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Abstract. A new approach to eye-in-hand path planning image-based visual ser-
voing based on fuzzy modeling and control is proposed in this paper. Fuzzy mod-
eling is applied to obtain an inverse model of the mapping between image features
velocities and joints velocities, avoiding the necessity of inverting the Jacobian.
The inverse model is directly used as a controller. The control scheme is ap-
plied to a robotic manipulator performing visual servoing, for a given profile of
planned image features velocities. The obtained results show the effectiveness of
the proposed control scheme.

1 Introduction

In eye-in-hand image-based visual servoing, the Jacobian plays a decisive role in the
convergence of the control, due to its analytical model dependency on the selected
image features. Moreover, the Jacobian must be inverted on-line, at each iteration of
the control scheme. Nowadays, the research community tries to find the right image
features to obtain a diagonal Jacobian [10]. The obtained results only guarantee the
decoupling from the position and the orientation of the velocity screw. This is still a
hot research topic, as stated very recently in [10]. In this paper, the previous related
problems in the Jacobian are addressed using fuzzy techniques, to obtain a controller
capable to control the system. First, the desired trajectory is planned in the image space.
Second, a fuzzy model to derive the inverse model of the robot is used to compute the
joints and end-effector velocities in a straightforward manner. A two degrees of free-
dom planar robotic manipulator is controlled, based on eye-in-hand image-based visual
servoing using fuzzy control systems. The paper starts by describing briefly the concept
of image-based visual servoing and path planning. Fuzzy modeling and identification is
described next. The obtained results and finally the conclusions and the possible future
research are discussed.
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2 Image-Based Visual Servoing

In image-based visual servoing, the choice of different image features induces different
control laws, and its number depends also on the number of degrees of freedom (DOF)
of the robotic manipulator under control. The robotic manipulator used as test-bed in
this paper is depicted in Fig. 1, and it has 2 DOF. Thus, the image features s consist of
the coordinates x and y of one image point, which are needed to perform the control.
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Fig. 1. Planar robotic manipulator with eye-in-hand looking down.

2.1 Modeling the Image-Based Visual Servoing System

Image-based visual servoing is used in an eye-in-hand system [6], where the camera is
fixed at the robotic manipulator end-effector. The kinematic modeling of the transfor-
mation between the image features velocities and the joints velocities must be found.
The kinematic modeling of the transformation between the image features velocities, ṡ,
and the joints velocities q̇ is defined as follows [4]:

ṡ = J(x, y, Z, q) · q̇ , (1)

where J is the total Jacobian, defined as:

J(x, y, Z, q) = Ji(x, y, Z) · cWe · eJR (q) (2)

where Z is the depth between the camera and object frames; Ji(x, y, Z) is the image
Jacobian; cWe is defined as the transformation between the camera and end-effector
frames velocities and eJR is the robot Jacobian for the planar robotic manipulator, [4].

2.2 Controlling the Image-Based Visual Servoing System

One of the classic control scheme of robotic manipulators using information from the
vision system, is presented in [3]. The global control architecture is shown in Fig. 2,
where the block Robot inner loop law is a PD control law, with sample time of 1 ms.
The robot joint velocities q̇ to move the robot to a predefined point in the image, s∗ are
derived using the Visual control law, [4], where an exponential decayment of the image
features error is specified:

q̇ = −Kp · Ĵ−1(x, y, Z, q) · (s − s∗) . (3)

Kp is a positive gain, that is used to increase or decrease the decayment of the error
velocity.



226 Paulo J. Sequeira Gonçalves et al.

Fig. 2. Control loop of image-based visual servoing.

2.3 Visual Servoing by Path Planning

The path planning scheme presented follows the work in [7]. An image features tra-
jectory is computed off-line, in order to be introduced on the visual control loop as
the reference to be followed. The method for obtaining the image features trajectory is
divided in three main parts. The first one is the data initialization, in which the initial
pose is obtained from the initial and desired robot position. The second part consists
of a iteration process in which the image features discrete path is composed. The third
part consists of obtaining the final trajectory of the image features over time. During
initialization, the image points corresponding to the image features as seen in the initial
and desired robot position are obtained. The translational vector and rotational matrix
between the object and the initial/desired position are computed using a pose estima-
tion method [2]. The initialization ends with the computation of the initial pose relative
to the desired one, from the resulting data. The iteration process in which the image
features discrete path is composed begins with the estimation of the next pose, Υk+1,
from the actual pose, Υk, and a composed force, F . The composed force is a sum of
two different forces, an attractive, Fa, and a repulsive, Fr. For details see [7].

Υk+1 = Υk + εk · F (Υk)
‖F (Υk)‖ , εk > 0

F (Υk) = Fa (Υk) + Fr (Υk)
(4)

where εk is a positive scaling factor denoting the length of the kth increment. The attrac-
tive force minimizes the trajectory and the repulsive force is set to avoid, only, the phys-
ical image limits. All the remaining poses until the robot reaches the desired position
are estimated in a recursive process, which begins with the initial pose. The attractive
force is highest in the initial pose and it will diminish during the trajectory, tending to
zero at the final pose. The recursion ends when the attractive potential reaches a certain
value close to zero, meaning that the actual pose is close enough to the desired posi-
tion. The result of the iteration process is a vector of image features which contains the
image variation of each image feature as the camera goes from the initial to the desired
position. The final trajectory of the image features over time, sp, must be continuous
and differentiable, so was chosen a C2 curve. It is computed from the vector obtained
during the iteration process, a pre-defined sample time - video rate ∆T = tk − tk−1,
and the final time for the servoing, using a cubic spline.

sp (t) = Ak · t3 + Bk · t2 + Ck · t + Dk (5)
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where: (k − 1) · ∆T ≤ t ≤ (k) · ∆T . The control law used follows [7].

q̇ = −λ · J−1 · (ep) + K2 · J−1 · (epp) (6)

where, K2 = λ
∆T ; ep = sk − sp

k; epp = sp
k − sp

k−1.

2.4 Problem Statement

To derive an accurate global Jacobian, J , a perfect modeling of the camera, the image
features, the position of the camera related to the end-effector, and the depth of the
target related to the camera frame must be accurately determined. Even when a per-
fect model of the Jacobian is available, it can contain singularities, which hampers the
application of a control law. To overcome these difficulties, a new type of differential
relationship between the features and camera velocities was proposed in [9]. This ap-
proach estimates the variation of the image features, when an increment in the camera
position cP is given, by using a relation G. This relation is divided into G1 which relates
the position of the camera to the image features, and F1 which relates their respective
variation:

s + δs = G(cP + δcP ) = G1(cP ) + F1(cP, δcP ). (7)

Considering only the variations in (7):

δs = F1(cP, δcP ), (8)

let the relation between the camera position variation δcP , the joint position variation,
δq and the previous position of the robot q be given by:

δcP = F2(δq, q). (9)

The two previous equations can be composed because the camera is rigidly attached to
the robot end-effector, i.e., knowing q, cP can easily be obtained from the robot direct
kinematics. Thus, an inverse function F−1 stating that the joint velocities depends on
the image features velocities and the previous position of the robot manipulator can be
obtained and discretized as follows:

δq(k) = F−1
k (δs(k + 1), q(k)). (10)

In image-based visual servoing, the goal is to obtain a joint velocity, δq(k), capable of
driving the robot according to a desired image feature position, s(k + 1), with an also
desired image feature velocity, δs(k + 1), from any position in the joint spaces. This
goal can be accomplished by modeling the inverse function F−1

k , using inverse fuzzy
modeling as presented in Section 3. This new approach to image-based visual servoing
allows to overcome the problems stated previously regarding the Jacobian inverse, the
Jacobian singularities and the depth estimation, Z .
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3 Fuzzy Control Strategies

3.1 Fuzzy Modeling

Fuzzy models can be identified based entirely on systems measurements. In the fol-
lowing, we consider data-driven modeling based on fuzzy clustering [1]. We consider
rule-based models of the Takagi-Sugeno (TS) type. It consists of fuzzy rules which each
describe a local input-output relation, typically in a linear form:

Ri : If x1 is Ai1and . . . and xn is Ainthen yi = aix + bi , i = 1, 2, . . . , K.

Here Ri is the ith rule, x = [x1, . . . , xn]T are the input (antecedent) variable, Ai1, . . .,
Ain are fuzzy sets defined in the antecedent space, and yi is the rule output variable.
K denotes the number of rules in the rule base. The aggregated output of the model, ŷ,
is calculated by taking the weighted average of the rule consequents: ŷ =

∑K
i=1 βiyi/∑K

i=1 βi, where βi is the degree of activation of the ith rule: βi = Πn
j=1µAij (xj),

i = 1, . . . , K , and µAij (xj) : R → [0, 1] is the membership function of the fuzzy
set Aij in the antecedent of Ri. To identify the model in (11), the regression matrix X
and an output vector y are constructed from the available data: XT = [x1, . . . ,xN ],
yT = [y1, . . . , yN ], where N � n is the number of samples used for identification.
The number of rules, K , the antecedent fuzzy sets, Aij , and the consequent param-
eters, ai, bi are determined by means of fuzzy clustering in the product space of the
inputs and the outputs [1]. Given the data set and an estimated number of clusters K ,
the Gustafson-Kessel fuzzy clustering algorithm [5] is applied to compute the fuzzy
partition matrix U. The fuzzy sets in the antecedent of the rules Aij are obtained from
the partition matrix U, whose ikth element µik ∈ [0, 1] is the membership degree of
the data object zk in cluster i. The consequent parameters for each rule are obtained as
a weighted ordinary least-square estimate. Let θT

i =
[
aT

i ; bi

]
, let Xe denote the matrix

[X;1] and let Wi denote a diagonal matrix in R
N×N having the degree of activation,

βi(xk), as its kth diagonal element. Assuming that the columns of Xe are linearly in-
dependent and βi(xk) > 0 for 1 ≤ k ≤ N , the weighted least-squares solution of

y = Xeθ becomes θi =
[
XT

e WiXe

]−1 XT
e Wiy. For the robotic application in this pa-

per, the inverse model is identified using input-output data from the inputs q̇(k), outputs
δs(k+1) and the state of the system q(k). A commonly used procedure in robotics is to
learn the trajectory that must be followed by the robot. From an initial position, defined
by the joint positions, the robotic manipulator moves to the predefined end position, fol-
lowing an also predefined trajectory, by means of a PID joint position controller. This
specialized procedure has the drawback of requiring the identification of a new model
for each new trajectory. However, this procedure revealed to be quite simple and fast.
Moreover, this specialized identification procedure is able to alleviate in a large scale
the problems derived from the close-loop identification procedure.

4 Results

This section presents the simulation results obtained for the robotic manipulator. First,
the identification of the inverse fuzzy model of the robot is described. Then, the control
results using the fuzzy model based controller introduced in this paper are presented.
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4.1 Inverse Fuzzy Modeling

In order to apply the controller described in this paper, first an inverse fuzzy controller
must be identified. Recall that a model must be identified for each trajectory. The pro-
file chosen for the image features velocity was derived for the planned features path,
that moves the robot from the initial joints position q = [−1.5; 0.3] to the final position
q = [−1.51; 1.52], in one second, starting and ending with zero velocity. An inverse
fuzzy model (10) for this trajectory is identified using the fuzzy modeling procedure
described in Section 3.1. The measurements data is obtained from a simulation of the
planar robotic manipulator eye-in-hand system. The set of identification data used to
build the inverse fuzzy model contains 250 samples, with a sample time of 20ms. Fig-
ure 3a presents the input data, which are the joint positions q1(k) and q2(k), and the
image features velocities δsx(k) and δsy(k), used for identification. Note that to iden-
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(a) Input data for fuzzy identification. Top:
joint positions, q. Bottom: image feature ve-
locity, δs.
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(b) Validation of joint velocities (δq). Solid –
real output data, and dash-dotted – output of
the inverse fuzzy model.

Fig. 3. Input data for fuzzy modeling and validation of the obtained inverse fuzzy model.

tify the inverse model, one cannot simply feed the inputs as outputs and the outputs as
inputs. Since the inverse model (10) is a non-causal model, the output of the inverse
model must be shifted one step, see [8]. The validation of the inverse fuzzy model is
shown in Fig. 3b, where the joint velocities δq are depicted. Note that two fuzzy models
are identified, one for each velocity. It is clear that the model is quite good. Considering,
e.g. the performance criteria variance accounted for (VAF), the models have the VAFs
of 70.2% and 99.7%. When a perfect match occur, this measure has the value of 100%.
Then, the inverse model for the joint velocity δq2 is very accurate, but the inverse model
for δq1 is not so good. This was expectable as the joint velocity δq1 varies much more
than δq2. However, this model will be sufficient to obtain an accurate controller, as is
shown in Section 4.2. In terms of parameters, four rules (clusters) revealed to be suffi-
cient for each output, and thus the inverse fuzzy model has 8 rules, 4 for each output,
δq1 and δq2. The clusters are projected into the product-space of the space variables and
the fuzzy sets Aij are determined.
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4.2 Control Results

This section presents the obtained control results, using the classical image-based path
planning visual servoing presented in Section 2, and the inverse fuzzy model-based con-
trol scheme presented in Section 3. The implementation was developed in a simulation
of the planar robotic manipulator eye-in-hand system. This simulation was developed
and validated in real experiments, using classic visual servoing techniques, by the au-
thors.
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(a) Image features errror, ep.
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Fig. 4. Comparison between fuzzy and classical path planning visual servoing, image errors and
trajectories. Solid – inverse fuzzy model control, and dash-dotted – classical visual servo control.

The comparison of the image features trajectory for both the classic and the fuzzy
visual servoing controllers is presented in Fig. 4a. In this figure, it is shown that the clas-
sical controller follows the trajectory with a better accuracy than the fuzzy controller.
The image features trajectory in the image plane is presented in Fig. 4b, which shows
that both controllers can achieve the goal position (the plus, +, sign in the image) with
a very small error. This figure shows also that the trajectory obtained with the inverse
fuzzy model controller is smoother. This fact is due to the high proportional gain that
the classical controller must have to follow the trajectory, which demands higher ve-
locities. This effect is easily removed by slowing down the classical controller. But in
this case, the fuzzy controller clearly outperforms the classical controller. The classical
controller can only follow the trajectory without oscillations in the joint velocities if the
robot takes 1.5s to move from one point to the other. In this case, the classical controller
is about 50% slower than the fuzzy model-based controller proposed in this paper.

5 Conclusions

This paper introduces an eye-in-hand path planning image-based visual servoing
scheme based on fuzzy modeling and control. The fuzzy modeling approach was ap-
plied to obtain an inverse model of the mapping between image features velocities and
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joints velocities. This inverse model is directly used as controller of a robotic manipula-
tor performing path planning visual servoing, for a given image features velocity profile.
The obtained results showed that both the classical and the fuzzy controllers can follow
the image features velocity profile. However, the proportional gain of the classic visual
servoing must be very high. This fact justifies the more smooth trajectory in the image
plane for the fuzzy controller. For that reason, the inverse fuzzy control proposed in this
paper performs better. As future work, the proposed fuzzy model based control scheme
will be implemented in the experimental test-bed. Note that an off-line identification
of the inverse fuzzy model must first be performed. The complete automation of this
identification step is also under study.
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