Skip to main content

Multiple Mobile Robot Systems

  • Reference work entry
Book cover Springer Handbook of Robotics

Abstract

Within the context of multiple mobile robot systems, this chapter explores the current state of the art. After a brief introduction, we first examine architectures for multirobot cooperation, exploring the alternative approaches that have been developed. Next, we explore communications issues and their impact on multirobot teams in Sect. 40.3, followed by a discussion of swarm robot systems in Sect. 40.4. While swarm systems typically assume large numbers of homogeneous robots, other types of multirobot systems include heterogeneous robots. We therefore next discuss heterogeneity in cooperative robot teams in Sect. 40.5. Once robot teams allow for individual heterogeneity, issues of task allocation become important; Sect. 40.6 therefore discusses common approaches to task allocation. Section 40.7 discusses the challenges of multirobot learning, and some representative approaches. We outline some of the typical application domains which serve as test beds for multirobot systems research in Sect. 40.8. Finally, we conclude in Sect. 40.9 with some summary remarks and suggestions for further reading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BLE:

broadcast of local eligibility

DIRA:

distributed robot architecture

IA:

instantaneous allocation

MR:

magnetorheological

MR:

multiple reflection

MR:

multirobot tasks

MRTA:

multirobot task allocation

MT:

medial temporal

MT:

multitask

SR:

single-robot

ST:

single-task

TA:

time-extended assignment

US:

ultrasound

References

  1. T. Arai, E. Pagello, L.E. Parker: Editorial: Advances in multi-robot systems, IEEE Trans. Robot. Autom. 18(5), 655–661 (2002)

    Article  Google Scholar 

  2. Y. Cao, A. Fukunaga, A. Kahng: Cooperative mobile robotics: Antecedents and directions, Auton. Robot. 4, 1–23 (1997)

    Article  Google Scholar 

  3. R.G. Brown, J.S. Jennings: A pusher/steerer model for strongly cooperative mobile robot manipulation, Proc. IEEE Int. Conf. Intell. Robot. Syst. (IROS ʼ95) (IEEE, Pittsburgh 1995) pp. 562–568

    Google Scholar 

  4. D. Milutinović, P. Lima: Modeling and optimal centralized control of a large-size robotic population, IEEE Trans. Robot. 22(6), 1280–1285 (2006)

    Article  Google Scholar 

  5. B. Khoshnevis, G.A. Bekey: Centralized sensing and control of multiple mobile robots, Comput. Ind. Eng. 35(3-4), 503–506 (1998)

    Article  Google Scholar 

  6. M.J. Matarić: Issues and approaches in the design of collective autonomous agents, Robot. Auton. Syst. 16, 321–331 (1995)

    Article  Google Scholar 

  7. E. Ostergaard, G.S. Sukhatme, M.J. Matarić: Emergent bucket brigading, Fifth International Conference on Autonomous Agents (Montreal 2001)

    Google Scholar 

  8. M. Matarić: Reinforcement learning in the multi-robot domain, Auton. Robot. 4, 73–83 (1997)

    Article  Google Scholar 

  9. L.E. Parker: ALLIANCE: An Architecture for Fault-Tolerant Multi-Robot Cooperation, IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)

    Article  Google Scholar 

  10. L.E. Parker: Lifelong adaptation in heterogeneous teams: Response to continual variation in individual robot performance, Auton. Robot. 8(3), 239–267 (2000)

    Article  Google Scholar 

  11. R. Simmons, S. Singh, D. Hershberger, J. Ramos, T. Smith: First results in the coordination of heterogeneous robots for large-scale assembly, Proc. ISER 7th Int. Symp. Exp. Robot. (Springer, New York 2000)

    Google Scholar 

  12. J. Deneubourg, S. Goss, G. Sandini, F. Ferrari, P. Dario: Self-organizing collection and transport of objects in unpredictable environments. (Kyoto) pp. 1093–1098

    Google Scholar 

  13. C.R. Kube, H. Zhang: Collective robotics: From social insects to robots, Adapt. Behav. 2(2), 189–219 (1993)

    Article  Google Scholar 

  14. R. Beckers, O. Holland, J. Deneubourg: From local actions to global tasks: Stigmergy and collective robotics, Proc. 14th Int. Workshop Synth. Simul. Living Syst., ed. by R. Brooks, P. Maes (MIT Press, Cambridge 1994) pp. 181–189

    Google Scholar 

  15. S. Onn, M. Tennenholtz: Determination of social laws for multi-agent mobilization, Artif. Intell. 95, 155–167 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. B.B. Werger: Cooperation without deliberation: A minimal behavior-based approach to multi-robot teams, Artif. Intell. 110(2), 293–320 (1999)

    Article  MATH  Google Scholar 

  17. M.J. Huber, E. Durfee: Deciding when to commit to action during observation-based coordination, Proc. 1st Int. Conf. Multi-Agent Syst. (1995) pp. 163–170

    Google Scholar 

  18. H. Asama, K. Ozaki, A. Matsumoto, Y. Ishida, I. Endo: Development of task assignment system using communication for multiple autonomous robots, J. Robot. Mechatron. 4(2), 122–127 (1992)

    Google Scholar 

  19. N. Jennings: Controlling cooperative problem solving in industrial multi-agent systems using joint intentions, Artif. Intell. 75(2), 195–240 (1995)

    Article  Google Scholar 

  20. M. Tambe: Towards flexible teamwork, J. Artif. Intell. Res. 7, 83–124 (1997)

    Google Scholar 

  21. L.E. Parker: The Effect of action recognition and robot awareness in cooperative robotic teams, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IEEE, Pittsburgh 1995) pp. 212–219

    Google Scholar 

  22. M. Matarić: Behavior-based control: Examples from navigation, learning, and group behavior, J. Exp. Theor. Artif. Intell. 19(2-3), 323–336 (1997)

    Article  Google Scholar 

  23. B. MacLennan, G.M. Burghardt: Synthetic ethology and the evolution of cooperative communication, Adapt. Behav. 2, 161–188 (1993)

    Article  Google Scholar 

  24. T. Balch, R.C. Arkin: Communiation in reactive multiagent robotic systems, Auton. Robot. 1(1), 27–52 (1995)

    Article  Google Scholar 

  25. G. Dudek, M. Jenkin, E. Milios, D. Wilkes: A taxonomy for multi-agent robotics, Auton. Robot. 3, 375–397 (1996)

    Article  Google Scholar 

  26. G. Theraulaz, S. Goss, J. Gervet, J.-L. Deneubourg: Task differentiation in Polistes wasp colonies: A model for self-organizing groups of robots, Proc. 1st Int. Conf. Simul. Adaptive Behavior (Paris 1990) pp. 346–355

    Google Scholar 

  27. L. Steels: Cooperation Between Distributed Agents Through Self-Organization, ed. by Y. Demazeau, J.-P. Muller (Elsevier Science, Amsterdam 1990)

    Google Scholar 

  28. A. Drogoul, J. Ferber: From tom thumb to the dockers: Some experiments with foraging robots, Proc. 2nd Int. Conf. Simul. Adaptive Behavior (Honolulu 1992) pp. 451–459

    Google Scholar 

  29. M.J. Matarić: Designing emergent behaviors: From local interactions to collective intelligence, Proc. 2nd Int. Conf. Simul. Adaptive Behavior, ed. by J. Meyer, H. Roitblat, S. Wilson (MIT Press, Cambridge 1992) pp. 432–441

    Google Scholar 

  30. G. Beni, J. Wang: Swarm intelligence in cellular robotics systems, Proc. NATO Adv. Workshop Robot. Biol. Syst. (1989)

    Google Scholar 

  31. D. Stilwell, J. Bay: Toward the development of a material transport system using swarms of ant-like robots, Proc. IEEE Int. Conf. Robot. Autom. (Atlanta 1993) pp. 766–771

    Google Scholar 

  32. T. Fukuda, S. Nakagawa, Y. Kawauchi, M. Buss: Self organizing robots based on cell structures – CEBOT, Proc IEEE Int. Workshop Intell. Robot. Syst. (IEEE, 1988) pp. 145–150

    Google Scholar 

  33. J.H. Reif, H.Y. Wang: Social Potential fields: A distributed behavior control for autonomous robots, Robot. Auton. Syst. 27(3), 171–194 (1999)

    Article  Google Scholar 

  34. L.E. Parker: Designing control laws for cooperative agent teams, Proc. IEEE Robot. Autom. Conf. (IEEE, Atlanta 1993) pp. 582–587

    Google Scholar 

  35. K. Sugihara, I. Suzuki: Distributed algorithms for formation of goemetric patterns with many mobile robots, J. Robot. Syst. 13(3), 127–139 (1996)

    Article  MATH  Google Scholar 

  36. V. Gazi: Swarm aggregations using artificial potentials and sliding-mode control, IEEE Trans. Robot. 21(6), 1208–1214 (2005)

    Article  Google Scholar 

  37. J. McLurkin, J. Smith: Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots, Symp. Distrib. Auton. Robot. Syst. (Springer, 2004)

    Google Scholar 

  38. D. Gage: Randomized search strategies with imperfect sensors, Proc. SPIE Mobile Robots VIII (SPIE, Boston 1993) pp. 270–279

    Google Scholar 

  39. T. Balch: The impact of diversity on performance in robot foraging, Proc. 3rd Ann. Conf. Auton. Agents (ACM Press, Seattle 1999) pp. 92–99

    Chapter  Google Scholar 

  40. A. Howard, M.J. Matarić, G.S. Sukhatme: An incremental self-deployment algorithm for mobile sensor networks, Auton. Robot. 13(2), 113–126 (2002), Special Issue on Intelligent Embedded Systems

    Article  MATH  Google Scholar 

  41. Z.J. Butler, A.A. Rizzi, R.L. Hollis: Cooperative coverage of rectilinear environments, Proc. IEEE Int. Conf. Robot. Autom. (IEEE, San Francisco 2000)

    Google Scholar 

  42. A.I. Mourikis, S.I. Roumeliotis: Performance analysis of multirobot cooperative localization, IEEE Trans. Robot. 22(4), 666–681 (2006)

    Article  Google Scholar 

  43. R. Grabowski, L.E. Navarro-Serment, C.J. Paredis, P.K. Khosla: Heterogeneous teams of modular robots for mapping and exploration, Auton. Robot. 8(3), 271–298 (2000)

    Article  Google Scholar 

  44. M. Berhault, H. Huang, P. Keskinocak, S. Koenig, W. Elmaghraby, P. Griffin, A. Kleywegt: Robot exploration with combinatorial auctions, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IEEE, 2003) pp. 1957–1962

    Google Scholar 

  45. J. Kim, J.M. Esposito, V. Kumar: An RRT-based algorithm for testing and validating mulit-robot controllers, Proc. Robot.: Sci. Syst. I (2005)

    Google Scholar 

  46. Z. Cao, M. Tin, L. Li, N. Gu, S. Wang: Cooperative hunting by distributed mobile robots based on local interaction, IEEE Trans. Robot. 22(2), 403–407 (2006)

    Google Scholar 

  47. R.W. Beard, T.W. McLain, M. Goodrich: Coordinated target assignment and intercept for unmanned air vehicles, Proc. IEEE Int. Conf. Robot. Autom. (IEEE, Washington 2002)

    Google Scholar 

  48. J. Clark, R. Fierro: Cooperative hybrid control of robotic sensors for perimeter detection and tracking. (IEEE) pp. 3500–3505

    Google Scholar 

  49. P. Stone, M. Veloso: A layered approach to learning client behaviors in the RoboCup soccer server, Appl. Artif. Intell. 12, 165–188 (1998)

    Article  Google Scholar 

  50. J. McLurkin: Stupid Robot Tricks: Behavior-Based Distributed Algorithm Library for Programming Swarms of Robots. M.S. Thesis (Massachusetts Institute of Technology, Cambridge 2004)

    Google Scholar 

  51. L.E. Parker: The Effect of Heterogeneity in Teams of 100+ Mobile Robots. In: Multi-Robot Systems Volume II: From Swarms to Intelligent Automata, ed. by A. Schultz, L.E. Parker, F. Schneider (Kluwer, Dordrecht 2003)

    Google Scholar 

  52. T. Balch: Hierarchic social entropy: An information theoretic measure of robot team diversity, Auton. Robot. 8(3), 209–238 (2000)

    Article  Google Scholar 

  53. D. Jung, A. Zelinsky: Grounded symbolic communication between heterogeneous cooperating robots, Auton. Robot. 8(3), 269–292 (2000)

    Article  Google Scholar 

  54. R.R. Murphy: Marsupial robots for urban search and rescue, IEEE Intell. Syst. 15(2), 14–19 (2000)

    Article  Google Scholar 

  55. G. Sukhatme, J. F. Montgomery, R. T. Vaughan: Experiments with Cooperative Aerial-Ground Robots, Robot Teams: From Diversity to Polymorphism, ed. by T. Balch, L. E. Parker (A K Peters, Natick 2002) pp. 345–368

    Google Scholar 

  56. L.E. Parker, B. Kannan, F. Tang, M. Bailey: Tightly-coupled navigation assistance in heterogeneous multi-robot teams, Proc. IEEE Int. Conf. Intell. Robot. Syst. (IEEE, 2004)

    Google Scholar 

  57. A. Howard, L.E. Parker, G.S. Sukhatme: Experiments with a large heterogeneous mobile robot team: Exploration, mapping, deployment, and detection, Int. J. Robot. Res. 25, 431–447 (2006)

    Article  Google Scholar 

  58. L. Chaimowicz, B. Grocholsky, J.F. Keller, V. Kumar, C.J. Taylor: Experiments in multirobot air-ground coordination, Proc. IEEE Int. Conf. Robot. Autom. (IEEE, New Orleans 2004)

    Google Scholar 

  59. L.E. Parker, F. Tang: Building multi-robot coalitions through automated task solution synthesis, Proc. IEEE 94(7), 1289–1305 (2006), special issue on Multi-Robot Systems

    Article  Google Scholar 

  60. R. Zlot, A. Stentz: Market-based multirobot coordination for complex tasks, Int. J. Robot. Res. 25(1), 73–101 (2006)

    Article  Google Scholar 

  61. J. Jennings, C. Kirkwood-Watts: Distributed mobile robotics by the method of dynamic teams, Proc. 4th Int. Symp. Distrib. Auton. Robot. Syst. Karlsruhe 1998, ed. by T. Leuth, R. Dillman, P. Dario, H. Worn (Springer, Tokyo 1998)

    Google Scholar 

  62. E. Pagello, A. DʼAngelo, E. Menegatti: Cooperation issues and distributed sensing for multirobot systems, Proc. IEEE 94, 1370–1383 (2006)

    Article  Google Scholar 

  63. B. Gerkey, M.J. Matarić: A formal analysis and taxonomy of task allocation in multi-robot systems, Int. J. Robot. Res. 23(9), 939–954 (2004)

    Article  Google Scholar 

  64. D. Gale: The Theory of Linear Economic Models (McGraw-Hill, New York 1960)

    Google Scholar 

  65. E. Balas, M.W. Padberg: On the set-covering problem, Oper. Res. 20(6), 1152–1161 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  66. B.B. Werger, M.J. Matarić: Broadcast of local eligibility for multi-target observation. In: Distributed Autonomous Robotic Systems 4, ed. by L.E. Parker, G. Bekey, J. Barhen (Springer, Tokyo 2000) pp. 347–356

    Google Scholar 

  67. R.A. Brooks: A robust layered control system for a mobile robot, IEEE J. Robot. Autom. RA-2(1), 14–23 (1986)

    Article  Google Scholar 

  68. S. Botelho, R. Alami: M+: A scheme for multi-robot cooperation through negotiated task allocation and achievement, Proc. IEEE Int. Conf. Robot. Autom. (IEEE, Detroit 1999) pp. 1234–1239

    Google Scholar 

  69. R.G. Smith: The contract net protocol: High-level communication and control in a distributed problem solver, IEEE Trans. Comput. C-29(12), 1104–1113 (1980)

    Article  Google Scholar 

  70. B. Dias, R. Zlot, N. Kalra, A. Stentz: Market-based multirobot coordination: A survey and analysis, Proc. IEEE 94(7), 1257–1270 (2006)

    Article  Google Scholar 

  71. B.P. Gerkey, M.J. Matarić: Sold! Auction methods for multi-robot coordination, IEEE Trans. Robot. Autom. 18(5), 758–768 (2002)

    Article  Google Scholar 

  72. H. Kose, U. Tatlidede, C. Mericli, K. Kaplan, H. L.Akin: Q-learning based market-driven multi-agent collaboration in robot soccer, Proc. Turkish Symp. Artif. Intell. Neural Networks (Izmir 2004) pp. 219–228

    Google Scholar 

  73. D. Vail, M. Veloso: Multi-robot dynamic role assignment and coordination through shared potential fields, multi-robot systems: From swarms to intelligent automata, Proc. Int. Workshop Multi-Robot Syst., Washington, D.C., ed. by A. Schultz, L.E. Parker, F. Schneider (Springer, Dordrecht 2003) pp. 87–98

    Google Scholar 

  74. M. Lagoudakis, E. Markakis, D. Kempe, P. Keshinocak, A. Kleywegt, S. Koenig, C. Tovey, A. Meyerson, S. Jain: Auction-based multi-robot routing, Robotics: Science and Systems I (MIT Press, Cambridge 2005)

    Google Scholar 

  75. G. Rabideau, T. Estlin, S. Schien, A. Barrett: A comparison of coordinated planning methods for cooperating rovers, Proc. AIAA Space Technol. Conf. (1999)

    Google Scholar 

  76. R. Zlot, A. Stentz, M.B. Dias, S. Thayer: Multi-robot exploration controlled by a market economy, Proc. IEEE Int. Conf. Robot. Autom. (IEEE, Washington 2002) pp. 3016–3023

    Google Scholar 

  77. J. Guerrero, G. Oliver: Multi-robot task allocation strategies using auction-like mechanisms, Proc. 6th Congr. Catalan Assoc. Artif. Intell. (2003) pp. 111–122

    Google Scholar 

  78. N. Kalra, D. Ferguson, A. Stentz: Hoplites: A market-based framework for planned tight coordination in multirobot teams, Proc. IEEE Int. Conf. Robot. Autom. (IEEE, Barcelona 2005)

    Google Scholar 

  79. L. Lin, Z. Zheng: Combinatorial bids based multi-robot task allocation method, Proc. IEEE Int. Conf. Robot. Autom. (IEEE, Barcelona 2005) pp. 1145–1150

    Chapter  Google Scholar 

  80. C.-H. Fua, S.S. Ge: COBOS: Cooperative backoff adaptive scheme for multirobot task allocation, IEEE Trans. Robot. 21(6), 1168–1178 (2005)

    Article  Google Scholar 

  81. E.G. Jones, B. Browning, M.B. Dias, B. Argall, M. Veloso, A. Stentz: Dynamically formed heterogeneous robot teams performing tightly-coupled tasks, Proc. IEEE Int. Conf. Robot. Autom. (IEEE, Orlando 2006) pp. 570–575

    Google Scholar 

  82. L. Vig, J.A. Adams: Multi-robot coalition formation, IEEE Trans. Robot. 22(4), 637–649 (2006)

    Article  Google Scholar 

  83. M. Bowling, M. Veloso: Simultaneous adversarial multi-robot learning, Proc. Int. Joint Conf. Artif. Intell. (2003)

    Google Scholar 

  84. F. Fernandez, L.E. Parker: A reinforcement learning algorithm in cooperative multi-robot domains, J. Intell. Robot. Syst. 43, 161–174 (2005)

    Article  Google Scholar 

  85. C.F. Touzet: Robot awareness in cooperative mobile robot learning, Auton. Robot. 2, 1–13 (2000)

    Google Scholar 

  86. R. Steeb, S. Cammarata, F. Hayes-Roth, P. Thorndyke, R. Wesson: Distributed Intelligence for Air Fleet Control, Rand Corp. Technical Report, Number R-2728-AFPA (1981)

    Google Scholar 

  87. M. Benda, V. Jagannathan, R. Dodhiawalla: On optimal cooperation of knowledge sources, Boeing AI Center Technical Report BCS-G2010-28 (1985)

    Google Scholar 

  88. T. Haynes, S. Sen: Evolving Behavioral Strategies in Predators and Prey, Adaptation and Learning in Multi-Agent Systems, ed. by G. Weiss, S. Sen (Springer, Berlin, Heidelberg 1986) pp. 113–126

    Google Scholar 

  89. S. Mahadevan, J. Connell: Automatic programming of behavior-based robots using reinforcement learning, Proc. AAAI (1991) pp. 8–14

    Google Scholar 

  90. S. Marsella, J. Adibi, Y. Al-Onaizan, G. Kaminka, I. Muslea, M. Tambe: On being a teammate: Experiences acquired in the design of RoboCup teams, Proc. 3rd Ann. Conf. Auton. Agents, ed. by O. Etzioni, J. Muller, J. Bradshaw (1999) pp. 221–227

    Google Scholar 

  91. J. Pugh, A. Martinoli: Multi-robot learning with particle swarm optimization, Proc. 5th Int. Joint Conf. Auton. Agents Multiagent Syst., Hakodate (ACM, New York 2006) pp. 441–448

    Chapter  Google Scholar 

  92. P. Stone, M. Veloso: Multiagent systems: A survey from a machine learning perspective, Auton. Robot. 8(3), 345–383 (2000)

    Article  Google Scholar 

  93. M. Asada, E. Uchibe, S. Noda, S. Tawaratsumida, K. Hosoda: Coordination of multiple behaviors acquired by a vision-based reinforcement learning, Proc. IEEE/RSJ/GI Int. Conf. Intell. Robot. Syst. (Munich 1994) pp. 917–924

    Google Scholar 

  94. M. Kubo, Y. Kakazu: Learning coordinated motions in a competition for food between ant colonies, Proc. 3rd Int. Conf. Simul. Adaptive Behavior, ed. by D. Cliff, P. Husbands, J.-A. Meyer, S. Wilson (MIT Press, Cambridge 1994) pp. 487–492

    Google Scholar 

  95. R. Alami, S. Fleury, M. Herrb, F. Ingrand, F. Robert: Multi-robot cooperation in the MARTHA project, Robot. Autom. Mag. 5(1), 36–47 (1998)

    Article  Google Scholar 

  96. A. Stroupe, A. Okon, M. Robinson, T. Huntsberger, H. Aghazarian, E. Baumgartner: Sustainable cooperative robotic technologies for human and robotic outpost infrastructure construction and maintenance, Auton. Robot. 20(2), 113–123 (2006)

    Article  Google Scholar 

  97. H.R. Everett, R.T. Laird, D.M. Carroll, G.A. Gilbreath, T.A. Heath-Pastore, R.S. Inderieden, T. Tran, K.J. Grant, D.M. Jaffee: Multiple Resource Host Architecture (MRHA) for the Mobile Detection Assessment Response System (MDARS), SPAWAR Systems Technical Documen 3026, Revision A (2000)

    Google Scholar 

  98. Y. Guo, L.E. Parker, R. Madhavan: Towards collaborative robots for infrastructure security applications, Proc. Int. Symp. Collab. Technol. Syst. (2004) pp. 235–240

    Google Scholar 

  99. C. Hazard, P.R. Wurman, R. DʼAndrea: Alphabet Soup: A testbed for studying resource allocation in multi-vehicle systems, Proc. AAAI Workshop Auction Mechan. Robot Coord. (AAAI, Boston 2006) pp. 23–30

    Google Scholar 

  100. D. Nardi, A. Farinelli, L. Iocchi: Multirobot systems: A classification focused on coordination, IEEE Trans. Syst. Man Cybernet. Part B 34(5), 2015–2028 (2004)

    Article  Google Scholar 

  101. K. Passino: Biomimicry of bacterial foraging for distributed optimization and control, IEEE Contr. Syst. Mag. 22(3), 52–67 (2002)

    Article  MathSciNet  Google Scholar 

  102. M. Fontan, M. Matarić: Territorial multi-robot task division, IEEE Trans. Robot. Autom. 15(5), 815–822 (1998)

    Article  Google Scholar 

  103. I. Wagner, M. Lindenbaum, A.M. Bruckstein: Mac vs. PC – Determinism and randomness as complementary approaches to robotic exploration of continuous unknown domains, Int. J. Robot. Res. 19(1), 12–31 (2000)

    Article  Google Scholar 

  104. K. Sugawara, M. Sano: Cooperative behavior of interacting simple robots in a clockface arranged foraging field. In: Distributed Autonomous Robotic Systems, ed. by H. Asama, T. Arai, T. Fukuda, T. Hasegawa (Springer, Berlin, Heidelberg 2002) pp. 331–339

    Google Scholar 

  105. P. Rybski, S. Stoeter, C. Wyman, M. Gini: A cooperative multi-robot approach to the mapping and exploration of Mars, Proc. AAAI/IAAI-97 (AAAI, Providence 1997)

    Google Scholar 

  106. S. Sun, D. Lee, K. Sim: Artificial immune-based swarm behaviors of distributed autonomous robotic systems, Proc. IEEE Int. Conf. Robot. Autom. (IEEE, 2001) pp. 3993–3998

    Google Scholar 

  107. A.I. Mourikis, S.I. Roumeliotis: Optimal sensor scheduling for resource-constrained localization of mobile robot formations, IEEE Trans. Robot. 22(5), 917–931 (2006)

    Article  Google Scholar 

  108. S. Kloder, S. Hutchinson: Path planning for permutation-invariant multirobot formations, IEEE Trans. Robot. 22(4), 650–665 (2006)

    Article  Google Scholar 

  109. C.W. Reynolds: Flocks, herds and schools: A distributed behavioral model, ACM SIGGRAPH Computer Graphics 21, 25–34 (1987)

    Article  Google Scholar 

  110. T. Balch, R. Arkin: Behavior-based Formation Control for Multi-robot Teams, IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  111. A. Jadbabaie, J. Lin, A.S. Morse: Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Autom. Contr. 48(6), 988–1001 (2002)

    Article  MathSciNet  Google Scholar 

  112. C. Belta, V. Kumar: Abstraction and control for groups of robots, IEEE Trans. Robot. 20(5), 865–875 (2004)

    Article  Google Scholar 

  113. C.M. Topaz, A.L. Bertozzi: Swarming patterns in two-dimensional kinematic model for biological groups, SIAM J. Appl. Math. 65(1), 152–174 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  114. J.A. Fax, R.M. Murray: Information flow and cooperative control of vehicle formations, IEEE Trans. Autom. Contr. 49(9), 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  115. J.A. Marshall, M.E. Broucke, B.R. Francis: Formations of vehicles in cyclic pursuit, IEEE Trans. Autom. Contr. 49(11), 1963–1974 (2004)

    Article  MathSciNet  Google Scholar 

  116. S.S. Ge, C.-H. Fua: Queues and artificial potential trenches for multirobot formations, IEEE Trans. Robot. 21(4), 646–656 (2005)

    Article  Google Scholar 

  117. P. Tabuada, G. Pappas, P. Lima: Motion feasibility of multi-agent formations, IEEE Trans. Robot. 21(3), 387–392 (2005)

    Article  Google Scholar 

  118. G. Antonelli, S. Chiaverini: Kinematic control of platoons of autonomous vehicles, IEEE Trans. Robot. 22(6), 1285–1292 (2006)

    Article  Google Scholar 

  119. J. Fredslund, M.J. Matarić: A general algorithm for robot formations using local sensing and minimal communication, IEEE Trans. Robot. Autom. 18(5), 837–846 (2002)

    Article  Google Scholar 

  120. L.E. Parker: ALLIANCE: An architecture for fault tolerant, cooperative control of heterogeneous mobile robots, Proc. IEEE/RSJ/GI Int. Conf. Intell. Robot. Syst. (IEEE, Munich 1994) pp. 776–783

    Google Scholar 

  121. B. Donald, J. Jennings, D. Rus: Analyzing teams of cooperating mobile robots, Proc. IEEE Int. Conf. Robot. Autom. (IEEE, 1994) pp. 1896–1903

    Google Scholar 

  122. S. Sen, M. Sekaran, J. Hale: Learning to coordinate without sharing information, Proc. AAAI (AAAI, Seattle 1994) pp. 426–431

    Google Scholar 

  123. B. Tung, L. Kleinrock: Distributed control methods, Proc. 2nd Int. Symp. High Perform. Distrib. Comput. (1993) pp. 206–215

    Google Scholar 

  124. Z.-D. Wang, E. Nakano, T. Matsukawa: Cooperating multiple behavior-based robots for object manipulation. (IEEE, Munich) pp. 1524–1531

    Google Scholar 

  125. P.J. Johnson, J.S. Bay: Distributed control of simulated autonomous mobile robot collectives in payload transportation, Auton. Robot. 2(1), 43–63 (1995)

    Article  Google Scholar 

  126. D. Rus, B. Donald, J. Jennings: Moving furniture with teams of autonomous robots, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (Pittsburgh 1995) pp. 235–242

    Google Scholar 

  127. F. Hara, Y. Yasui, T. Aritake: A kinematic analysis of locomotive cooperation for two mobile robots along a general wavy road, Proc. IEEE Int. Conf. Robot. Autom. (IEEE, Nagoya 1995) pp. 1197–1204

    Google Scholar 

  128. J. Sasaki, J. Ota, E. Yoshida, D. Kurabayashi, T. Arai: Cooperating grasping of a large object by multiple mobile robots, Proc. IEEE Int. Conf. Robot. Autom. (IEEE, Nagoya 1995) pp. 1205–1210

    Google Scholar 

  129. C. Jones, M.J. Matarić: Automatic synthesis of communication-based coordinated multi-robot systems, Proc. IEEE/RJS Int. Conf. Intell. Robot. Syst. (IEEE, Sendai 2004) pp. 381–387

    Google Scholar 

  130. Z. Wang, V. Kumar: Object closure and manipulation by multiple cooperating mobile robots, Proc. IEEE Int. Conf. Robot. Autom. (IEEE, 2002) pp. 394–399

    Google Scholar 

  131. L.E. Parker: Cooperative robotics for multi-target observation, Intell. Autom. Soft Comput. 5(1), 5–19 (1999)

    Google Scholar 

  132. S. Luke, K. Sullivan, L. Panait, G. Balan: Tunably decentralized algorithms for cooperative target observation, Proc. 4th Int. Joint Conf. Auton. Agents Multiagent Syst., The Netherlands (ACM, New York 2005) pp. 911–917

    Chapter  Google Scholar 

  133. S.M. LaValle, H.H. Gonzalez-Banos, C. Becker, J.-C. Latombe: Motion strategies for maintaining visibility of a moving target, Proc. IEEE Int. Conf. Robot. Autom. (IEEE, Albuquerque 1997) pp. 731–736

    Google Scholar 

  134. A. Kolling, S. Carpin: Multirobot cooperation for surveillance of multiple moving targets – a new behavioral approach, Proc. IEEE Int. Conf. Robot. Autom. (IEEE, Orlando 2006) pp. 1311–1316

    Google Scholar 

  135. B. Jung, G. Sukhatme: Tracking targets using multiple mobile robots: The effect of environment occlusion, Auton. Robot. 13(3), 191–205 (2002)

    Article  MATH  Google Scholar 

  136. Z. Tang, U. Ozguner: Motion planning for multitarget surveillance with mobile sensor agents, IEEE Trans. Robot. 21(5), 898–908 (2005)

    Article  Google Scholar 

  137. D. Grossman: Traffic control of multiple robot vehicles, IEEE J. Robot. Autom. 4, 491–497 (1988)

    Article  Google Scholar 

  138. P. Caloud, W. Choi, J.-C. Latombe, C. Le Pape, M. Yim: Indoor automation with many mobile robots, Proc. IEEE Int. Workshop Intell. Robot. Syst. (IEEE, Tsuchiura 1990) pp. 67–72

    Google Scholar 

  139. H. Asama, K. Ozaki, H. Itakura, A. Matsumoto, Y. Ishida, I. Endo: Collision avoidance among multiple mobile robots based on rules and communication, Proc. IEEE/RJS Int. Conf. Intell. Robot. Syst. (IEEE, 1991)

    Google Scholar 

  140. S. Yuta, S. Premvuti: Coordinating autonomous and centralized decision making to achieve cooperative behaviors between multiple mobile robots, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IEEE, Raleigh 1992) pp. 1566–1574

    Chapter  Google Scholar 

  141. J. Wang: Fully distributed traffic control strategies for many-AGV systems, Proc. IEEE Int. Workshop Intell. Robot. Syst. (IEEE, 1991) pp. 1199–1204

    Google Scholar 

  142. J. Wang, G. Beni: Distributed computing problems in cellular robotic systems, Proc. IEEE Int. Workshop Intell. Robot. Syst. (IEEE, Tsuchiura 1990) pp. 819–826

    Google Scholar 

  143. H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, H. Matasubara: RoboCup: A challenge problem of AI, AI Mag. 18(1), 73–86 (1997)

    Google Scholar 

  144. H. Kitano, S. Tadokoro: RoboCup rescue: A grand challenge for multiagent and intelligent systems, AI Mag. 22(1), 39–52 (2001)

    Google Scholar 

  145. B. Browning, J. Bruce, M. Bowling, M. Veloso: STP: Skills, tactics and plays for multi-robot control in adversarial environments, IEEE J. Contr. Syst. Eng. 219, 33–52 (2005)

    Google Scholar 

  146. M. Veloso, P. Stone, K. Han: The CMUnited-97 robotic soccer team: Perception and multiagent control, Robot. Auton. Syst. 29(2-3), 133–143 (1999)

    Article  Google Scholar 

  147. T. Weigel, J.-S. Gutmann, M. Dietl, A. Kleiner, B. Nebel: CS Freiburg: coordinating robots for successful soccer playing, IEEE Trans. Robot. Autom. 5(18), 685–699 (2002)

    Article  Google Scholar 

  148. P. Stone, M. Veloso: Task decomposition, dynamic role assignemnt, and low-bandwidth communicaiton for real-time strategic teamwork, Artif. Intell. 110(2), 241–273 (1999)

    Article  MATH  Google Scholar 

  149. C. Candea, H.S. Hu, L. Iocchi, D. Nardi, M. Piaggio: Coordination in multi-agent Robocup teams, Robot. Auton. Syst. 36(2), 67–86 (2001)

    Article  MATH  Google Scholar 

  150. L.E. Parker: Current research in multirobot teams, Artif. Life Robot. 7(2-3), 1–5 (2005)

    Google Scholar 

  151. K.R. Baghaei, A. Agah: Task allocation and communication methodologies for multi-robot systems, Intell. Autom. Soft Comput. 9, 217–226 (2003)

    Google Scholar 

  152. T. Balch, L.E. Parker: Guest editorial, special issue on heterogeneous multi-robot systems, Auton. Robot. 8(3), 207–208 (2000)

    Article  Google Scholar 

  153. M. Dorigo, E. Sahin: Guest editorial, special issue on swarm robotics, Auton. Robot. 17(2-3), 111–113 (2004)

    Article  Google Scholar 

  154. M. Veloso, D. Nardi: Special issue on multirobot systems, Proc. IEEE 94, 1253–1256 (2006)

    Article  Google Scholar 

  155. T. Balch: Taxonomies of multi-robot task and reward. In: Robot Teams: From Diversity to Polymorphism, ed. by T. Balch, L.E. Parker (A K Peters, Natick 2002)

    Google Scholar 

  156. L.E. Parker, G. Bekey, J. Barhen (Eds.): Distributed Autonomous Robotic Systems 4 (Springer, Berlin, Heidelberg 2000)

    Google Scholar 

  157. H. Asama, T. Arai, T. Fukuda, T. Hasegawa (Eds.): Distributed Autonomous Robotic Systems 5 (Springer, Berlin, Heidelberg 2002)

    Google Scholar 

  158. A. Schultz, L.E. Parker (Eds.): Multi-Robot Systems: From Swarms to Intelligent Automata (Kluwer, Dordrecht 2002)

    Google Scholar 

  159. A. Schultz, L.E. Parker, F. Schneider (Eds.): Multi-Robot Systems Volume II: From Swarms to Intelligent Automata (Kluwer, Dordrecht 2003)

    Google Scholar 

  160. E. Sahin, W.M. Spears (Eds.): Swarm Robotics: SAB 2004 International Workshop (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  161. L.E. Parker, F. Schneider, A. Schultz (Eds.): Multi-Robot Systems Volume III: From Swarms to Intelligent Automata (Kluwer, Dordrecht 2005)

    Google Scholar 

  162. R. Alami, R. Chatila, H. Asama (Eds.): Distributed Autonomous Robotic Systems 6 (Springer, Berlin, Heidelberg 2006)

    Google Scholar 

  163. M. Gini, R. Voyles (Eds.): Distributed Autonomous Robotic Systems 7 (Springer, Berlin, Heidelberg 2006)

    MATH  Google Scholar 

  164. T. Balch, L.E. Parker (Eds.): Robot Teams: From Polymorphism to Diversity (A K Peters, Natick 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne E. Parker Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Parker, L.E. (2008). Multiple Mobile Robot Systems. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics