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Abstract. One-Class Support Vector Machines (SVM) afford the prob-
lem of estimating high density regions from univariate or multivariate
data samples. To be more precise, sets whose probability is specified in
advance are estimated. In this paper the exact relation between One-
Class SVM and density estimation is demonstrated. This relation pro-
vides theoretical background for the behaviour of One-Class SVM when
the Gaussian kernel is used, the only case for which successful results are
shown in the literature.

1 Introduction

Density estimation [14] arises explicitly in a number of pattern recognition tasks
involving interesting problems such as outlier (novelty) detection [8,11,15] or
cluster analysis (see for instance [10,5] ). The density estimation task can be
regarded as a particular type of inverse problem. In this setting, we consider

a mapping H; A, H,, where H; represents a metric function space and Hs
represents a metric space in which the observed data (which could be functions)
live. In the density estimation problem, H; and Hs are both function spaces and

A is a linear integral operator given by: (Af)(x) = /K(x, y)f(x)dz, where K

is a predetermined kernel function and f is the density function we are seeking.
The problem to solve is Af = F', where F' is the distribution function. As far as
F' is unknown, the empirical distribution function Fj, is used instead, where n
is the number of data points, and the inverse problem to solve is Af = y, with
y = F,. Within the framework of regularization theory [16], if H; is chosen as
a reproducing kernel Hilbert space (RKHS) [2], by the representer theorem [9],
the estimator f of f takes the form f(z) = S0, ¢;K (x,2;). Taking K (z,2;) =
Kp(z,z;) = e l===il’/h e obtain the well-known kernel density estimator
with Gaussian kernel (see [14]), where each ¢; = 1/nh%, h > 0 and d is the data
dimension.

One-Class Support Vector Machines [13,15] are designed to solve density
estimation related problems with tractable computational complexity.

The concrete problem to solve is the estimation of minimum volume sets of
the form So(f) = {z|f(z) > a}, such that P(S,(f)) = 1 — v, where f is the
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density function and 0 < v < 1. These sets are known in the literature as density
contour clusters at level « [4,6]. One-Class SVMs deal with a problem related
to that of estimating S, (f). The method computes a binary function that takes
the value 41 in ‘small’ regions containing most data points and —1 elsewhere.

The rest of the paper is organized as follows: in Section 2 One-Class SVMs
are briefly described. Section 3 makes explicit the relation between One-Class
SVMs and classic density estimation. In Section 4 experiments that corroborate
the theoretical findings are shown. Section 5 concludes.

2 One-Class SVMs in a Nutshell

The strategy of One-Class support vector methods is to map the data points
into the feature space determined by the kernel function, and to separate them
from the origin with maximum margin. Thus, it follows the general scheme of
SVMs.

In order to build a separating hyperplane between the origin and the mapped
points {@(x;)}, the One-Class SVM method solves the following quadratic opti-
mization problem:

1 n
min §||w|\2 —vnp+ Zfi
w,p,§ =1 (1)
st (w,P(z;)) > p—&,

& >0, 1=1,...,n,

where @ is the mapping defining the kernel function, &; are slack variables, v €
[0,1] is an a priori fixed constant which represents the fraction of outlying points,
and p is the decision value which determines if a given point belongs to the
estimated high density region. The decision function will take the form h(x) =
sign(w*T®(x) — p*), where w* and p* are the values of w and p at the solution
of problem (1).

In [13] the mapping induced by the exponential (Gaussian) kernel K.(x,y) =
e~ll==vl*/¢ is ysed. This kernel maps the data onto the unit hypersphere within
the positive orthant. Figure 1 illustrates the situation.

In the following we will refer to ‘quadratic One-Class SVM’ simply as ‘One-
Class SVM’. Notice the difference with linear One-Class SVM, which were stated
in [12].

The dual problem of (1) (see [3] for details on the derivation of the dual
formulation) is:

max —% i i oo K (2, 5)

i=1 j=1

s.t. a; =vn,
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Fig. 1. Left: separating hyperplane in feature space. Right: the same for a percentage
of points.

Points z; such that at the solution of problem (2) satisfy «; > 0 are called
support vectors. It can be shown that h(x;) > 0 for the non-support vector
points, that is, those points such that «a; = 0 at the solution of problem (2).

The numerical results in [13] show that, for the exponential kernel, the per-
formance of the method is similar to that of a kernel density estimator (Parzen
windows).

3 Density Estimation and One-Class SVMs

In this section we show the strong relation that exists between One-Class SVM
and kernel density estimation. This relation provides theoretical background for
the behaviour of One-Class SVM with the exponential kernel (also known as
Gaussian or RBF kernel), the only case illustrated with examples in [13]. In that
work a relation in terms of (loose) probability bounds is given but, as stated by
its authors, the relation is not conclusive.

The exponential kernel is a Mercer’s kernel; therefore there exists a map ¢ :
R? — IR™ such that K (x,y) = ¢(x)T ¢(y). Denote by d* the distance induced
by the kernel K in the feature space: d; = d(é(z:), p(x;)) = [|¢(xi) — d(z;)|| k-
Considering that d =K+ Kjj QKU and K;; = 1 for the exponential kernel,
a direct calculatlon shows that K;; =1 — d*2/2

Hence, the One-Class SVM in its dual formulatlon (2) for the exponential
kernel can be stated as the following equivalent optimization problem:
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Note that in the One-Class SVM problem with exponential kernel v repre-
sents the fraction of outlying points (see [13]).

In order to minimize the objective function of problem (3), the term
n n

Z Z oy d;‘f has to be maximized. As a consequence of Proposition 4 in [13],
i=1 j=1

as n — 00, the «;’s become 1 or 0. Thus, we have to choose a subset of vn points
from the sample such that the sum of the distances among their images in the
feature space is maximized. Equivalently, we can find the (1 — v)n points such
that the sum of distances among their images in the feature space is minimized.
For notational simplicity, assume these points are the first (1—v)n in the sample.

Lemma 1. Given n points x; in a metric space, the following equality holds:
DD d*(z;, xj) = 2ny", d*(z;, &), where T stands for the sample mean.

Proof. 37, 5% d*(wi, x5) = 30, 32 i — 1> = 32, 305 o — 7+ 2 — a1 =

DD (llz — 2)% + ||=; — z?) — 2%, > (@i — z)T(x; — ) and the last term
becomes zero by definition of sample mean: » (z; —z) = 0. O

By the preceding lemma and Proposition 4 in [13], as n — oo,

(1-v)n (1—-v)n (1—v)n L
Z Z dif =2(1—wn) Z d*2(p(x;), d(x)),
i=1

where ¢(z) stands for the average of the mapping ¢(z;) of the (1 — v)n points.
This quantity will be minimized choosing the (1 — v)n points closest to their
average.

Thus, we have proved the following theorem.

Theorem 1. Consider the One-Class SVM with the exponential kernel. Asymp-
totically, the points obtained as non-support vectors correspond to those whose
sum of distances to their mean in the feature space is minimum.

The next theorem relates kernel density estimation with One-Class SVM.

Theorem 2. Consider the One-Class SVM with the exponential kernel. Asymp-
totically, the points obtained as non-support vectors are those closest to the mode
estimator calculated on this set of (1 — v)n non-support vectors, using a kernel
density estimator with Gaussian kernel (Parzen windows) .

Proof. Again for notational simplicity, assume the non-support vector points
are the first (1 — v)n points in the sample Consider the kernel density estima-

tor with exponential kernel f(z) = =) nhd Z(l M K (7)) where Koy, =
Kn(z,2;) = e le—ail*/h, Since Km =1—1/2d**(¢(z), ¢(x;)), a simple calcu-
lation shows that f(z) = ;% — 52 Z(l I 42 (), p(s)).

Now cons1der the mean of the (1 — v)n non-support vector points, ¢(x).

Since 7 — 5 E " d*2(p(x), ¢(x;)) is maximum (see the proof of Theo-
rem 1), Theorem 1 and standard continuity arguments guarantee that the points
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obtained as non-support vectors will be the points nearest to the maximum of
flx). O

Statistical properties of the mode estimator using kernel density estimators
have been studied in [7]. In particular, the estimator is consistent.

Remark 1. In case of existence of ¢~! (which is not guaranteed), the anti-image
through ¢, 2* = ¢~ (¢(x)) would be the mode estimator. In fact, since f(x*) =

T ST @%2(G(x), ¢(x;)) and by Theorem 2, the second term of f(z*)

is minimum; being the first term a constant, f (z*) will be maximum.

Remark 2. The kernel density estimator f (x) relies critically on the value of the
smoothing parameter h. Therefore the performance of the One-Class SVM will
critically depend on a good choice of such parameter, and on the solution of the
optimization problem itself.

4 Experiments

The main aim of the paper is to provide a deeper understanding of One-Class
SVMs, by demonstrating its relation to already existing density estimation tech-
niques. Anyhow, for the sake of completeness, next we show a couple of applica-
tions derived from the previous theoretical results.

4.1 An Example of Biased Behaviour

The asymptotical result in Theorem 1 suggests a suboptimal performance for
One-Class SVM with asymmetrical data for non-huge data sets: for spherically
symmetric distributions, asymptotically, the average of the whole set of points
will converge to the true mean (which coincides with the mode) and so will hap-
pen with the (1 —v)n points closest to their average. This can not be guaranteed
for asymmetric distributions. To check the behaviour of One-Class SVM in this
case, we have generated 2000 points from a gamma I'(«, 3) distribution, with
a = 1.5 and 8 = 3. Figure 2 shows the histogram, the gamma density curve, the
true mode (o — 1)/ as a bold vertical line, and the One-Class SVM (five lines)
estimations of the 50% highest density region. The parameters have been chosen
applying the widely used rule ¢ = hd in K.(x,y), where h € {0.1,0.2,0.5,0.8,1.0}
and d is the data dimension (see for instance [13]). The bias is apparent, since
none of the five estimated support sets contains the true mode (and they should).

4.2 Improving One-Class SVM Performance

To illustrate a practical consecuence of Remark 2 next we show an example
from the pattern recognition field, where the choice of the parameter ¢ of kernel
K.(x,y) is crucial. The database used contains nearly 4000 instances of hand-
written digits from Alpaydin and Kaynak [1]. Each digit is represented by a
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Fig. 2. Gamma sample with 2000 points. The figure shows the histogram, the density
curve, a vertical line at the true mode, and One-Class SVM (five lines) estimations of
the 50% highest density region.

vector in IR®* constructed from a 32 x 32 bitmap image. Figure 3 shows a sam-
ple from the data base. The calligraphy of the digits in the database seems to
be easily perceivable, which is supported by the high success rate of various
classifiers. In particular, for each digit, nearest neighbour classifiers accuracy is
always over 97% [1]. From this database we have selected a set of 409 data points
made up by the 389 instances of digit ‘3’ and the first 20 instances of digit ‘4’
(approximattely 5% of the selected sample). The underlying hypothesis is that
the support of the data is constituted by instances corresponding to digit ‘3’,
while the outlying points should correspond to instances of digit ‘4’.

We have run a set of experiments applying the rule for the choice of ¢ de-
scribed in the previous example. In the five experiments using this rule none of
the outlying digits was detected by the One-Class SVM.

(1349
b 7650

Fig. 3. A sample of the Alpaydin and Kaynak digit data base.
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In order to improve this behaviour, and taking into account the result in
Theorem 1, next we give a simple rule to choose the parameter c. This rule
tries to minimize the numerical errors arising from the use of an exponential
function. Thus we choose ¢ = max{d?j}, where d;; stands for the Euclidean
distance between data points x; and x;. This value implies that the argument
inside the exponent of K.(x;, z;) will be upper bounded for the data set, avoiding
as far as possible numerical errors. Using this rule, 50% of the outlying instances
were detected by the One-Class SVM, which certainly represents a remarkable
improvement. The results were similar when different pair of digits were used
for the experiments.

5 Conclusions

One-Class Support Vector Machines (SVM) afford the important task of esti-
mating high density regions from data samples, a problem strongly related to
the classical problem of density estimation. In this paper we have clearly stated
the relation that exists between One-Class SVM and kernel density estimation.
This relation provides theoretical background for the suboptimal behaviour of
One-Class SVM when the Gaussian kernel is used, which is corroborated in the
paper with some data examples. Finally, a simple rule to fix the parameter of
the Gaussian kernel is given.
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