
Clifford Geometric Algebra:
A Promising Framework

for Computer Vision, Robotics and Learning

Eduardo Bayro-Corrochano

Computer Science Department, GEOVIS Laboratory
Centro de Investigación y de Estudios Avanzados
CINVESTAV, Guadalajara, Jalisco 44550, Mexico

edb@gdl.cinvestav.mx

http://www.gdl.cinvestav.mx/~edb

Abstract. In this paper the authors use the framework of geometric
algebra for applications in computer vision, robotics and learning . This
mathematical system keeps our intuitions and insight of the geometry
of the problem at hand and it helps us to reduce considerably the com-
putational burden of the problems. The authors show that framework
of geometric algebra can be in general of great advantage for applica-
tions using stereo vision, range data, laser, omnidirectional and odometry
based systems. For learning the paper presents the Clifford Support Vec-
tor Machines as a generalization of the real- and complex-valued Support
Vector Machines.

1 What Is Clifford Geometric Algebra?

Let Gn denote the geometric algebra of n-dimensions – this is a graded lin-
ear space. As well as vector addition and scalar multiplication we have a non-
commutative product which is associative and distributive over addition – this is
the geometric or Clifford product. A further distinguishing feature of the algebra
is that any vector squares to give a scalar. The geometric product of two vectors
a and b is written ab and can be expressed as a sum of its symmetric and anti-
symmetric parts ab = a·b+a∧b. The outer or wedge product of two vectors is a
new quantity which we call a bivector. We think of a bivector as a oriented area
in the plane containing a and b, formed by sweeping a along b. The outer prod-
uct is immediately generalizable to higher dimensions – for example, (a∧b)∧c, a
trivector, is interpreted as the oriented volume formed by sweeping the area a∧b
along vector c. The outer product of k vectors is a k-vector or k-blade, and such
a quantity is said to have grade k. A multivector (linear combination of objects
of different type) is homogeneous if it contains terms of only a single grade.

In an n-dimensional space we can introduce an orthonormal basis of vectors
{σi}, i = 1, ..., n, such that σi ·σj = δij . This leads to a basis for the entire
algebra:

1, {σi}, {σi∧σj}, {σi∧σj∧σk}, . . . , σ1∧σ2∧. . .∧σn. (1)

A. Sanfeliu et al. (Eds.): CIARP 2004, LNCS 3287, pp. 25–36, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

26 Eduardo Bayro-Corrochano

Note that the basis vectors are not represented by bold symbols. Any multivector
can be expressed in terms of this basis. In this paper we will specify a geometric
algebra Gn of the n dimensional space by Gp,q,r , where p, q and r stand for
the number of basis vector which squares to 1, -1 and 0 respectively and fulfill
n=p+q+r. Its even subalgebra will be denoted by G+

p,q,r. For example G+
0,2,0 has

the basis
{1, σ1, σ2, σ1∧σ2}, (2)

where σ2
1=-1,σ2

2=-1. This means p=0, q=2 and r=0. Thus the dimension of this
geometric algebra is n=p + q + r=2.

In the n-D space there are multivectors of grade 0 (scalars), grade 1 (vec-
tors), grade 2 (bivectors), grade 3 (trivectors), etc... up to grade n. Any two
such multivectors can be multiplied using the geometric product. Consider two
multivectors Ar and Bs of grades r and s respectively. The geometric product
of Ar and Bs can be written as

ArBs = 〈AB〉r+s + 〈AB〉r+s−2 + . . . + 〈AB〉|r−s| (3)

where 〈M 〉t is used to denote the t-grade part of multivector M , e.g. consider
the geometric product of two vectors ab = 〈ab〉0 + 〈ab〉2 = a · b + a ∧ b.

For an detailed introduction to geometric algebra the reader should resort to
[1–3].

2 Body-Eye Calibration

The so-called hand-eye calibration problem involves the computation of the
transformation between a coordinate system attached to a robotic hand and
the camera on top of it. Since we want calibrate a binocular head with a mobile
robot, from know on we will call this task as the body-eye calibration problem.

The robot-to-sensor relation can be seen as a series of joints J1, J2, ..., Jn

(where a rotation about joint Ji affects all joints Ji+1, ..., Jn) and a measurement
system U which is rigidly attached to the last joint Jn. The problem can be stated
as the computation of the transformations M1, M 2, ..., Mn−1 between the robot
frame and the last joint and the transformation Mn between the last joint and
the measurement device U , using only data gathered with U . The procedure
consists of two stages. The first stage computes the screw axes of the joints, and
the second stage uses these axes to compute the final transformation between
the coordinate systems.

2.1 Screw Axes Computation

To compute the axes of rotation, we use a motion estimator, for details see [2].
Each joint Ji is moved in turn while leaving the rest at their home position
(see Figure 1.a) . From the resulting motor M i, the axis of rotation Si can be
extracted, , for details see [2]. For our particular robot, the sequence of motions
is presented in Figure 1.b.

Clifford Geometric Algebra 27

Fig. 1. (a) (upper row) Estimation of the screw axes. (b) (lower row) Correction of
the rotation and relocation of the screw axes.

2.2 Calibration

Our algorithm will produce a set of lines Si in the camera’s coordinate system.
Once these axes are known, the transformation taking one point xk measured
in the camera’s framework to the robot’s coordinate system is easy to derive,
provided that we know the angles αi applied to each joint Ji. Basically, the algo-
rithm undoes the implicit transformations applied on the camera’s framework by
first rotating about joint Jk and then translating the joint (and the framework,
along with the rest of the joints) to the origin (see Figure 1.b).

The functions used in our algorithm are defined as follows:

nearest(x) =
(ē · x) · x

ē · [(ē · x) · x]
, (4)

makeTranslator(t) = 1 +
t

2
ē, (5)

lineToMotor(La, α) = cos(
α

2
) + sin(

α

2
)[ē ∧ (e123m) − (e123n)], (6)

where La = m + e ∧ n, and n = 1. The function nearest(x) returns the point
on x which is nearest to the origin, makeTranslator(t) returns a translator
displacing by an amount t, and lineToMotor(La, α), simply returns a motor
that rotates α radians about the axis La.

28 Eduardo Bayro-Corrochano

Fig. 2. (a) Reconstruction without calibration. (b–d) Relocation of the screws.
(e) Comparison of the final reconstruction with the real view.

3 Inverse Kinematics and Object Manipulation

In this section we show how to perform certain object manipulation tasks in the
context of conformal geometric algebra. First, we solve the inverse kinematics for
a Pan-Tilt unit so that the binocular head will be able to follow the end-effector
and to position the gripper of the arm in a certain position in space. Then, we
we show how to grasp an object in space.

3.1 Inverse Kinematics for a Pan-Tilt Unit

In this task we apply a language of spheres for solving the inverse kinematics,
this can be seen as an extension of an early approach [1], when a language of
points, lines and planes were used instead.

In the inverse kinematics for a pan-tilt unit problem we aim to determine
the angles θtilt and θpan of stereo-head, so that the cameras fix at the point pt.
We will now show how we find the values of θpan and θtilt using the conformal
approach. The problem will be divided in three steps to be solved.

Step 1: Determine the point p2.
When the θtilt rotes and the bases rotate (θpan) around the ly (see Fig.3.a), the
point p2 describes a sphere s1. This sphere has center at the point p1 and radius
d2.

S1 = p1 − d2
2

2
e∞ (7)

Clifford Geometric Algebra 29

Fig. 3. a) Point p2 given by intersection of the plane π1 and the spheres s1 and s2. (b)
Algorithm simulation showing the sphere containing the cube. (c) Image of the object
we wish to grasp with the robotic arm. (d) The robot “Geometer” grasping a wooden
cube.

Also the point pt can be locked from every point around it. that is the point p2

is in the sphere:

S2 = pt − d2
3

2
e∞ (8)

Where d3 is the distance between point pt and the cameras, and we can calculate
d3 using a Pythagorean theorem d2

3 = D2 − d2
2, where D is the direct distance

between pt and p1. We have restricted the position of the point p2, but there is
another restriction: the vector going from the p2 to the point pt must be live at
the plane π1 generated by the ly axis (l∗y = p0 ∧ p1 ∧ e∞) and the point pt, as
we can see in Fig. 3.a So that p2 can be determined by intersecting the plane π1

with the spheres s1 and s2 as follows

π∗
1 = l∗y ∧ pt, Pp2 = s1 ∧ π1 ∧ s2. (9)

Step 2: Determine the lines and planes.
Once p2 have been determined, the line l2 and the plane π2 can be defined. This
line and plane will be useful to calculate the angles θtilt and θpan.

l∗2 = p1 ∧ p2 ∧ e∞, π∗
2 = l∗y ∧ e3. (10)

30 Eduardo Bayro-Corrochano

Step 3: Find the angles θtilt and θpan.
Once we have all the geometric entities, the computation of the angles is a trivial
step.

cos(θpan) =
π∗

1 · π∗
2

|π∗
1 | |π∗

2 |
, cos(θtilt) =

l∗1 · l∗y
|l∗1|

∣
∣l∗y

∣
∣
. (11)

3.2 Grasping an Object

Other interesting experiments involve tasks of grasping objects. First, we con-
sider only approximately cubic objects (i.e., objects with nearly the same width,
length, and height). We begin with four non-coplanar points belonging to the
corners of the object and use them to build a sphere. With this sphere, we can
make either a horizontal or transversal section, so as to grasp the object from
above, below, or in a horizontal fashion. Figure 3.b shows the sphere obtained
using our simulator; the corners of the cube are shown in Figure 3.c; and Figure
3.d shows the robot arm moving its gripper toward the object after computing
its inverse kinematics.

4 Learning: Clifford Valued Support Vector Machines

In this section we will present the Clifford valued Support Vector Machine
(CSVM). A CSVM will be a multivector generalization of the real and com-
plex valued Support Vector Machines [4].

4.1 Linear Clifford Support Vector Machines for Classification

For the case of the Clifford SVM for classification we represent the data set in
a certain Clifford Algebra Gn where n = p + q + r, where any multivector base
squares to 0, 1 or -1 depending if they belong to p, r, or s multivector bases re-
spectively. Each data ith-vector has multivector entries xi = [xi1, xi2, ..., xiD]T ,
where xij ∈ Gn and D is its dimension. Thus the ith-vector dimension is D×2n.
Each data ith-vector xi ∈ GD

n of the N data vectors will be associated with
their labels as follows: (xi1, yi1),(xi2, yi2),...,(xij , yij),...,(xiD, yiD), where
each yij = yijs + yijσ1

+ yijσ2
+ ... + yijI ∈ {±1± σ1± σ2...± I}, where the first

subindex s stands for scalar part. The 2n classification problem is to separate
these multivector-valued samples into 2n groups by selecting a right function
from the set of functions {f(x) = w∗T x + b, x, w ∈ GD

n , b ∈ GD
n . The optimal

weight vector will be

w = [w1, w2, ..., wD]T ∈ GD
n . (12)

Let us see in detail the last equation

f(x) = w∗T x + b = [w∗
1, w

∗
2, ..., w

∗
D][(x1, x2, ..., xD]T + b

=
D∑

i=1

w∗
i xi + b, (13)

Clifford Geometric Algebra 31

where w∗
i xi corresponds to the Clifford product of two multivectors and w∗

i is
the conjugated of the multivector w.

We introduce now a structural risk functional similar to the real valued one
of the SVM and use loss function similar to the function insensitive ξ of Vapnik.

min
1
2
w∗T w + C ·

l∑

j=1

ξ2
i (14)

subject to Coefs(yij)Coefs(f(xij)) ≥ 1 − Coefs(ξij)
Coefσ1(yij)Coefσ1(f(xij)) ≥ 1 − Coefσ1(ξij)

...

CoefI(yij)CoefI(f(xij)) ≥ 1 − CoefI(ξij)
Coefs(ξij) ≥ 0, Coefσ1(ξij) ≥ 0, ..., CoefI(ξij) ≥ 0, j = 1, ..., l,

where the subindex i = 1, ..., D.
The dual expression of this problem can be derived straightforwardly. Firstly

let us consider the expression of the orientation of optimal hyperplane.
Since the wi = [wi1, wi2, ..., wiD]T , each of the wij is given by the multivec-

tor

wij = wis + wiσ1σ1 + ... + wiσnσn + wiσ1σ2σ1σ2 + ... + wiII. (15)

Each component of these weights are computed as follows:

wis =
l∑

j=1

(

(αis)j(yis)j

)

(xis)j , wiσ1 =
l∑

j=1

(

(αiσ1)j(yiσ1)j

)

(xiσ1)j ...,

wiI =
l∑

j=1

(

(αiI)j(yiI)j

)

(xiI)j . (16)

According the Wolfe dual programing [4] the dual form reads

min
1
2
(w∗T w) −

l∑

j=1

(D∑

i=1

(

(αis)j + ... + (αiσ1σ2)j + ... + (αiI)j)
)

(17)

subject to aT · 1 = 0, where the entries of the vector

a = [as, aσ1 , aσ2 , ..., aσ1σ2 , aI] (18)

are given by

aT
s =

[

[(α1s1)(y1s1), (α2s1)(y2s1), ..., (αDs1)(yDs1)], ...,

[(α1sl)(y1sl), (α2sl)(y2sl), ..., (αDsl)(yDsl)]

]

,

aT
σ1 =

[

[(α1σ11)(y1σ11), (α2σ11)(y2σ11), ..., (αDσ11)(yDσ11)], ...,

32 Eduardo Bayro-Corrochano

[(α1σ1 l)(y1σ1 l), (α2σ1 l)(y2σ1 l), ..., (αDσ1 l)(yDσ1 l)]

]

aT
I =

[

[(α1I1)(y1I1), (α2I1)(y2I1), ..., (αDI1)(yDI1)], ...,

[(α1I l)(y1I l), (α2I l)(y2I l), ..., (αDIl)(yDIl)]

]

, (19)

note that each data ith-vector, i = 1, ... N , has D multivector entries and after
the training we take into account not N but l ith-vectors which is the number of
the found support vectors each one belonging to GD

n . Thus aT has the dimension:
(D × l) × 2n, the latter multiplicand corresponds to the length of a multivector
of Gn.

In aT ·1 = 0, 1 denotes a vector of all ones, and all the Lagrange multipliers
should fulfill 0 ≤ (αis)j ≤ C, 0 ≤ (αiσ1)j ≤ C, ..., 0 ≤ (αiσ1σ2)j ≤ C, ...,
0 ≤ (iαI)j ≤ C for i = 1, ..., D and j = 1, ..., l.

We require a compact an easy representation of the resultant GRAM matrix
of the multi-components, this will help for the programing of the algorithm. For
that let us first consider the Clifford product of (w∗T w), this can be expressed
as follows

w∗w = 〈w∗w〉s + 〈w∗w〉σ1
+ 〈w∗w〉σ2

+ . . . + 〈w∗w〉I . (20)

Since w has the components presented in equation (16), the equation (20) can
be rewritten as follows

w∗w = a∗T
s 〈x∗x〉sas + ... + a∗T

s 〈x∗x〉σ1σ2
aσ1σ2 + ... + a∗T

s 〈x∗x〉IaI +

a∗T
σ1
〈x∗x〉sas + ... + a∗T

σ1
〈x∗x〉σ1σ2

aσ1σ2 + ... + a∗T
σ1
〈x∗x〉IaI +

(21)

a∗T
I 〈x∗x〉sas + aT

I 〈x∗x〉σ1
aσ1 + ... + a∗T

I 〈x∗x〉σ1σ2
aσ1σ2 + ... + a∗T

I 〈x∗x〉IaI .

Renaming the matrices of the t-grade parts of 〈x∗x〉t, we rewrite previous equa-
tion as:

w∗w = a∗T
s Hsas + a∗T

s Hσ1aσ1 + ... + a∗T
s Hσ1σ2aσ1σ2 + ... + a∗T

s HIaI +

a∗T
σ1

Hsas + a∗T
σ1

Hσ1aσ1 + ... + a∗T
σ1

Hσ1σ2aσ1σ2 + ... + a∗T
σ1

HIaI +

a∗T
I Hsas + a∗T

I Hσ1aσ1 + ... + a∗T
I Hσ1σ2aσ1σ2 + ... + a∗T

I HIaI . (22)

These results help us finally to rewrite equation (17) as a compact equation
as follows

min
1
2
w∗T w + C ·

l∑

j=1

ξ2
i =

1
2
a∗T Ha + C ·

l∑

j=1

ξ2
i (23)

subject to Coefs(yij)Coefs(f(xij)) ≥ 1 − Coefs(ξij), (24)

where a is given by equation (18).

Clifford Geometric Algebra 33

H is a positive semidefinite matrix which is the expected Gramm matrix.
This matrix in terms of the matrices of the t-grade parts of 〈x∗x〉t is written as
follows:

H =













HsHσ1Hσ2 Hσ1σ2 ... HI

HT
σ1Hs ... Hσ4Hσ1σ2 ... HIHs

HT
σ2H

T
σ1Hs ... Hσ1σ2 ... H IHsHσ1

.

.

.
HT

I ... HT
σ1σ2H T

σ2H
T
σ1Hs













, (25)

note that the diagonal entries equal to Hs and since H is a symmetric matrix
the lower matrices are transposed.

The optimal weight vector w is as given by equation 12.
The threshold b ∈ GD

n can be computed by using KKT conditions with the
Clifford support vectors as follows

b =
[

b1b2b3 ... bD

]

=
[

(b1s + b1σ1σ1 + ... + b1σ1σ2σ1σ2 + ... + b1II)

(b2s + b2σ1σ1 + ... + b2σ1σ2σ1σ2 + ... + b2II)...
(bDs + bDσ1σ1 + ... + bDσ1σ2σ1σ2 + ... + bDII)

=
l∑

j=1

(yj − w∗T xj)/l. (26)

The decision function can be seen as sectors reserved for each involved class,
i.e. in the case of complex numbers (G1,0,0) or quaternions (G0,2,0) we can see
that the circle or the sphere are divide by means spherical vectors. Thus the
decision function can be envisaged as

y = csignm

[

f(x)
]

= csignm

[

w∗T x + b
]

= csignm

[l∑

j=1

(αj ◦ yj)(x
∗
j
T x) + b

]

, (27)

where m stands for the state valency, e.g. bivalent, tetravalent and the operation
“◦” is defined as

(αj ◦ yj) =< αj >0< yj >0 + < αj >1< yj >1 σ1 +
...+ < αj >2n< yj >2n I, (28)

simply one consider as coefficients of the multivector basis the multiplications
between the coefficients of blades of same degree. For clarity we introduce this
operation “◦”which takes place implicitly in previous equation (16).

Note that the cases of 2-state and 4-state (Complex numbers) can be solved
by the multi-class real valued SVM, however in case of higher representations like

34 Eduardo Bayro-Corrochano

the 16-state using quaternions, it would be awkward to resort to the multi-class
real valued SVMs.

The major advantage of this approach is that one requires only one CSVM
which even can admit multiple multivector inputs. A naive and time consuming
approach will be to use a a set of real valued SVM.

4.2 Nonlinear Clifford Valued Support Vector Machines
for Classification

For the nonlinear Clifford valued classification problems we require a Clifford
valued kernel k(x,y). In order to fulfill the Mercer theorem we resort to a
component-wise Clifford-valued mapping

x ∈ Gn
φ−→ Φ(x) = Φs(x) + Φσ1σ1 + (29)

... + Φσ1σ2(x)σ2 + ... + IΦI(x) ∈ Gn.

In general we build a Clifford kernel k(xm, xj) by taking the Clifford product
between the conjugated of xm and xj as follows

k(xm, xj) = Φ(x)∗Φ(x), (30)

note that the kind of conjugation operation ()∗ of a multivector depends of the
signature of the involved geometric algebra Gp,q,r.

Quaternion-valued Gaussian window Gabor kernel function (we use here i =
σ2σ3, j = −σ3σ1, k = σ1σ2):

The Gaussian window Gabor kernel function reads

k(xm, xn) = g(xm, xn)exp−iwT
0 (xm−xn) (31)

where the normalized Gaussian window function is given by

g(xm, xn) =
1√
2πρ

exp
||xm−xn||2

2π2 (32)

and the variables w0 and xm − xn stand for the frequency and space domains
respectively.

As opposite as the Hartley transform or the 2D complex Fourier this kernel
function separates nicely the even and odd components of the involved signal,
i.e.

k(xm, xn) = k(xm, xn)s + k(xm, xn)σ2σ3 + k(xm, xn)σ3σ1 + k(xm, xn)σ1σ2

= g(xm, xn)cos(wT
0 xm)cos(wT

0 xm) + g(xm, xn)cos(wT
0 xm)sin(wT

0 xm)i

+g(xm, xn)sin(wT
0 xm)cos(wT

0 xm)j + g(xm, xn)sin(wT
0 xm)sin(wT

0 xm)k.

Since g(xm, xn) fulfills the Mercer’s condition it is straightforward to prove that
k(xm, xn)u in the above equations satisfy these conditions as well.

After we defined these kernels we can proceed in the formulation of the SVM
conditions. We substitute the mapped data Φ(x) =

∑2n

u=1 < Φ(x) >u into the

Clifford Geometric Algebra 35

linear function f(x) = w∗T x + b = w∗T Φ(x) + b. The problem can be stated
similarly as equations (15-17). In fact we can replace the kernel function in
equations 24 to accomplish the Wolfe dual programming and thereby to obtain
the kernel function group for nonlinear classification

Hs = [ks(xm, xj)]m,j=1,..,l (33)

Hσ1 = [kσ1(xm, xj)]m,j=1,..,l

...

Hσn = [kσn(xm, xj)]m,j=1,..,l ·
·

HI = [kI(xm, xj)]m,j=1,..,l .

In the same way we use the kernel functions to replace the the dot product
of the input data in the equation (27). In general the output function of the
nonlinear Clifford SVM reads

y = csignm

[

f(x)
]

= csignm

[

w∗T Φ(x) + b
]

= csignm

[l∑

j=1

(αj ◦ yj)(k(xj , x) + b
]

. (34)

where m stands for the state valency.
Next we present the well known 2-D spiral problem to the 3-D space. This

experiment should test whether the CSVM would be able to separate three 1-D
manifolds embedded in R

3. In Figure 4 on can see that the problem is nonlinear

Fig. 4. 3D spiral with three classes. The marks represent the support vectors found by
the CSVM.

36 Eduardo Bayro-Corrochano

separable. The CSVM used the kernel given by the equation 33. The CSVM
found 16 support vector for f1(t), 21 support vector for f2(t) (in the middle)
and 16 support vector for f3(t). Note that the CSVM indeed manage to separate
the three classes. If we think in a real valued SVM (naive approach), one will
require to do the job three SVMs.

5 Conclusions

In this article we have chosen the coordinate-free system of Clifford or geometric
algebra for the analysis and design of algorithms useful for perception, action
and learning.

Future intelligent machines will necessarily require of a powerful geometric
language for reasoning at high level. The author believes that Clifford geometric
algebra is a promissory mathematical system for representing and processing
complex geometric data in real time.

Acknowledgment

I am very thankful to my PhD students: Leo Reyes Lozano, Julio Zamora Es-
quivel and Nancy Arana Daniel who provided me with experimental results
useful for illustrating the application of geometric algebra in robotic vision
and learning. Eduardo Bayro Corrochano, was supported by the project 49 of
CONACYT-Fondo Sectorial de Investigación en Salud y Seguridad Social.

References

1. Bayro-Corrochano E. 2001. Geometric Computing for Perception Action Systems,
Springer Verlag, Boston.

2. Bayro-Corrochano E. Conformal geometric algebra for robot perception. To ap-
pear in the Hanbook on Computational Geometry for Patter Recognition, Com-
puter Vision, Neuralcomputing and Robotics, Eduardo Bayro-Corrochano (ed.),
Chap. 11, Springer Verlag, Heidelberg, 2004.

3. H. Li, D. Hestenes and A. Rockwood. Generalized homogeneous coordinates
for computational geometry. In Geometric Computing with Clifford Algebra, G.
Sommer (Ed.), Springer-Verlag, pp. 27-59, 2001.

4. V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

	1 What Is Clifford Geometric Algebra?
	2 Body-Eye Calibration
	2.1 Screw Axes Computation
	2.2 Calibration

	3 Inverse Kinematics and Object Manipulation
	3.1 Inverse Kinematics for a Pan-Tilt Unit
	3.2 Grasping an Object

	4 Learning: Clifford Valued Support Vector Machines
	4.1 Linear Clifford Support Vector Machines for Classification
	4.2 Nonlinear Clifford Valued Support Vector Machines for Classification

	5 Conclusions
	References

