Skip to main content

Motion Control of Wheeled Mobile Robots

  • Reference work entry

Abstract

This chapter may be seen as a follow up to Chap. 17, devoted to the classification and modeling of basic wheeled mobile robot (WMR) structures, and a natural complement to Chap. 35, which surveys motion planning methods for WMRs. A typical output of these methods is a feasible (or admissible) reference state trajectory for a given mobile robot, and a question which then arises is how to make the physical mobile robot track this reference trajectory via the control of the actuators with which the vehicle is equipped. The object of the present chapter is to bring elements of the answer to this question based on simple and effective control strategies. A first approach would consist in applying open-loop steering control laws like those developed in Chap. 35. However, it is well known that this type of control is not robust to modeling errors (the sources of which are numerous) and that it cannot guarantee that the mobile robot will move along the desired trajectory as planned. This is why the methods here presented are based on feedback control. Their implementation supposes that one is able to measure the variables involved in the control loop (typically the position and orientation of the mobile robot with respect to either a fixed frame or a path that the vehicle should follow). Throughout this chapter we will assume that these measurements are available continuously in time and that they are not corrupted by noise. In a general manner, robustness considerations will not be discussed in detail, one reason being that, beyond imposed space limitations, a large part of the presented approaches are based on linear control theory. The feedback control laws then inherit the strong robustness properties associated with stable linear systems. Results can also be subsequently refined by using complementary, eventually more elaborate, automatic control techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

DOF:

degree of freedom

GPS:

global positioning system

WMR:

wheeled mobile robot

References

  1. P. Morin, C. Samson: Control of non-linear chained systems. From the Routh–Hurwitz stability criterion to time-varying exponential stabilizers, IEEE Trans. Autom. Control 45, 141–146 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. R.W. Brockett: Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory, ed. by R.W. Brockett, R.S. Millman, H.J. Sussmann (Birkauser, Boston 1983)

    Google Scholar 

  3. C. Samson: Velocity and torque feedback control of a nonholonomic cart, Proc. Int. Workshop Adapt. Nonlinear Control: Issues in Robotics (1990), also in LNCIS, Vol. 162, (Springer, Berlin, Heidelberg 1991)

    Google Scholar 

  4. J.-M. Coron: Global asymptotic stabilization for controllable systems without drift, Math. Control Signals Syst. 5, 295–312 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Samson: Control of chained systems. Application to path following and time-varying point-stabilization, IEEE Trans. Autom. Control 40, 64–77 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Morin, C. Samson: Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics, ESAIM: Control Optim. Calc. Var. 4, 1–36 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. D.A. Lizárraga: Obstructions to the existence of universal stabilizers for smooth control systems, Math. Control Signals Syst. 16, 255–277 (2004)

    Article  MATH  Google Scholar 

  8. P. Morin, C. Samson: Practical stabilization of driftless systems on Lie groups: the transverse function approach, IEEE Trans. Autom. Control 48, 1496–1508 (2003)

    Article  MathSciNet  Google Scholar 

  9. P. Morin, C. Samson: A characterization of the Lie algebra rank condition by transverse periodic functions, SIAM J. Control Optim. 40(4), 1227–1249 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Artus, P. Morin, C. Samson: Control of a maneuvering mobile robot by transverse functions, Proc. Symp. Adv. Robot Kinemat. (ARK) (2004) pp. 459–468

    Google Scholar 

  11. G. Artus, P. Morin, C. Samson: Tracking of an omnidirectional target with a nonholonomic mobile robot, Proc. IEEE Conf. Adv. Robotics (ICAR) (2003) pp. 1468–1473

    Google Scholar 

  12. P. Morin, C. Samson: Trajectory tracking for non-holonomic vehicles: overview and case study, Proc. 4th Int. Workshop Robot Motion Control (RoMoCo), ed. by K. Kozlowski (2004) pp. 139–153

    Google Scholar 

  13. O.J. Sørdalen: Conversion of the kinematics of a car with n trailers into a chained form, Proc. IEEE Int. Conf. Robot. Autom. (1993) pp. 382–387

    Google Scholar 

  14. P. Rouchon, M. Fliess, J. Lévine, P. Martin: Flatness, motion planning and trailer systems, Proc. IEEE Int. Conf. Decis. Control (1993) pp. 2700–2705

    Google Scholar 

  15. P. Bolzern, R.M. DeSantis, A. Locatelli, D. Masciocchi: Path-tracking for articulated vehicles with off-axle hitching, IEEE Trans. Control Syst. Technol. 6, 515–523 (1998)

    Article  Google Scholar 

  16. D.A. Lizárraga: Contributions à la stabilisation des systèmes non-linéaires et à la commande de véhicules sur roues. Ph.D. Thesis (INRIA-INPG, University of Grenoble, France 2000)

    Google Scholar 

  17. C. Altafini: Path following with reduced off-tracking for multibody wheeled vehicles, IEEE Trans. Control Syst. Technol. 11, 598–605 (2003)

    Article  Google Scholar 

  18. F. Lamiraux, J.-P. Laumond: A practical approach to feedback control for a mobile robot with trailer, Proc. IEEE Int. Conf. Robotics Autom. (1998) pp. 3291–3296

    Google Scholar 

  19. D.A. Lizárraga, P. Morin, C. Samson: Chained form approximation of a driftless system. Application to the exponential stabilization of the general N-trailer system, Int. J. Control 74, 1612–1629 (2001)

    Article  MATH  Google Scholar 

  20. M. Venditelli, G. Oriolo: Stabilization of the general two-trailer system, Proc. IEEE Int. Conf. Robot. Autom. (2000) pp. 1817–1823

    Google Scholar 

  21. M. Maya-Mendez, P. Morin, C. Samson: Control of a nonholonomic mobile robot via sensor-based target tracking and pose estimation, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2006) pp. 5612–5618

    Google Scholar 

  22. C. Canudas de Wit, B. Siciliano, G. Bastin: Theory of Robot Control (Springer, Berlin, Heidelberg 1996)

    MATH  Google Scholar 

  23. J.-P. Laumond (Ed.): Robot Motion Planning and Control, Lect. Notes Control Inform. Sci., Vol. 229 (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  24. Y.F. Zheng (Ed.): Recent Trends in Mobile Robots, World Scientific Ser. Robotics Automat. Syst., Vol. 11 (World Scientific, Singapore 1993)

    Google Scholar 

  25. G. Campion, G. Bastin, B. dʼAndréa-Novel: Structural properties and classification of kynematic and dynamic models of wheeled mobile robots, IEEE Trans. Robot. Autom. 12, 47–62 (1996)

    Article  Google Scholar 

  26. R.M. Murray, S.S. Sastry: Steering nonholonomic systems in chained form, Proc. IEEE Int. Conf. Decis. Control (1991) pp. 1121–1126

    Google Scholar 

  27. E.D. Dickmanns, A. Zapp: Autonomous high speed road vehicle guidance by computer vision, Proc. IFAC World Congr. (1987)

    Google Scholar 

  28. W.L. Nelson, I.J. Cox: Local path control for an autonomous vehicle, Proc. IEEE Int. Conf. Robot. Autom. (1988) pp. 1504–1510

    Google Scholar 

  29. C. Samson: Path following and time-varying feedback stabilization of a wheeled mobile robot, Proc. Int. Conf. Autom. Robot. Comput. Vis. (1992)

    Google Scholar 

  30. B. dʼAndréa-Novel, G. Campion, G. Bastin: Control of nonholonomic wheeled mobile robots by state feedback linearization, Int. J. Robot. Res. 14, 543–559 (1995)

    Article  Google Scholar 

  31. A. De Luca, M.D. Di Benedetto: Control of nonholonomic systems via dynamic compensation, Kybernetica 29, 593–608 (1993)

    MATH  Google Scholar 

  32. M. Fliess, J. Lévine, P. Martin, P. Rouchon: Flatness and defect of non-linear systems: introductory theory and examples, Int. J. Control 61, 1327–1361 (1995)

    Article  MATH  Google Scholar 

  33. I. Kolmanovsky, N.H. McClamroch: Developments in nonholonomic control problems, IEEE Control Syst. 15, 20–36 (1995)

    Article  Google Scholar 

  34. P. Morin, J.-B. Pomet, C. Samson: Developments in time-varying feedback stabilization of nonlinear systems, Proc. IFAC NOLCOS (1998) pp. 587–594

    Google Scholar 

  35. J.-B. Pomet: Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift, Syst. Control Lett. 18, 467–473 (1992)

    Article  MathSciNet  Google Scholar 

  36. A.R. Teel, R.M. Murray, G. Walsh: Nonholonomic control systems: from steering to stabilization with sinusoids, Int. J. Control 62, 849–870 (1995), also in Proc. IEEE Int. Conf. Decis. Control (1992) pp. 1603–1609

    Article  MATH  MathSciNet  Google Scholar 

  37. R.T. MʼCloskey, R.M. Murray: Exponential stabilization of driftless nonlinear control systems using homogeneous feedback, IEEE Trans. Autom. Control 42, 614–6128 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  38. M.K. Bennani, P. Rouchon: Robust stabilization of flat and chained systems, Proc. Eur. Control Conf. (1995) pp. 2642–2646

    Google Scholar 

  39. P. Lucibello, G. Oriolo: Stabilization via iterative state feedback with application to chained-form systems, Proc. IEEE Conf. Decis. Control (1996) pp. 2614–2619

    Google Scholar 

  40. O.J. Sørdalen, O. Egeland: Exponential stabilization of nonholonomic chained systems, IEEE Trans. Autom. Control 40, 35–49 (1995)

    Article  Google Scholar 

  41. A. Astolfi: Discontinuous control of nonholonomic systems, Syst. Control Lett. 27, 37–45 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  42. C. Canudas de Wit, O.J. Sørdalen: Exponential stabilization of mobile robots with nonholonomic constraints, IEEE Trans. Autom. Control 37(11), 1791–1797 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pascal Morin PhD or Claude Samson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Morin, P., Samson, C. (2008). Motion Control of Wheeled Mobile Robots. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics