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Abstract. In this work, a generalization of non-uniform sampling technique to 
construct appearance-based models is proposed. This technique analyses the ob-
ject appearance defined by several parameters of variability, determining how 
many and which images are required to model appearance, with a given preci-
sion ε. Throughout non-uniform sampling, we obtain a guideline to spend less 
time on model construction and to diminish storage, when pose estimation no 
matters. The proposed technique is based on a scheme of N-linear interpolation 
and SSD (Sum-of-Squared-Difference) distance, and it is used in conjunction 
with the eigenspaces method for object recognition. Experimental results show-
ing the advantages are exposed.  

1   Introduction 

Appearance-based approaches were proposed as an alternative to the geometrical 
ones for object recognition. They use the image data, i.e., the pixel intensities, di-
rectly without previous segmentation process. Several appearance-based methods 
have been proposed in the literature [1], [2], [3], [4], [5].  

So far in the current literature, efforts to determine characteristic views under illu-
mination changes have been made [6, 7]. However, if viewing position (instead of 
illumination) is changing, no characterization of the image set is done. To work on 
viewing position changes, diverse techniques on image synthesis have been intro-
duced   [8, 9]. However, there are several differences between the appearance-based 
approach and image synthesis [10]. Usually, appearance-based approaches require a 
big quantity of images in order to build object models. For this reason, several tech-
niques for modeling objects with fewer views have been introduced, for example, 
aspect graphs [11] or eigenspaces [1]. However, calculating these characteristic views 
is an expensive computational process. Recently, some works to determine how many 
and which images are necessary to model an object have been presented. However, 
their application is restricted to specific objects as faces [12], or they only work with 
the object shape [13]. 

Non-uniform sampling was introduced in [14] as an alternative for reducing the 
quantity of necessary images for object modeling and object recognition. Experimen-
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tal results showed that a reduction in the quantity of required views is possible, if the 
behavior of the object appearance is taken into count, and no pose estimation is nec-
essary. If pose estimation is required, reduction is also possible but it could be not 
significant.  

However, non-uniform sampling cannot model objects under more than one pa-
rameter. For this reason, in this work, a generalization to N parameters of the basic 
technique proposed in [14] is developed. This generalized technique allows determin-
ing the strictly necessary images for modeling any object, under N parameters and for 
a precision ε. Image election is guided by N-linear interpolation and SSD (Sum-of-
Squared-Difference) criterion. We show how this technique can be jointed to eigen-
spaces one to support object recognition.  

2   Preliminaries 

2.1   Eigenspaces Overview 

By using Principal Component Analysis, the eigenspaces technique [1] comprises a 
set I of training images into a compact representation which can be used for object 
recognition. This compression process is computationally intensive, and its complex-
ity depends upon the size of I (if the size of I is smaller than the number of pixels that 
constitutes the images; otherwise, depends upon the number of pixels). For this rea-
son, reducing the size of I is desired. 

2.2   Interpolation and SSD Distance 

Definition 1: A parameterized surface is a function φ: D⊂RN→RM, where D is any 
domain in RN [15]. Notice that a parameterized surface is a generalization of a pa-
rameterized trajectory, because if N=1 the surface becomes a trajectory. 

Definition 2: Let φ1: D⊂RN→RM be a parameterized surface. Let C={(x1,y1), 

(x2,y2),…,(xm,ym)} be such that φ1(xi)=yi, for i=1,...,m. A parameterized surface      

φ2: D⊂RN→RM interpolates φ1(x) on points xi in C, if φ2(xi)=yi, for i=1,...,m. Because 

φ2(x) is not determined uniquely, for an ε given, φ2(x) is usually selected such that 

|φ1(x) – φ2(x)| < ε, for all x in D. Such ε is named the associate interpolation error. 

Sometimes, it is impossible to find a parameterized surface φ2(x) such that it meets 

the error criterion inside the interval. In this case, the interpolation problem of φ1(x) is 

changed for the φ1(x) piecewise interpolation problem: it is necessary to find a set of 

m-1 parameterized surfaces φ2(x), φ3(x),..., φm(x), such that interpolate φ1(x), respec-

tively, in a partition of D, within the tolerance ε. 

Definition 3: Let X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) be two vectors in Rn. The 

SSD distance (Sum-of-Squared-Difference) between X and Y is defined by:  

|| X – Y ||2  = ∑ −
n

1

2
ii )y(x  
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A detailed explanation of the properties of SSD distance on appearance-based 
models can be founded in [16]. 

3   Generalized Image Acquisition 

In order to build the appearance-based model of an object, it should be in the turnta-
ble's center, and rotates in front of the camera. The camera is in a fixed position re-
spect to turntable, and it cannot move. Finally, the illumination source is fixed with 
respect to the camera and the turntable. Under these conditions, images taken around 
the object belong to a trajectory, which is parameterized for the angle θ of the object 
rotation in front of the sensor; this trajectory is called in the literature the trajectory 
determined by object appearance, or simply, the object appearance. The object model 
is constructed by sampling this trajectory. Notice that the sampling can be uniform or 
non-uniform, but uniform sampling requires a lot of space and time for building 
models. Non-uniform sampling was introduced for reducing space and time require-
ments. However, the object appearance would be defined by several parameters. For 
example, if we let illumination source moves or camera moves. In this case, the tech-
nique exposed in [15] is no more applicable.  

Then, we extend the previous non-uniform sampling technique to work with sev-
eral parameters. Some parameters that we could consider are: turntable angle, camera 
elevation angle, position of illumination source, position of any part of an articulated 
object, etc. To experiment with the proposed technique, in this work we will use only 
two parameters of those: turntable angle and camera elevation angle, but we empha-
size that the same technique can work with whichever number of parameters, as ex-
plained below. 

3.1   Generalized Uniform Image Acquisition  

If we use uniform sampling to acquire images for building the model of an object 
defined by N parameters, we need sampling on the whole workspace determined by 
N parameters. One image parameterized with N parameters, i.e., I(p1, p2, …, pn), is 

obtained for each point of this sampling. Whenever all images acquired in this man-
ner are represented as n×m matrixes, and matrix’s columns are stacked to form vec-
tors v∈Rnm, looking at Definition 1, we can see that such vectors belong to a surface 
φ: D⊂RN→Rnm defined by N parameters. This parameterized surface is called in the 
literature the surface determined by object appearance, or simply, object appearance. 
However, as mentioned before, uniform sampling implies to use a big quantity of 
images and spend too much computing time. To avoid these problems, the usage of 
non-uniform sampling is proposed. 

3.2   Non-uniform Image Acquisition  

The basic non-uniform sampling technique is based on the observation that object 
appearance can be approximated by means of piecewise linear interpolation. In this 
work, the use of linear interpolation to approximate the object's appearance is also 
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proposed. Of course, because we are considering N parameters, we need to approxi-
mate a parameterized surface (see Definition 2) instead of a trajectory. For this rea-
son, we propose to approximate the parameterized surface with N-linear interpola-
tion, instead of linear interpolation.  

N-linear interpolation is the straight generalization of linear interpolation, because 
if N=1, we obtain linear interpolation (1-linear interpolation). Linear interpolation 
interpolates between points b0 and b1 by means of the straight line (simplest curve) 

between them: 

g(t1) = (1-t1)b0 + t1b1 ; 0 ≤ t1 ≤ 1 . (1) 

In bi-dimensional case, bilinear interpolation interpolates between four points b00, 

b01, b10 and b11 by means of the simplest surface between these points (a hyperbolic 

paraboloid); it is obtained by the following expressions [17]: 

B10
00

= (1-t1)b00 + t1b10 ; 0 ≤ t1 ≤ 1 

B11
01

= (1-t1)b01 + t1b11 ; 0 ≤ t1 ≤ 1 

 g(t1, t2) = (1-t2) B10
00

 + t2 B11
01

 ;  0 ≤ t1 ≤ 1; 0 ≤ t2 ≤ 1 

(2) 

We can observe that it is possible to obtain the generalized expression for N-linear 
interpolation between 2N points. Those expressions are obtained easly by means of an 
algorithmic procedure [17]. So, we do not show it here. 

As we can observe, N-linear interpolation can be used to approximate para-
meterized surfaces inside an error ε, according to Definition 2. So, N-linear interpola-
tion can be used in the basic non-uniform sampling technique for obtaining a general-
ized technique. 

To clarify these ideas, in Algorithm 1 the generalized algorithm to determine the 
necessary images to build the model of an object is given; this is defined by several 
parameters. The algorithm uses N-lineal interpolation to determine when a new image 
should be added as a part of the object model. A new image is added if the current 
model cannot interpolate this image appropriately (inside the error ε). Notice that the 
technique just guarantees good approximation on the middle point of interval ana-
lyzed. Some technical details are beyond the scope of this work, for example, for 
acquiring an image just once, we need to have special data structures and extra code. 

An important aspect to be considered occurs in step 6 of the Algorithm 1. Here, 
split can be done homogeneously or heterogeneously. Homogeneously split is desired 
if all parameters are defined initially with the same bounds and the mechanical sys-
tem has the same resolution for all parameters. If it is not the case, heterogeneous 
split is desired and it is necessary to prove the correct interpolation in each parameter. 
It can be done with N linear interpolations, one for each parameter. Throughout the 
following experiments, heterogeneous split is used. 

Algorithm 1: 
0.  Set ε to the desired precision. Set low and high 

bounds for each one of N parameters. 
1.  Acquire 2N images, one for each vertex of the zone 

to analyze. 
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2.  Compute middle point of the zone to analyze (Lm). 
3.  Acquire image for position Lm. 
4.  Interpolate N-linearly between  2N images acquired 

in step 3 using expression(1), (2), or the appro-
priate expression to obtain:   g(t1, t2, ..., 

tN); 0 ≤ ti ≤ 1. 
5.  If it is possible to interpolate image Lm with 

g(0.5, 0.5, …, 0.5) within error ε, using sum-of-
squared-difference (Definition 3) as criterion to 
compare Lm and g(0.5, 0.5, …, 0.5), i.e.,  
|| Lm - g(0.5, 0.5, …, 0.5) ||2  ≤  ε 
then go to step 8. 

6.  Split zone in 2N sub-zones. Push in the stack 
these 2N sub-zones.  

7.  Go to 9. 
8.  Keep images acquired in step 3, as necessary im-

ages to build object’s model. 
9.  If stack is not empty, then pop a zone to analyze 

and go to step 2. 
10.  END. 

4   Experiments 

The software system that acquires the necessary images for modeling the object ap-
pearance defined by several parameters was developed. The software was coupled to 
a mechanical system (turntable) that rotates the object. Additionally, for this work, 
the mechanical system was able to elevate and descend the camera over turntable 
plane. The software system determined how many and which images are required to 
satisfy the precision criterion ε, for each object studied, respectively, for 1 (rotation) 
and 2 (rotation, elevation) parameters. For this work, we use the proposed generalized 
technique to analyze the objects showed in Fig. 1.  

4.1   One Parameter 

In this case, just one parameter (rotation) was used. Results about this case were re-
ported in [14] over the Columbia Object Image Library [16], and the number of im-
ages founded by the proposed algorithm represented a significant reduction with 
respect to traditional approaches. Also, results about object recognition rate were 
typically very good because model precision was improved.  
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Fig. 1. Objects used to test the proposed technique 



Generation of N-Parametric Appearance-Based Models      137 

4.2   Generalized Case 

In this case, the mechanical system was enabled with the capacity of ascending and 
descending the camera over the turntable plane. This extra capacity implies that the 
software system was required to analyze the appearance of the objects on 2 parame-
ters: turntable rotation and camera elevation. In these experiments, the turntable rota-
tion covered all 360o but camera elevation was limited to 0o-20o range. 

Table 1. Results obtained to objects in Fig. 1, applying the proposed technique using two pa-
rameters (turntable rotation and camera elevation) 

  OBJECT 
  1 2 3 4 5 6 7 8 9 10 
 ε = 2000 + + + + + + + + + + 
 ε = 2500 + + 8 8 + + + + + + 

P ε = 3000 + + 8 8 + + + + + + 
R ε = 3500 + 15 6 6 + 92 64 81 + + 
E ε = 4000 + 8 6 6 + 64 50 64 + + 
C ε = 4500 + 8 6 6 + 55 46 50 + + 
I ε = 5000 + 6 6 6 69 46 37 43 + + 
S ε = 5500 + 6 6 6 63 40 30 35 + 6 
I ε = 6000 + 6 6 6 55 32 29 32 48 6 
O ε = 6500 + 6 6 6 41 29 29 31 34 6 
N ε = 7000 54 6 6 6 38 24 24 27 26 6 
 ε = 7500 44 6 6 6 29 24 21 24 23 6 
 ε = 8000 38 6 6 6 22 21 15 17 21 6 

We applied the generalized technique over 50 objects, but we just documented re-
sults for objects in Fig. 1. We obtain the results shown in Table 1. The algorithm 
determined the strictly necessary images for modeling each object to specified preci-
sion ε, shown in column 1 of Table 1. In these experiments, we restricted our system 
to rotate or descend/elevate the camera more than 5o between consecutive images. For 
this reason, in Table 1, a + symbol means that to obtain the required precision ε, the 
system needed to rotate, descend or elevate the camera less than 5o between consecu-
tive images (in the literature are reported precisions between 10o

 - 12o, typically). 
Notice the important reduction on the image quantity respect to a uniform sampling 
(36×3=108 images, 10o between consecutive images). 

Finally, the precision of the models generated with the proposed technique was 
tested, by comparing the interpolated images obtained from the model, with real im-
ages obtained on corresponding positions. We show results in Fig. 2 for the model of 
object 1 in Fig. 1. The SSD between real and synthetic images is usually less than ε, 
showing that the estimated model is typically a good approximation of the object 
appearance (see definition 3), as reported in [14]. 

5   Non-uniform Sampling and Eigenspaces 

The eigenspaces technique can be faster if it uses the images determined by the pro-
posed algorithm as its training set of images, instead of the larger number used cur-
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rently, and it can be safety done, because both measure of model precision and crite-
rion to select the strictly necessary object images for a given precision ε, are pre-
served in eigenspace [14]. Notice that the generalized proposed technique should be 
used in applications where pose estimation no matters, because the computation of 
eigenspaces will be faster using non-uniform sampling.  

6   Conclusions 

Non-uniform sampling to build N-parametric appearance-based models was pre-
sented. The method determines the strictly necessary images to capture the object 
appearance defined by N parameters, within a precision ε. With this technique, more 
complete object models are obtained than 1 parameter, and reduction of image quan-
tity to build object models is achieved by eliminating unnecessary images.  
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