Skip to main content

Underwater Robotics

  • Reference work entry
Book cover Springer Handbook of Robotics

Abstract

This chapter deals with the main underwater robotic topics. First, a brief introduction showing the constantly expanding role of marine robotics in oceanic engineering is given; this section also contains some historical backgrounds. Most of the following sections strongly overlap with the corresponding chapters presented in this handbook; hence, to avoid useless repetitions, only those aspects peculiar to the underwater environment are discussed, assuming that the reader is already familiar with concepts such as fault detection systems when discussing the corresponding underwater implementation. The modeling section is presented by focusing on a coefficient-based approach capturing the most relevant underwater dynamic effects. Two sections dealing with the description of the sensor and the actuating systems are then given. Autonomous underwater vehicles require the implementation of mission control system as well as guidance and control algorithms. Underwater localization is also discussed. Underwater manipulation is then briefly approached. Fault detection and fault tolerance, together with the coordination control of multiple underwater vehicles, conclude the theoretical part of the chapter. Two final sections, reporting some successful applications and discussing future perspectives, conclude the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AUV:

autonomous underwater vehicles

CG:

center of gravity

CML:

concurrent mapping and localization

DOF:

degree of freedom

DVL:

Doppler velocity log

GPS:

global positioning system

GUI:

graphical user interface

IMU:

inertial measurement units

IST:

Information Society Technologies

IST:

Instituto Superior Técnico

LBL:

long-baseline system

MBARI:

Monterey Bay Aquarium Research Institute

MCS:

mission control system

NPS:

Naval Postgraduate School

ODE:

ordinary differential equation

PID:

proportional–integral–derivative

ROV:

remotely operated vehicle

SBL:

short-baseline system

SISO:

single-input single-output

SLAM:

simultaneous localization and mapping

US:

ultrasound

USBL:

ultrashort-baseline system

UUV:

unmanned underwater vehicles

UVMS:

underwater vehicle manipulator system

References

  1. J. Yuh, S.K. Choi, C. Ikehara, G.H. Kim, G. McMurty, M. Ghasemi-Nejhad, N. Sarkar N., K. Sugihara: Design of a semi-autonomous underwater vehicle for intervention missions (SAUVIM), (1998) pp. 63–68

    Google Scholar 

  2. P. Marty: ALIVE: An autonomous light intervention vehicle, Advances in Technology for Underwater Vehicles Conference, Oceanology Int. (2004)

    Google Scholar 

  3. T.I. Fossen: Marine Control Systems, Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles (Marine Cybernetics AS, Trondheim 2002)

    Google Scholar 

  4. S. Bennett: A brief history of automatic control, IEEE Contr. Syst. Mag. 16(3), 17–25 (1996)

    Article  Google Scholar 

  5. J. Yuh, M. West: Underwater robotics, J. Adv. Robot. 15(5), 609–639 (2001)

    Article  Google Scholar 

  6. SNAME: Marine engineers: nomenclature for treating the motion of a submerged body through a fluid, Techn. Res. Bull. 1-5, (1950)

    Google Scholar 

  7. T.I. Fossen: Guidance and Control of Ocean Vehicles (Wiley, New York 1994)

    Google Scholar 

  8. O.M. Faltinsen: Sea Loads on Ships and Offshore Structures (Cambridge Univ Press, Cambridge 1990)

    Google Scholar 

  9. J. Yuh: Modeling and control of underwater robotic vehicles, IEEE Trans. Syst. Man Cybern. 20, 1475–1483 (1990)

    Article  Google Scholar 

  10. T.I. Fossen, A. Ross: Guidance and control of unmanned marine vehicles, IEEE Contr. Eng. Series (Peregrinus, Stevengce 2006) pp. 23–42

    Google Scholar 

  11. W.E. Cummins: The impulse response function and ship motions, Techn. Rep. 1661, David Taylor Model Basin, Hydromechanics Laboratory (DTIC, Washington 1962)

    Google Scholar 

  12. T.F. Ogilvie: Recent progress towards the understanding and prediction of ship motions, 5th Symposium Naval Hydrodynamics (1964) pp. 3–79

    Google Scholar 

  13. T. Perez, T.I. Fossen: Time-domain models of marine surface vessels for simulation and control design based on seakeeping computations, 7th IFAC Conf. Manoeuvring Contr. Marine Craft (IFAC, Lisbon, 2006)

    Google Scholar 

  14. T.I. Fossen: A nonlinear unified state-space model for ship maneuvering and control in a seaway, J. Bifurc. Chaos 15(9), 2717–2746 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Nahon: Determination of undersea vehicle hydrodynamic derivatives usingthe USAF Datcom, Proc. Oceans Conf. (Victoria 1993) pp. 283–288

    Google Scholar 

  16. J.N. Newman: Marine Hydrodynamics (MIT Press, Cambridge 1977)

    Google Scholar 

  17. A.J. Healey, D. Lienard: Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles, IEEE J. Oceanic Eng. 18, 327–339 (1993)

    Article  Google Scholar 

  18. B. Stevens, F. Lewis: Aircraft Control and Simulations (Wiley, New York 1992)

    Google Scholar 

  19. I. Schjølberg, T.I. Fossen: Modelling and control of underwater vehicle-manipulator systems, 3rd IFAC Conf. Manoeuvring Contr. Marine Craft (IFAC, Southampton 1994) pp. 45–57

    Google Scholar 

  20. E.A. de Barros, A. Pascoal, E. de Sea: Progress towards a method for predicting AUV derivatives, 7th IFAC Conf. Manoeuvring Contr. Marine Craft (IFAC, Lisbon 2006)

    Google Scholar 

  21. N.P. Fofonoff, R.C. Millard: Algorithms for Computation of Fundamental Properties of Seawater, 44th edn. (UNESCO Technical papers in marine science, Paris 1983)

    Google Scholar 

  22. R. Eustice, H. Singh, J.J. Leonard, M. Walter, R. Ballard: Visually navigating the RMS Titanic with SLAM information filters, Proc. Robot. Sci. Syst. (Cambridge 2005) pp. 57–64

    Google Scholar 

  23. D.A. Smallwood, L.L. Whitcomb: Adaptive identification of dynamically positioned underwater robotic vehicles, IEEE Trans. Contr. Syst. Technol. 11(4), 505–515 (2003)

    Article  Google Scholar 

  24. S. Zhao, J. Yuh: Experimental study on advanced underwater robot control, IEEE Trans. Robot. 21(4), 695–703 (2005)

    Article  Google Scholar 

  25. S. Majumder, S. Scheding, H.F. Durrant-Whyte: Multisensor data fusion for underwater navigation, Robot. Autonom. Syst. 35(2), 97–108 (2001)

    Article  MATH  Google Scholar 

  26. J.C. Kinsey, R.M. Eustice, L.L. Whitcomb: A survey of underwater vehicle navigation: recent advances and new challenges, 7th IFAC Conf. Manoeuvring Contr. Marine Craft (IFAC, Lisbon 2006)

    Google Scholar 

  27. W.P.A. Van Lammeren, J. van Manen, M.W.C. Oosterveld: The Wageningen B-screw series, Trans. SNAME 77, 269–317 (1969)

    Google Scholar 

  28. D.R. Yoerger, J.G. Cooke, J.J. Slotine: The Influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design, IEEE J. Oceanic Eng. 15, 167–178 (1990)

    Article  Google Scholar 

  29. A.J. Healey, S.M. Rock, S. Cody, D. Miles, J.P. Brown: Toward an improved understanding of thruster dynamics for underwater vehicles, IEEE J. Oceanic Eng. 20(4), 354–361 (1995)

    Article  Google Scholar 

  30. L. Bachmayer, L.L. Whitcomb, M.A. Grosenbaugh: An accurate four-quadrant nonlinear dynamical model for marine trhusters: theory and experimental validation, IEEE J. Oceanic Eng. 25, 146–159 (2000)

    Article  Google Scholar 

  31. T.I. Fossen, M. Blanke: Nonlinear output feedback control of underwater vehicle propellersusing feedback form estimated axial flow velocity, IEEE J. Oceanic Eng. 25(2), 241–255 (2000)

    Article  Google Scholar 

  32. T.I. Fossen, T.I. Johansen: A survey of control allocation methods for ships and underwater vehicles, 14th IEEE Mediterriaen Conf. Contr. Autom. (Ancona 2006) pp. 1–6

    Google Scholar 

  33. K.P. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru: Control architecture for autonomous underwater vehicles, IEEE Contr. Syst. 17, 48–64 (1997)

    Article  Google Scholar 

  34. P. Oliveira, A. Pascoal, V. Silva, C. Silvestre: Mission control of the MARIUS AUV: system design, implementation, and sea trials, Int. J. Syst. Sci. 29(10), 1065–1080 (1998)

    Article  MATH  Google Scholar 

  35. D. Brutzman, M. Burns, M. Campbell, D. Davis, T. Healey, M. Holden, B. Leonhardt, D. Marco, D. McClarin, B. McGhee: NPS Phoenix AUV software integration and in-water testing, Autonomous Underwater Vehicle Technol. AUVʼ96 (1996) pp. 99–108

    Google Scholar 

  36. A.P. Aguiar, A.M. Pascoal: Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean currents, 41st IEEE Conf. Decision Contr. (Las Vegas 2002) pp. 2105–2110

    Google Scholar 

  37. A.A. Bennett, J.J. Leonard: A behavior-based approach to adaptive feature detection and following with autonomous underwater vehicles, IEEE J. Oceanic Eng. 25(2), 213–226 (2000)

    Article  Google Scholar 

  38. M. Breivik, T.I. Fossen: Principles of guidance-based path following in 2D and 3D, 44th IEEE Conf. Decision Contr. 8th Eur. Contr. Conf. (Sevilla 2005)

    Google Scholar 

  39. F.A. Papoulias: Bifurcation analysis of line of sight vehicle guidance using sliding modes, Int. J. Bifurc. Chaos 1(4), 849–865 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  40. R. Rysdyk: UAV path following for constant line-of-sight, Proc. 2nd AIAA Unmanned Unlimited Syst. Technol. Operations – Aerospace (San Diego 2003)

    Google Scholar 

  41. M.D. Feezor, F.Y. Sorrel, P.R. Blankinship, J.G. Bellingham: Autonomous underwater vehicle homing/docking via electromagnetic guidance, IEEE J. Oceanic Eng. 26(4), 515–521 (2001)

    Article  Google Scholar 

  42. D. Wettergreen, A. Zelinsky, C. Gaskett: Autonomous guidance and control for an underwater robotic vehicle, Int. Conf. Field Service Robot. (Pittsburgh 1999)

    Google Scholar 

  43. G. Antonelli, S. Chiaverini, R. Finotello, R. Schiavon: Real-time path planning and obstacle avoidance for RAIS: an autonomous underwater vehicle, IEEE J. Oceanic Eng. 26(2), 216–227 (2001)

    Article  Google Scholar 

  44. J.C. Hyland, F.J. Taylor: Mine avoidance techniques for underwater vehicles, IEEE J. Oceanic Eng. 18, 340–350 (1993)

    Article  Google Scholar 

  45. D.R. Yoerger, J.J. Slotine: Robust trajectory control of underwater vehicles, IEEE J. Oceanic Eng. 10, 462–470 (1985)

    Article  Google Scholar 

  46. R. Cristi, F.A. Pappulias, A. Healey: Adaptive sliding mode control of autonomous underwater vehicles in the dive plane, IEEE J. Oceanic Eng. 15(3), 152–160 (1990)

    Article  Google Scholar 

  47. D.B. Marco, A.J. Healey: Command, control and navigation experimental results with the NPS ARIES AUV, IEEE J. Oceanic Eng. 26(4), 466–476 (2001)

    Article  Google Scholar 

  48. M. Caccia, G. Veruggio: Guidance and control of a reconfigurable unmanned underwater vehicle, Cont. Eng. Prac. 8(1), 21–37 (2000)

    Article  Google Scholar 

  49. G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco: A novel adaptive control law for underwater vehicles, IEEE Trans. Contr. Syst. Technol. 11(2), 221–232 (2003)

    Article  Google Scholar 

  50. G. Antonelli: Underwater robots, Motion and force control of vehicle-manipulator systems. In: Tracts in Advanced Robotics, 2nd edn., ed. by G. Antonelli (Springer, Berlin, Heidelberg 2006)

    Google Scholar 

  51. S.B. Williams: A terrain aided tracking algorithm for marine systems, 4th Int. Conf. Field Service Robot. (2003) pp. 55–60

    Google Scholar 

  52. M. Dunbabin, P. Corke, G. Buskey: Low-cost vision-based AUV guidance system for reef navigation, IEEE Int. Conf. Robot. Autom. (New Orleans 2004) pp. 7–12

    Google Scholar 

  53. J.J. Leonard, H.J.S. Feder: Decoupled stochastic mapping, IEEE J. Oceanic Eng. 26(4), 561–571 (2001)

    Article  Google Scholar 

  54. S. Williams, G. Dissanayake, H. Durrant–Whyte: Towards terrain-aided navigation for underwater robotics, Adv. Robot. 15(5), 533–549 (2001)

    Article  Google Scholar 

  55. P. Newman, J. Leonard: Pure range-only sub-sea SLAM, IEEE Int. Conf. Robot. Autom. (Taipei 2003) pp. 1921–1926

    Google Scholar 

  56. T.W. McLain, S.M. Rock, M.J. Lee: Experiments in the coordinated control of an underwater arm/vehicle system, Auton. Robot. 3(2), 213–232 (1996)

    Article  Google Scholar 

  57. J.S. Ferguson, A. Pope, B. Butler, R. Verrall: Theseus AUV – two record breaking missions, Sea Technol. Mag. 40, 65–70 (1999)

    Google Scholar 

  58. A. Alessandri, M. Caccia, G. Veruggio: Fault detection of actuator faults in unmanned underwater vehicles, Cont. Eng. Prac. 7, 357–368 (1999)

    Article  Google Scholar 

  59. K.C. Yang, J. Yuh, S.K. Choi: Fault-tolerant system design of an autonomous underwater vehicle – ODIN: an experimental study, Int. J. Syst. Sci. 30(9), 1011–1019 (1999)

    Article  MATH  Google Scholar 

  60. G. Antonelli: A survey of fault detection/tolerance strategies for AUVs and ROVs. Recent advances. In: Fault Diagnosis and Tolerance for Mechatronic Systems, Springer Tracts in Advanced Robotics, ed. by F. Caccavale, L. Villani (Springer, Berling, Heidelberg 2002) pp. 109–127

    Google Scholar 

  61. T.K. Podder, G. Antonelli, N. Sarkar: An experimental investigation into the fault-tolerant control of an autonomous underwater vehicle, J. Adv. Robot. 15, 501–520 (2001)

    Article  Google Scholar 

  62. M. Caccia, R. Bono, G. Bruzzone, G. Bruzzone, E. Spirandelli, G. Veruggio: Experiences on actuator fault detection, diagnosis and accomodation for ROVs, Int. Symp. Unmanned Untethered Submersible Technol. (Durham, New Hampshire 2001)

    Google Scholar 

  63. E. Fiorelli, P. Bhatta, N.E. Leonard, I. Shulman: Adaptive sampling using feedback control of an autonomous underwater glider fleet, Int. Symp. Unmanned Untethered Submersible Technol. (Durham, New Hampshire 2003)

    Google Scholar 

  64. C.J. Cannell, D.J. Stilwell: A comparison of two approaches for adaptive sampling of environmental processes using autonomous underwater vehicles, Proc. Oceans Conf. (Brest 2005) pp. 1514–1521

    Google Scholar 

  65. S. Kalantar, U. Zimmer: Distributed shape control of homogeneous swarms of autonomous underwater vehicles, Auton. Robot. 22(1), 37–53 (2006)

    Article  Google Scholar 

  66. A. Pascoal, C. Silvestre, P. Oliveira: Vehicle and mission control of single and multiple autonomous marine robots. In: Advances in Unmanned Marine Vehicles, IEEE Control Engineering, ed. by G. Roberts, R. Sutton (Peregrinus, New York 2006) pp. 353–386

    Google Scholar 

  67. J. Yuh: Exploring the mysterious underwater world with robots, 6th IFAC Conf. Manoeuvring Contr. Marine Craft (IFAC, Girona 2003)

    Google Scholar 

  68. T. Ura: Steps to intelligent AUVs, 6th IFAC Conf. Manoeuvring Contr. Marine Craft (IFAC, Girona 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gianluca Antonelli Prof , Thor I. Fossen Prof or Dana R. Yoerger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Antonelli, G., Fossen, T.I., Yoerger, D.R. (2008). Underwater Robotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics