Skip to main content

Aerial Robotics

  • Reference work entry

Abstract

A wide array of potential applications exist for robots that have the level of mobility offered by flight. The military applications of aerial robotics have been recognized ever since the beginnings of powered flight, and they have already been realized to sometimes spectacular effect in surveillance, targeting, and even strike missions. The range of civilian applications is even greater and includes remote sensing, disaster response, image acquisition, surveillance, transportation, and delivery of goods.

This chapter first presents a brief history of aerial robotics. It then continues by describing the range of possible and actual applications of aerial robotics. The list of current challenges to aerial robotics is then described. Building from basic notions of flight, propulsion, and available sensor technology, the chapter then moves on to describe some of the current research efforts aimed at addressing the various challenges faced by aerial robots.

The challenges faced by aerial robots span several and distinct fields, including state regulations, man–machine interface design issues, navigation, safety/reliability, collision prevention, and take-off/landing techniques. The size of aerial robots can considerably influence their flight dynamics, and small aerial robots can end up looking considerably different from their larger counterparts. Similar to their manned counterparts, aerial robots may enjoy diverse propulsion systems and operate over large speed ranges.

Aerial robots must be equipped with reliable position and actuation equipment so as to be capable of controlled flight, and this constitutes a nontrivial requirement prior to doing research or development in this field. However, many universities, research centers, and industries have now met this requirement and are actively working on the challenges presented above. The largest obstacle to the commercial development of aerial robots is, however, the necessity to comply with and support a regulatory environment which is only beginning to address these rapidly developing systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CSIRO:

Commonwealth Scientific and Industrial Research Organization

DGA:

Delegation Generale pour LʼArmement

ENSICA:

Ecole Nationale Superieure des Constructions Aeronautiques

GNS:

global navigation systems

GNSS:

global navigation satellite system

GPS:

global positioning system

ILS:

instrument landing system

IMU:

inertial measurement units

NASA:

National Aeronautics and Space Agency

RPV:

remotely piloted vehicle

RTCA:

Radio Technical Commission for Aeronautics

UAS:

unmanned aerial systems

UAV:

unmanned aerial vehicles

US:

ultrasound

VOR:

VHF omnidirectional range

VOR:

vestibular-ocular reflex

References

  1. R.C. Michelson: International aerial robotics competition - The worldʼs smallest intelligent flying machines, 13th RPVs/UAVs International Conference, UK (1998) pp. 31.1–31.9

    Google Scholar 

  2. J.D. Anderson: Samuel Pierpont Langley - Americaʼs first aeronautical engineer, 38th AIAA Aerospace Sciences Meeting and Exhibit, Reno (2000) paper 0164

    Google Scholar 

  3. L.R. Newcome: Unmanned Aviation, a Brief History of Unmanned Aerial Vehicles (American Institute of Aeronautics and Astronautics, Reston 2004)

    Google Scholar 

  4. R.E. Weibel, R.J. Hansman: Safety considerations for operation of different classes of UAVs in the national airspace system, AIAA 3rd Unmanned Unlimited Technical Conference, Chicago (2004) paper 6244

    Google Scholar 

  5. R.E. Weibel, R.J. Hansman: An Integrated Approach to Evaluating Risk Mitigation Measures for UAV Operational Concepts in the National Airspace System, AIAA Infotechs., Aerospace, Arlington (2005) paper 6957

    Google Scholar 

  6. D. Hughes: UAVs face hurdles in gaining access to civil airspace, Aviation week (2007)

    Google Scholar 

  7. K.C. Wong, C. Bil, G. Gordon, P.W. Gibbens: Study of the Unmanned Aerial Vehicle (UAV) Market in Australia, Aerospace Technology Forum Report (1997)

    Google Scholar 

  8. R. Sugiura, N. Noguchi, K. Ishii, H. Terao: Development of remote sensing system using an unmanned helicopter, J. JSAM 65(1) (2003)

    Google Scholar 

  9. R. Sugiura, T. Fukagawa, N. Noguchi, K. Ishii, Y. Shibata, K. Toriyama: Field information system using an agricultural helicopter towards precision farming, IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Kobe 2003) pp. 1073–1078

    Google Scholar 

  10. K. Schutte, H. Sahli, D. Schrottmayer, F.J. Varas: ARC: A camcopter based mine field detection system, Fifth International Airborne Remote Sensing Conference, San Francisco (2001)

    Google Scholar 

  11. S.E. Wright: UAVs in Community Police Work, AIAA Infotechs., Aerospace, Arlington (2005) paper 6955

    Google Scholar 

  12. T. McGeer, S. Sliwa, D. Sliwa: Commercial applications for UAVs within the fishing industries, AIAAʼs 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles, Portsmouth (2002) paper 3401

    Google Scholar 

  13. V. Ramanathan: Maldives AUAV Campaign (MAC): Observing Aerosol-Cloud-Radiation-Climate Interactions Simultaneously from Three Stacked Autonomous Unmanned Aerial Vehicles (AUAVs), Tech. Rep., Center for Atmospheric Sciences and the Center for Clouds, Chemistry and Climate Scripps Institution of Oceanography, University of California, San Diego (2006)

    Google Scholar 

  14. M. Patterson, A. Mulligan, J. Douglas, J. Robinson, J. Pallister: Volcano Surveillance by ACR Silver Fox, AIAA Infotechs., Aerospace, Arlington (2005) paper 6954

    Google Scholar 

  15. North Atlantic Treaty Organization: Standard Interfaces of UAV Control System (UCS) for NATO UAV Interoperability, NATO STANAG, 4586 (2004)

    Google Scholar 

  16. T. Jordan, J. Foster, R. Bailey, C.M. Belcastro: AirSTAR: A UAV platform for flight dynamics and control system testing, 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, San Francisco (2006) paper 3307

    Google Scholar 

  17. H. Tennekes: The Simple Science of Flight: From Insects to Jumbo Jets (MIT Press, Cambridge 1992–97)

    Google Scholar 

  18. J.D. Anderson: Introduction to flight (McGraw-Hill, New York 1989)

    Google Scholar 

  19. R.C. Nelson: Flight Stability and Automatic Control (McGraw Hill, New York 1998)

    Google Scholar 

  20. R.D. Braun, H.S. Wright, M.A. Croom, J.S. Levine, D.A. Spencer: The Mars airplane: A credible science platform, IEEE Aerospace Conference (Big Sky 2004) p. 408

    Google Scholar 

  21. A.D. Wu, M.A. Turbe, S. Kannan, J.C. Neidhoefer, E.N. Johnson: Flight Results of Autonomous Airplane Transitions to and from Vertical Hover, AIAA Guidance, Navigation and Control Conference, Keystone (2006) paper 6775

    Google Scholar 

  22. W.R. Williamson, M.F. Abdel-Hafez, I. Rhee, J.D. Wolfe, J.L. Speyer: A Formation Flight Experiment Using Differential Carrier Phase for Precise Relative Navigation, Institute of Navigation - GPS meeting (2002)

    Google Scholar 

  23. J. Sanderson: Private Pilot Manual (Jeppesen Sanderson, Englewood 1984)

    Google Scholar 

  24. I. Schafer, R. Kuke, P. Lindstrand: Airships as Unmanned Platforms: Challenge and Chance, AIAAʼs 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles, Portsmouth (2002) paper 3423

    Google Scholar 

  25. N. Mayer: Lighter-than-air systems, Aerosp. Am. 12, 30–31 (2005)

    Google Scholar 

  26. E.A. Olsen, C.-W. Park, J.P. How: 3D Formation Flight using Differential Carrier-phase GPS Sensors, Institute of Navigation GPS Meeting, Nashville (1998)

    Google Scholar 

  27. J.A. Geen, S.J. Sherman, J.F. Chang, S.R. Lewis: Single-chip surface micromachined integrated gyroscope with 50/spl deg/h Allan deviation, IEEE J. Solid-State Circ. 37(12), 1860–1866 (2002)

    Article  Google Scholar 

  28. A. Conway: Autonomous Control of an unstable model helicopter using carrier-phase GPS only. Ph.D. Thesis (Stanford University, Stanford 1995)

    Google Scholar 

  29. T.P. Webb, J. Prazenica, A.J. Kurdila, R. Lind: Vision-Based State Estimation for Autonomous Micro Air Vehicles, AIAA Guidance, Navigation and Control Conference (San Francisco 2005) paper 5869

    Google Scholar 

  30. B. Anderson, J.B. Moore: Optimal Filtering (Prentice-Hall, Upper Saddle River 1979)

    MATH  Google Scholar 

  31. A.E. Bryson, Y.C. Ho: Applied Optimal Control (Hemisphere, Washington 1975)

    Google Scholar 

  32. A.E. Bryson: Control of Spacecraft and Aircraft (Princeton Univ. Press, Princeton 1994)

    Google Scholar 

  33. G.F. Franklin, J.D. Powell, A. Emami-Naeni: Feedback Control of Dynamic Systems (Addison-Wesley, Reading 1986)

    MATH  Google Scholar 

  34. E.N. Johnson, A.J. Calise: Limited Authority Adaptive Flight Control for Reusable Launch Vehicles, AIAA J. Guidance Control Dyn. 26(6), 906–913 (2003)

    Article  Google Scholar 

  35. A.Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, E. Liang: Inverted autonomous helicopter flight via reinforcement learning. In: Experimental Robotics, ed. by M. Ang, O. Khatib (Springer, Berlin, Heidelberg 2006)

    Google Scholar 

  36. R. Clothier, R. Walker: Determination and Evaluation of UAV Safety Objectives, 21st International Unmanned Air Vehicle Systems Conference, Bristol (2006) pp. 18.1–18.16

    Google Scholar 

  37. J. Kuchar, J. Andrews, A. Drumm, T. Hall, V. Heinz, S. Thompson, J. Welch: A Safety Analysis Process for the Traffic Alert and Collision Avoidance System (TCAS) and See-and-Avoid Systems on Remotely Piloted Vehicles, AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit, Chicago (2004) paper 6423

    Google Scholar 

  38. J.L. Less, J. Chen: Flight testing the automatic air collision avoidance system (AUTO ACAS), Adv. Astronaut. Sci. 118, 133–144 (2004)

    Google Scholar 

  39. R.J. Carnie, R.A. Walker, P.I. Corke: Computer Vision Based Collision Avoidance for UAVs, 11th Australian International Aerospace Congress, Melbourne (2005)

    Google Scholar 

  40. R. Carnie, R. Walker, P. Corke: Image processing algorithms for UAV sense and avoid, IEEE International Conference on Robotics and Automation Orlando, Melbourne (2006) pp. 2848–2853

    Google Scholar 

  41. J. McCalmont, J. Utt, M. Deschenes: Detect and avoid technology demonstration, 1st Unmanned Aerospace Vehicles, Systems, Technologies and Operations Conference and Workshop, Portsmouth (2002)

    Google Scholar 

  42. J. Utt, J. McCalmont, M. Deschenes: Test and Integration of a Detect and Avoid System, AIAA Third Unmanned Unlimited Technical Conference, Workshop and Exhibit, Portsmouth (2004) paper 6424

    Google Scholar 

  43. J.F. McCalmont, J. Utt, M. Deschenes, M.J. Taylor: Sense and avoid technology for Global Hawk and Predator UAVs, Infrared Technology and Applications, XXXI SPIE Conference (2005) pp. 684–692

    Google Scholar 

  44. P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall, K. Nordberg, E. Skarman, J. Wiklund: The WITAS Unmanned Aerial Vehicle Project, 14th European Conference on Artificial Intelligence (Berlin 2000) pp. 747–755

    Google Scholar 

  45. E. Sandewall, P. Doherty, O. Lemon, S. Peters: Words at the right time: Real-time dialogues with the WITAS unmanned aerial vehicle. In: KI 2003: Advances in Artificial Intelligence, ed. by A. Gunter, R. Kruse, B. Neumann (Springer Lectur Notes in Artificial Intelligence, Berlin 2003) pp. 52–78

    Google Scholar 

  46. T. Schouwenaars, M. Valenti, E. Feron, J. How, E. Roche: Linear programming and language processing for human/unmanned-aerial-vehicle team missions, AIAA J. Guid. Control Dyn. 29(2), 303–313 (2006)

    Article  Google Scholar 

  47. V. Gavrilets, B. Mettler, E. Feron: Human-inspired control logic for automated maneuvering of a miniature helicopter, AIAA J. Guid. Control Dyn. 27(5), 752–759 (2004)

    Article  Google Scholar 

  48. P. Abbeel, A. Coates, M. Quigley, A.Y. Ng: An application of reinforcement learning to aerobatic helicopter flight., Neural Information Processing Systems Conference, Vancouver (2006)

    Google Scholar 

  49. K. Nonami: Personal communication (2003)

    Google Scholar 

  50. A. Proctor, E. Johnson: Vision-Only Approach and Landing, AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco (2005) paper 5871

    Google Scholar 

  51. P. Corke: An inertial and visual sensing system for a small autonomous helicopter, J. Robot. Syst. 21, 43–51 (2004)

    Article  Google Scholar 

  52. S. Saripalli, G.S. Sukhatme: Landing on a moving target using an autonomous helicopter, International Conference on Field and Service Robotics, Mt Fuji (2003)

    Google Scholar 

  53. S.S. Sastry, C.S. Sharp, O. Shakernia: A vision system for landing an unmanned aerial vehicle, IEEE International Conference on Robotics and Automation (Seoul 2001) pp. 1720–1727

    Google Scholar 

  54. G. Tournier, M. Valenti, J. How, E. Feron: Estimation and Control of a quadrotor vehicle using monocular vision and moiré patterns, AIAA Guidance, Navigation and Control, Keystone (2006) paper 6711

    Google Scholar 

  55. T. Merz, S. Duranti, G. Conte: Autonomous landing of an unmanned helicopter based on vision and inertial sensing. In: Experimental Robotics, ed. by M. Ang, O. Khatib (Springer, Berlin, Heidelberg 2006)

    Google Scholar 

  56. C. Theodore, S. Sheldon, D. Rowley, T. McLain, W. Dai, M. Takahashi: Full mission simulation of a rotorcraft unmanned aerial vehicle for landing in a non-cooperative environment, 61st Annual Forum of the American Helicopter Society, Grapevine (2005)

    Google Scholar 

  57. C. Theodore, D. Rowley, D. Hubbard, A. Ansar, L. Matthies, S. Goldberg, M. Whalley: Flight trials of a rotorcraft unmanned aerial vehicle landing autonomously at unprepared sites, American Helicopter Society 62nd Annual Forum, Phoenix (2006)

    Google Scholar 

  58. C. Theodore, M. Tischler: Precision autonomous landing adaptive control experiment (PALACE), 25th Army Science Conference, Orlando (2006)

    Google Scholar 

  59. D. Topping: When Giants Roamed the Sky: Karl Arnstein and the Rise of Airships from Zeppelin to Goodyear (Univ. of Akron Press, Akron 2001)

    Google Scholar 

  60. L. Pollini, G. Campa, F. Giulietti, M. Innocenti: Virtual Simulation Set-Up for UAVs Aerial Refuelling, AIAA Modeling and Simulation Technologies Conference and Exhibit, Austin (2003) paper 5682

    Google Scholar 

  61. J. Valasek, J. Kimmett, D. Hughes, K. Gunnam, J. Junkins: Vision based sensor and navigation system for autonomous aerial refueling, AIAAʼs 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles, Portsmouth (2002) paper 3441

    Google Scholar 

  62. J. Hansen, J. Murray, N. Campos: The NASA Dryden AAR Project: A Flight Test Approach to an Aerial Refueling System, AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence (2004) paper 4939

    Google Scholar 

  63. J.B. Saunders, B. Call, A. Curtis, R.W. Beard, T.W. McLain: Static and dynamic obstacle avoidance in miniature air vehicles, AIAA Infotechs., Aerospace, Arlington (2005) paper 6950

    Google Scholar 

  64. S. Scherer, S. Singh, L. Chamberlain, S. Saripalli: Flying fast and low among obstacles, International Conference on Robotics and Automation, Roma (2007) pp. 2023–2029

    Google Scholar 

  65. E. Frazzoli, M. Dahleh, E. Feron: Maneuver-based motion planning for nonlinear systems with symmetries, IEEE Trans. Robot. 21(6), 1077–1091 (2005)

    Article  Google Scholar 

  66. R. Murray, Z. Li, S. Sastry: A Mathematical Introduction to Robotic Manipulation (CRC, Boca Raton 1993)

    Google Scholar 

  67. A. Richards, J. How, T. Schouwenaars, E. Feron: Spacecraft trajectory planning with collision and plume avoidance, AIAA J. Guid. Control Dyn. 25(4), 755–764 (2002)

    Article  Google Scholar 

  68. P.R. Chandler, M. Pachter, S. Rasmussen: UAV cooperative control, American Control Conference, Arlington (2001) pp. 50–55

    Google Scholar 

  69. M. Alighanbari, Y. Kuwata, J.P. How: Coordination and Control of Multiple UAVs with Timing Constraints and Loitering, American Control Conference (2003) pp. 5311–5316

    Google Scholar 

  70. T. Lemaire, R. Alami, S. Lacroix: A distributed tasks allocation scheme in multi-UAV context, IEEE International Conference on Robotics and Automation, New Orleans (2004) pp. 3622–3627

    Google Scholar 

  71. Y. Jin, A.A. Minai, M.M. Polycarpou: Cooperative real-time search and task allocation in UAV teams, IEEE Conference on Decision and Control, Maui (2003) pp. 7–12

    Google Scholar 

  72. A. Jadbabaie, J. Lin, A.S. Morse: Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Automat. Control 1(4), 221–231 (2003)

    Google Scholar 

  73. L. Pallottino, A. Bicchi, E. Frazzoli: Probabilistic verification of decentralized multi-agent control strategies: a Case Study in Conflict Avoidance, American Control Conference, New-York (2007) pp. 170–175

    Google Scholar 

  74. L. Pallottino, A. Bicchi: On optimal cooperative conflict resolution for air traffic management systems, IEEE Trans. Intell. Transport. Syst. 1(4), 221–231 (2000)

    Article  Google Scholar 

  75. C.J. Tomlin, I. Mitchell, A. Bayen, M. Oishi: Computational techniques for the verification of hybrid systems, Proc. IEEE 91(7), 986–1001 (2003)

    Article  Google Scholar 

  76. J.R. Wilson: UAV Worldwide Roundup 2007, Aerosp. Am. 5, 30–37 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eric Feron Prof or Eric N. Johnson PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Feron, E., Johnson, E.N. (2008). Aerial Robotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics