. on Robotics and Automation (San Diego 1994) pp. 1521–1527

    Google Scholar 

  15. D. Williams, O. Khatib: The virtual linkage: a model for internal forces in multi-grasp manipulation, Proc. 1993 IEEE Int. Conf. on Robotics and Automation (Atlanta 1993) pp. 1025–1030

    Google Scholar 

  16. K.S. Sang, R. Holmberg, O. Khatib: The augmented object model: cooperative manipulation and parallel mechanisms dynmaics, Proceedings of the 2000 IEEE International Conference on Robotics and Automation (San Francisco 1995) pp. 470–475

    Google Scholar 

  17. J.T. Wen, K. Kreutz-Delgado: Motion and force control of multiple robotic manipulators, Automatica 28(4), 729–743 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. T. Yoshikawa, X.Z. Zheng: Coordinated dynamic hybrid position/force control for multiple robot manipulators handling one constrained object, Int. J. Robot. Res. 12, 219–230 (1993)

    Article  Google Scholar 

  19. V. Perdereau, M. Drouin: Hybrid external control for two robot coordinated motion, Robotica 14, 141–153 (1996)

    Article  Google Scholar 

  20. H. Bruhm, J. Deisenroth, P. Schadler: On the design and simulation-based validation of an active compliance law for multi-arm robots, Robot. Auton. Syst. 5, 307–321 (1989)

    Article  Google Scholar 

  21. S.A. Schneider, R.H. Cannon Jr.: Object impedance control for cooperative manipulation: Theory and experimental results, IEEE Trans. Robot. Autom. 8, 383–394 (1992)

    Article  Google Scholar 

  22. R.G. Bonitz, T.C. Hsia: Internal force-based impedance control for cooperating manipulators, IEEE Trans. Robot. Autom. 12, 78–89 (1996)

    Article  Google Scholar 

  23. Y.-R. Hu, A.A. Goldenberg, C. Zhou: Motion and force control of coordinated robots during constrained motion tasks, Int. J. Robot. Res. 14, 351–365 (1995)

    Article  Google Scholar 

  24. Y.-H. Liu, S. Arimoto: Decentralized adaptive and nonadaptive position/force controllers for redundant manipulators in cooperation, Int. J. Robot. Res. 17, 232–247 (1998)

    Article  Google Scholar 

  25. P. Chiacchio, S. Chiaverini, B. Siciliano: Direct and inverse kinematics for coordinated motion tasks of a two-manipulator system, ASME J. Dyn. Syst. Meas. Contr. 118, 691–697 (1996)

    Article  MATH  Google Scholar 

  26. F. Caccavale, P. Chiacchio, S. Chiaverini: Task-Space regulation of cooperative manipulators, Automatica 36, 879–887 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. G.R. Luecke, K.W. Lai: A joint error-feedback approach to internal force regulation in cooperating manipulator systems, J. Robot. Syst. 14, 631–648 (1997)

    Article  MATH  Google Scholar 

  28. F. Caccavale, P. Chiacchio, S. Chiaverini: Stability analysis of a joint space control law for a two-manipulator system, IEEE Trans. Autom. Contr. 44, 85–88 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. P. Hsu: Coordinated control of multiple manipulator systems, IEEE Trans. Robot. Autom. 9, 400–410 (1993)

    Article  Google Scholar 

  30. P. Chiacchio, S. Chiaverini, L. Sciavicco, B. Siciliano: Global task space manipulability ellipsoids for multiple arm systems, IEEE Trans. Robot. Autom. 7, 678–685 (1991)

    Article  Google Scholar 

  31. S. Lee: Dual redundant arm configuration optimization with task-oriented dual arm manipulability, IEEE Trans. Robot. Autom. 5, 78–97 (1989)

    Article  Google Scholar 

  32. T. Kokkinis, B. Paden: Kinetostatic performance limits of cooperating robot manipulators using force-velocity polytopes, Proc. of ASME Winter Annual Meeting–robotics Research (San Francisco 1989)

    Google Scholar 

  33. P. Chiacchio, S. Chiaverini, L. Sciavicco, B. Siciliano: Task space dynamic analysis of multiarm system configurations, Int. J. Robot. Res. 10, 708–715 (1991)

    Article  Google Scholar 

  34. D.E. Orin, S.Y. Oh: Control of force distribution in robotic mechanisms containing closed kinematic chains, Trans. ASME J. Dyn. Syst. Meas. Contr. 102, 134–141 (1981)

    Article  Google Scholar 

  35. Y.F. Zheng, J.Y.S. Luh: Optimal load distribution for two industrial robots handling a single object, Proc. 1988 IEEE Int. Conf. on Robotics and Automation (Philadelphia 1988) pp. 344–349

    Google Scholar 

  36. I.D. Walker, S.I. Marcus, R.A. Freeman: Distribution of dynamic loads for multiple cooperating robot manipulators, J. Robot. Syst. 6, 35–47 (1989)

    Article  MATH  Google Scholar 

  37. M. Uchiyama: A unified approach to load sharing, motion decomposing, and force sensing of dual arm robots, Robotics Research: 5th Int. Symp., ed. by H. Miura, S. Arimoto (MIT, 1990) pp. 225–232

    Google Scholar 

  38. M.A. Unseren: A new technique for dynamic load distribution when two manipulators mutually lift a rigid object. Part 1: The proposed technique, Proc. First World Automation Congress (WAC ʼ94), Vol. 2 (Maui 1994) pp. 359–365

    Google Scholar 

  39. M.A. Unseren: A new technique for dynamic load distribution when two manipulators mutually lift a rigid object. Part 2: Derivation of entire system model and control architecture, Proc. First World Automation Congress (WAC ʼ94), Vol. 2 (Maui 1994) pp. 367–372

    Google Scholar 

  40. M. Uchiyama, T. Yamashita: Adaptive load sharing for hybrid controlled two cooperative manipulators, Proc. 1991 IEEE Int. Conf. on Robotics and Automation (Sacramento 1991) pp. 986–991

    Google Scholar 

  41. M. Uchiyama, Y. Kanamori: Quadratic programming for dextrous dual-arm manipulation. In: Robotics, Mechatronics and Manufacturing Systems, Trans. IMACS/SICE Int. Symp. on Robotics, Mechatronics and Manufacturing Systems, Kobe, Japan, September 1992, ed. by T. Takamori, K. Tsuchiya (Elsevier, North-Holland 1993) pp. 367–372

    Google Scholar 

  42. Y.F. Zheng, M.Z. Chen: Trajectory planning for two manipulators to deform flexible beams, Proc. 1993 IEEE Int. Conf. on Robotics and Automation (Atlanta 1993) pp. 1019–1024

    Google Scholar 

  43. M.M. Svinin, M. Uchiyama: Coordinated dynamic control of a system of manipulators coupled via a flexible object, Prepr. 4th IFAC Symp. on Robot Control (Capri 1994) pp. 1005–1010

    Google Scholar 

  44. T. Yukawa, M. Uchiyama, D.N. Nenchev, H. Inooka: Stability of control system in handling of a flexible object by rigid arm robots, Proc. 1996 IEEE Int. Conf. on Robotics and Automation (Minneapolis 1996) pp. 2332–2339

    Google Scholar 

  45. M. Yamano, J.-S. Kim, A. Konno, M. Uchiyama: Cooperative control of a 3D dual-flexible-arm robot, J. Intell. Robot. Syst. 39, 1–15 (2004)

    Article  Google Scholar 

  46. T. Miyabe, A. Konno, M. Uchiyama, M. Yamano: An approach toward an automated object retrieval operation with a two-arm flexible manipulator, Int. J. Robot. Res. 23, 275–291 (2004)

    Article  Google Scholar 

  47. M. Uchiyama, A. Konno: Modeling, controllability and vibration suppression of 3D flexible robots. In: Robotics Research, The 7th Int. Symp, ed. by G. Giralt, G. Hirzinger (Springer, London 1996) pp. 90–99

    Google Scholar 

  48. K. Munawar, M. Uchiyama: Slip compensated manipulation with cooperating multiple robots, 36th IEEE CDC (San Diego 1997)

    Google Scholar 

  49. D. Sun, J.K. Mills: Adaptive synchronized control for coordination of multirobot assembly tasks, IEEE Trans. Robot. Autom. 18, 498–510 (2002)

    Article  Google Scholar 

  50. A. Rodriguez-Angeles, H. Nijmeijer: Mutual synchronization of robots via estimated state feedback: a cooperative approach, IEEE Trans. Contr. Syst. Technol. 12, 542–554 (2004)

    Article  Google Scholar 

  51. K.-Y. Lian, C.-S. Chiu, P. Liu: Semi-decentralized adaptive fuzzy control for cooperative multirobot systems with H-inf motion/internal force tracking performance, IEEE Trans. Syst. Man Cybern. – Part B: Cybernetics 32, 269–280 (2002)

    Article  Google Scholar 

  52. W. Gueaieb, F. Karray, S. Al-Sharhan: A robust adaptive fuzzy position/force control scheme for cooperative manipulators, IEEE Trans. Contr. Syst. Technol. 11, 516–528 (2003)

    Article  Google Scholar 

  53. J. Gudiño-Lau, M.A. Arteaga, L.A. Muñoz, V. Parra-Vega: On the control of cooperative robots without velocity measurements, IEEE Trans. Contr. Syst. Technol. 12, 600–608 (2004)

    Article  Google Scholar 

  54. H. Inoue: Computer controlled bilateral manipulator, Bull. JSME 14(69), 199–207 (1971)

    Google Scholar 

  55. M. Uchiyama, T. Kitano, Y. Tanno, K. Miyawaki: Cooperative multiple robots to be applied to industries, Proc. World Automation Congress (WAC ʼ96), Vol. 3 (Montpellier 1996) pp. 759–764

    Google Scholar 

  56. B.M. Braun, G.P. Starr, J.E. Wood, R. Lumia: A framework for implementing cooperative motion on industrial controllers, IEEE Trans. Robot. Autom. 20, 583–589 (2004)

    Article  Google Scholar 

  57. D. Sun, J.K. Mills: Manipulating rigid payloads with multiple robots using compliant grippers, IEEE/ASME Trans. Mechatron. 7, 23–34 (2002)

    Article  Google Scholar 

  58. J.Y.S. Luh, Y.F. Zheng: Constrained relations between two coordinated industrial robots for motion control, Int. J. Robot. Res. 6, 60–70 (1987)

    Article  Google Scholar 

  59. A.J. Koivo, M.A. Unseren: Reduced order model and decoupled control architecture for two manipulators holding a rigid object, ASME J. Dyn. Syst. Meas. Contr. 113, 646–654 (1991)

    Article  MATH  Google Scholar 

  60. M.A. Unseren: Rigid body dynamics and decoupled control architecture for two strongly interacting manipulators manipulators, Robotica 9, 421–430 (1991)

    Article  Google Scholar 

  61. J. Duffy: The fallacy of modern hybrid control theory that is based on ``Orthogonal Complementsʼʼ of twist and wrench spaces, J. Robot. Syst. 7, 139–144 (1990)

    Article  Google Scholar 

  62. K.L. Doty, C. Melchiorri, C. Bonivento: A theory of generalized inverses applied to robotics, Int. J. Robot. Res. 12, 1–19 (1993)

    Article  Google Scholar 

  63. O. Khatib: Object manipulation in a multi-effector robot system,. In: Robotics Research, Vol. 4, ed. by R. Bolles, B. Roth (MIT Press, Cambridge 1988) pp. 137–144

    Google Scholar 

  64. O. Khatib: Inertial properties in robotic manipulation: An object level framework, Int. J. Robot. Res. 13, 19–36 (1995)

    Article  Google Scholar 

  65. F. Caccavale, L. Villani: Impedance control of cooperative manipulators, Mach. Intell. Robot. Contr. 2, 51–57 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabrizio Caccavale Prof or Masaru Uchiyama Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Caccavale, F., Uchiyama, M. (2008). Cooperative Manipulators. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics