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Abstract. Along with images and videos, 3D models have recently
gained increasing attention for a number of reasons: advancements in
3D hardware and software technologies, their ever decreasing prices and
increasing availability, affordable 3D authoring tools, and the establish-
ment of open standards for 3D data interchange.
The ever increasing availability of 3D models demands for tools support-
ing their effective and efficient management. Among these tools, those
enabling content-based retrieval play a key role.
In this paper we report on our experience in developing models to support
retrieval by content of 3D objects. Particularly, we present three different
models for representing and comparing the content of 3D objects. A
comparative analysis is carried out to evidence the actual potential of
the proposed solutions.

1 Introduction

Digital multimedia information is nowadays spreading through all sectors of so-
ciety and collections of multimedia documents are being created at an increasing
pace in several domains. However, in order to exploit the valuable assets con-
tained in these ever growing collections, some tool should be available to support
users in the process of finding information out of these data. In recent years, as
a result of the efforts spent in the attempt of finding solutions to this problem,
many systems have been developed that enable effective retrieval from digital
libraries, covering text, audio, images, and videos.

Beside image and video databases, archives of 3D models have recently gained
increasing attention for a number of reasons: advancements in 3D hardware and
software technologies, their ever increasing availability at affordable costs, and
the establishment of open standards for 3D data interchange (e.g. VRML, X3D).

Acquisition of the 3D model of an object, capturing both object geometry
and its visual features (surface color and texture), can be achieved through many
different techniques, including CAD, 3D laser scanners, structured light systems
and photogrammetry. The selection of the most appropriate technique depends
on application specific quality requirements. Furthermore, these techniques re-
sult in a large variety of models, differing in terms of their representation (e.g.
point clouds, voxels, analytical functions), of their resolution and size, of the
presence, nature, and amount of noise and artifacts.
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Thanks to the availability of technologies for their acquisition, 3D models are
being employed in a wide range of application domains, including medicine, com-
puter aided design and engineering, and cultural heritage. In this framework the
development of techniques to enable retrieval by content of 3D models assumes
an ever increasing relevance.

This is particularly the case in the fields of cultural heritage and historical
relics, where there is an increasing interest in solutions enabling preservation of
relevant artworks (e.g. vases, sculptures, and handicrafts) as well as cataloguing
and retrieval by content. In these fields, retrieval by content can be employed to
detect commonalities between 3D objects (e.g. the “signature” of the artist) or
to monitor the temporal evolution of a defect (e.g. the amount of bending for
wooden tables).

Methods addressing retrieval of 3D models can be distinguished based on
different aspects, such as the type of representation used for geometry, the use
of information about models’ aspect (i.e. colour and/or texture), the need for
manual annotation.

Description and retrieval of 3D objects based on description and retrieval of
2D views has been addressed in [1] and [2]. However, the effectiveness of these
solutions is limited to description and retrieval of simple objects. In fact, as
complex objects are considered, occlusions prevent to capture distinguishing 3D
features using 2D views.

Description of 3D surface data for the purpose of recognition or retrieval has
been addressed for some time. A few authors have investigated analytical 3D
models, but this is not always a viable solution, as there are many limitations
in providing parameterizations of arbitrary models. In [3] retrieval of 3D objects
based on similarity of surface segments is addressed. Surface segments model
potential docking sites of molecular structures. The proposed approach develops
on the approximation error of the surface. However, assumptions on the form of
the function to be approximated limit applicability of the approach to special
contexts.

Much attention has been recently devoted to free-form (i.e. polygonal) meshes.
While this representation of 3D models poses major hurdles to development and
implementation of algorithms, it is indeed the most appealing field of applica-
tion. The system developed within the Nefertiti project supports retrieval of 3D
models based on both geometry and appearance (i.e. colour and texture) [4]. Also
Kolonias et al. have used dimensions of the bounding box (i.e. its aspect ratios)
and a binary voxel-based representation of geometry [5]. They further relied on
a third feature, namely a set of paths, outlining the shape (model routes). In [6]
a method is proposed to select feature points which relies on the evaluation of
Gaussian and median curvature maxima, as well as of torsion maxima on the
surface. In [7], Elad et al. use moments (up to the 4-7th order) of surface points
as basic features to support retrieval of 3D models. Differently from the case of
2D images, evaluation of moments is not affected by (self-)occlusions.

In this paper we report on the use of three models for representing the con-
tent of a 3D object for the purpose of supporting retrieval by object similarity.
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The three models are based on projection of surface curvature information and
spin images. Projection of surface curvature information is obtained by warp-
ing object surface until it becomes a function on the sphere. Then, information
about curvature is projected onto a 2D curvature map that retains information
about curvature distribution on the original object surface. Content of the 2D
curvature map is described using two different techniques: histograms of map
tiles and weighted walkthroughs of map regions.

The third model for content representation is based on spin images. These
capture geometric properties of 3D objects regardless of surface curvature. Since
object description based on spin images entails a huge amount of information,
feature extraction and clustering techniques are used to meet the specific storage
and efficiency requirements of content-based retrieval.

The paper is organized as follows: Sec.2 describes some pre-processing steps
that are necessary to apply both curvature maps and spin images techniques;
Sec.3 expounds on computation of curvature maps from 3D object meshes; Sec.4
describes how to use curvature maps for description of 3D objects content; Sec.5
introduces extraction of spin images from 3D objects; Sec.6 describes how to use
spin images for description of 3D objects content; finally in Sec.7 a comparative
analysis among the proposed techniques is presented.

2 Preprocessing

High resolution 3D models obtained through scanning of real world objects are
often affected by high frequency noise, due to either the scanning device or the
subsequent registration process. Hence, smoothing is required to cope with such
models for the purpose of extracting their salient features.

Selection of a smoothing filter is a critical step, as application of some fil-
ters entails changes in the shape of the models. For instance, mean or Laplacian
smoothing cause shrinking of the model (a known problem, which has been
pointed out – for example – in [6]). In Laplacian smoothing, every vertex x is
moved from its original location by an offset ∆(x); the offset is determined as
a function of the neighbouring vertices of x, and a parameter λ controls the
strength of the filter. To avoid shrinking, we adopted the filter first proposed by
Taubin [8]. This filter, also known as λ|µ filter, operates iteratively, and inter-
leaves a Laplacian smoothing weighed by λ with a second smoothing weighed
with a negative factor µ (λ > 0, µ < −λ < 0). This second step is introduced to
preserve the model’s original shape.

An additional pre-processing step is employed to reduce the complexity of the
model (in terms of the number of vertices). To this end, an algorithm perform-
ing an iterative contraction of vertex pairs (i.e. edges) is used: first, all edges
are ranked according to a cost metric; then, the minimum cost vertex pair is
contracted; finally, the costs are updated [9]. The algorithm is iterated until a
predefined stop criterion is met: In our experiments, the stop criterion was set
in terms of the number of polygons of the final model.
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2.1 Curvature Estimation

Estimation of surface curvature at a generic vertex vi of the mesh is accomplished
by considering variations of surface normal over the platelet V vi of vertex vi. This
guarantees less sensitivity to noise and acquisition errors.

In particular, surface curvature in correspondence with the i-th vertex vi of
the mesh M is estimated by considering versor v⊥i , that is, the normal to M
at point vi. Then , the platelet V vi of vertex vi is considered. This is defined
as the set of all mesh vertices around vi. Given a generic vertex of the platelet
vj ∈ V vi let v⊥j be the normal to M at point vj . Mesh curvature γvi at vertex
vi is estimated as:

γvi =
1
2

∑
vj∈V vi |v⊥i − v⊥j |

|V vi | (1)

It can be shown that with this definition, the value of γvi is always in [0, 1].

3 Curvature Maps

Given a 3D object, construction of its curvature map relies on warping object
surface until it becomes a function on a sphere and then projecting curvature
information onto a 2D image. Mesh deformation is obtained by iteratively ap-
plying a smoothing operator to the mesh. In general, application of a smoothing
operator is accomplished by updating the position of each vertex of the mesh
according to the following formula:

M(vi) ⊗ ω =
µ

∑
vj∈V vi wj

∑

vj∈V vi

wj ∗ vi − vi (2)

being weights ω = {wj} characteristic of each operator and µ a parameter used
to control the amount of motion of each vertex and to guarantee stability and
continuity of the smoothing process.

Under the assumption of low µ values, the iterative application of the smooth-
ing operator to every vertex of the mesh is equivalent to an elastic deformation
process. During the deformation process each vertex of the mesh should be moved
in order to satisfy two sometimes opposite requirements: mesh regularization
and curvature minimization. As demonstrated in previous work [10], applica-
tion of Laplacian Smoothing, Taubin Smoothing, or Bilaplacian Flow operators
increases mesh regularization but may result in unnatural deformations of the
original mesh. Differently, application of Mean Curvature Flow operator doesn’t
guarantee mesh regularization.

To achieve both regularization and smoothing of the original mesh, the pro-
posed solution develops on the application of two distinct operators at each
step of the iterative deformation process. In particular, Laplacian and Gaussian
smoothing operators are used in combination to achieve both mesh smoothing
and regularization. Application of the two operators is iterated until the average
value of vertex motion falls below a predefined threshold τ .
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3.1 Mapping

Projection of a curved surface is a well known problem in cartography [11]. There
are many different projections used to map (a part of) the globe onto a plane,
but their description is far beyond the scope of this paper. In our approach, we
have selected the Archimedes projection (also known as the Lambert equal-area
projection). Similarly to the Mercator projection, the Archimedes projection is a
cylindrical projection. In particular, it is the projection along a line perpendicular
to the axis connecting the poles and parallel to the equatorial plane. Thus, a
point on the sphere with latitude Θ and longitude Φ, is mapped into the point
on the cylinder with the same longitudinal angle Θ and height sin(Φ) above (or
below) the equatorial plane.

A major advantage of the Archimedes projection is that it is an area preserv-
ing projection: all regions on the surface of the sphere are mapped into regions
on the map having the same area. This guarantees that, regardless of the posi-
tion on the sphere, the relevance of any region is the same both on the sphere
and on the map.

4 From Curvature Maps to Content Descriptors

Ideally, once a 3D model is represented through a 2D curvature map, any ap-
proach supporting image retrieval by visual similarity could be used to evaluate
the similarity between two 3D models. In fact, this can be achieved by computing
the similarity of the corresponding maps.

In the proposed approach, information about curvature maps is captured
at two distinct levels: tiles obtained by a uniform tessellation of the map, and
homogeneous regions obtained by segmenting the map. In the former case, we use
histograms to capture global properties of map tiles, whereas in the latter case
we rely on weighted walkthroughs to describe spatial arrangement and local
properties of regions on the map. Details on the two techniques are provided
hereafter.

4.1 Histogram-Based Description of Map Tiles

A generic histogram H with n bins is an element of the histogram space Hn ⊂
IRn. Given an image and a quantization of a feature space, histogram bins count
the number of occurrences of points of that quantized feature value in the image.

Histograms also support a multi-resolution description of image features.
Given a partitioning of an image into n fine-grained tiles, histograms provide a
representation for the content of each of these tiles.

In order to compute the similarity between two histograms, a norm must
be defined in the histogram space. In our experiments the Kolmogorov-Smirnov
distance was adopted. Thus, the distance between two histograms H and H ′ is
computed as follows:

DKS(H, H ′) = max
i

(ȟi, ȟ
′
i) (3)

being ȟi and ȟ
′
i i-th element of the cumulated histogram of H and H ′, respec-

tively (i.e. ȟi =
∑i

k=1 hk).
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Computing the distance between two maps requires to find the best tiles
correspondence function. This is defined as the permutation p : {1, . . . , n} →
{1, . . . , n} that minimizes the sum of distances between corresponding tiles.

The solution p is approximated through a greedy search approach that re-
quires to scan all tiles in the first map in a predefined order and associate to
each tile the most similar tile not yet associated in the second map. This pairwise
NN association yields a suboptimal solution.

4.2 Weighted Walkthroughs Description of Map Tiles

Description of map content through histograms is not able to capture neither the
spatial arrangement nor the local properties of individual regions of the map. In
some cases this can be a limitation, since information about individual regions
and their spatial arrangement in the map is strictly related to information about
shape and structure of the original 3D mesh. To overcome these limitations,
the coarse description of map content is complemented with a local approach
capturing local properties of individual regions in the map as well as their spatial
arrangement.

Local description of map content is based on weighted walkthroughs tech-
nique [12]. In particular, description of map content is accomplished by seg-
menting the map into regions characterized by uniform curvature values. For
each region, information about region area and average curvature is retained.
Furthermore, for each pair of regions, their relative position is captured through
a 3 × 3 array corresponding to the weighted walkthroughs for the two regions.

The use of weighted walkthroughs enables description of map content in the
form of an attributed relational graph. Graph vertices correspond to regions of
the map and are labelled with the region’s area and average curvature. Graph
edges retain information about the relative position of regions they link and are
labelled with the corresponding 3 × 3 weighted walkthroughs.

The descriptor of content of a generic map can be represented as 〈R, f, w〉,
being R the set of regions in the map, f the set of visual features capturing the
appearance of each region (in our case region area and average curvature), and
w the set of weighted walkthroughs capturing the relative position of each region
pair.

Computation of the similarity between two descriptors of map local content
is equivalent to an error correcting subgraph isomorphism problem [13], which
is an NP-complete problem with exponential time solution algorithms [14].

In the proposed approach, identification of the optimal node association func-
tion is accomplished through the technique presented in [15]. This is based on a
look-ahead strategy that extends classical state-space search approaches.

5 Spin Images

Spin images were introduced by Johnson and Hebert to support recognition of
single objects in complex scenes [16]. Basically, spin images encode the density
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of mesh vertices projected onto an object-centred space: the three-dimensional
mesh vertices are first mapped onto a two-dimensional space defined w.r.t. to the
object itself; the resulting coordinates are then used to build a two-dimensional
histogram.

More precisely, let O = 〈p, n〉 an oriented point on the surface of the object,
where p is a point on the surface of the object and n the normal of the tangent
plane in p. For a generic oriented point O, a spin map can be defined, which
maps any point x in the three-dimensional space onto a two-dimensional space
according to the following formula (see also Fig. 1 for notation):

SO(x) → [α, β] = [
√
‖x− p‖2 − (n · (x − p))2, n · (x − p)]

In other words, the oriented point defines a family of cylindrical coordinate
systems, with the origin in p, and with the axis along n. The spin map projection
of x retains the radial distance (α) and the elevation (β), while it discards the
polar angle.

To produce a spin image of an object, a spin map is applied to points compris-
ing the surface of the object. Hence, given a mesh representation of the object,
the spin image can be obtained by applying the map to the vertices comprising
the mesh. A simple binary image can be obtained by discretizing the projected
coordinates and by setting the corresponding point on the image. However, more
refined grey-level spin images encoding a measure of the density of vertices that
insist upon the same image point are usually employed. To construct such an
image, the projected coordinates α and β of each mesh vertex are used to up-
date the two-dimensional histogram I(i, j) (i.e. the spin image) according to a
bi-linear interpolation scheme that spreads the contribution of each vertex over
the nearest points on the grid induced by the quantization of the image space.

Most outstanding characteristics of spin images are invariance to rigid trans-
formations (as a consequence of the adoption of an object-centred coordinate
system), limited sensitivity to variations of position of mesh vertices (which
might result from the adoption of different sampling schemes), flexibility (since
no hypotheses are made on the surface representation), and ease of computation.

(a) (b)

Fig. 1. Given an oriented point 〈p, n〉 on the object surface, a generic point x is mapped
on point [α, β] on the spin map, being [α, β] the radial distance and the elevation of
x w.r.t. to 〈p, n〉. a) the object centred 3D coordinates system, and b) the spin map
coordinate system.
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6 From Spin Images to Content Descriptors

Spin images provide a powerful means to describe three-dimensional objects.
However, the fact that many spin images are typically produced for a single
object, and the fact that each image implies considerable storage requirements,
prevent us to use them directly as descriptors for retrieval purposes. Therefore,
we decided to rely on more compact descriptions extracted from spin images,
synthesizing the content of each spin image. Our descriptor for spin images was
inspired by region descriptions such as grid-based techniques or the shape ma-
trix [17]. Instead of sampling the shape at the intersection between radial and
circular lines, we decided to measure the relative density encompassed by each
of the regions defined by those lines, so as to provide a more precise description
of the spin image. We have defined three independent sets of regions for the spin
image: sectors of circular crowns for both the half-plane with β > 0 and the half
plane with β < 0, and circular sectors. Each of these sets defines a descriptor
(Cp = 〈cp1, . . . , cpnp〉, Cn = 〈cn1, . . . , cnnn〉, and S = 〈s1, . . . , sns〉, respec-
tively), whose components represent the amount of surface points (or vertices)
whose projections fall within the corresponding crown/sector.

Based on results of some preliminary experiments we chose np = nn = ns = 6
as these represent a satisfactory trade-off between compactness and selectivity
of the representation. Hence, a 18-dimensional descriptor D = 〈Cp, Cn, S〉 is
evaluated for each spin image.

(a) (b) (c)

Fig. 2. Compound object descriptors comprise descriptors for a) np crowns in the half-
plane β > 0, b) nn crowns in the half-plane β < 0, c) ns sectors. In our experiments
np = nn = ns = 6.

In order to avoid use of one spin image descriptor for each mesh vertex,
spin image descriptors are subject to clustering. For this purpose we relied on
fuzzy clustering [18], which is an extension to c-means procedure that avoids
partitioning feature vectors into hard or crisp clusters. Through clustering, we
represent the original set of spin image descriptors {SI1, . . . , SIm} (SIi ∈ IR18)
– each descriptor being associated with one mesh vertex – with a compact set
represented by the clusters’ centers.

Computation of the similarity between two 3D objects is accomplished by
comparing their descriptors, each descriptor being in the form of a set of cluster
centers D = {Di, i = 1 . . .}.
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Fig. 3. Retrieval of Mercur statues using spin images. All models of the Mercur statues
are retrieved first, followed by models of other statues which display similar shapes.

Computing the distance ∆ between two descriptors D and D̂ requires to find
the best cluster-center correspondence function. This is defined as the permu-
tation p : {1, . . . , l} → {1, . . . , k} that minimizes the sum of distances between
corresponding cluster centers.

7 Comparative Analysis

Approximately 300 models were collected to build the test database. These com-
prise four classes of models: taken from the web, manually authored (with a 3D
CAD software), high quality 3D scans from the De Espona 3D Models Encyclo-
pedia1, and variations of the previous three classes (obtained through geometric
deformation or application of noise, which caused points surface to be moved
from their original locations).

Fig.3 shows a retrieval example using spin images. The query is the model
of a statue portraying Mercur. The result set displays all models of the Mercur
statue in the first five positions. In general, all retrieved models feature similar
shapes, characterized by a main body and protrusions that resemble Mercur’s
elongated arm and leg. Fig.4 shows a retrieval example where the model of a
Satyr’s bust is used as a query. The result set displays all models of the Satyr’s
bust in the first five positions. Other models reproducing busts are also retrieved.

Among the different techniques reviewed in Section 1, we selected the cur-
vature histograms [19] and moments of surface points [7] for a comparative as-
1 http://www.deespona.com
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Fig. 4. A retrieval example, using the model of a Satyr’s bust as the query. Other
models of the Satyr’s bust are retrieved first, followed by models of other busts.
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Fig. 5. Comparison of precision/recall figures for the four methods: curvature his-
tograms, moments, weighted walkthroughs of curvature maps and spin images.
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sessment. Performance comparison is assessed through four sample queries that
were submitted to each of the four retrieval engines. Average precision vs. recall
curves are shown in Fig. 5.

The comparative evaluation shows that retrieval based on spin images per-
forms better than all the other three approaches. In particular, performance of
approaches based on curvature histograms and 3D moments is particularly crit-
ical. This may be accounted to the fact that these two methods only provide a
global description of the object, and this is often unappropriate for discrimina-
tion of different models.
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