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Abstract. In order to discriminate different industrial machine sounds contami-
nated with perturbations (high noise, speech, etc.), a spectral analysis based on 
a structural pattern recognition technique is proposed. This approach consists of 
three steps: 1) to de-noise the machine sounds using the Morlet wavelet trans-
form, 2) to calculate the frequency spectrums for these purified signals, and 3) 
to convert these spectrums into strings, and use an approximated string match-
ing technique, finding a distance measure (the Levenshtein distance) to dis-
criminate the sounds. This method has been tested in artificial signals as well as 
in real sounds from industrial machines. 

1   Introduction 

A common problem encountered in industrial environments is that the electric ma-
chine sounds are often contaminated by interferences such as speech signals, envi-
ronmental noise, background noise, etc. Consequently, pure machine sounds may be 
difficult to identify using conventional frequency domain analysis techniques. For 
example, the effectiveness of the Fourier transform relies on the signals containing 
distinct characteristic frequency components of sufficient energy content, within a 
limited frequency band. If however the feature components spread over a wide spec-
trum, it can be difficult to differentiate them from other disturbing or masking com-
ponents, especially when the feature components are weak in amplitude. This has 
been shown in various situations involving machine systems with incipient defects 
[1][2]. 

It is generally difficult to extract hidden features from the data measured using 
conventional spectral techniques because of the weak amplitude and short duration of 
structural electric machine signals, and very often the feature sound of the machine is 
immersed in heavy perturbations producing hard changes in the original sound. For 
these reasons, the wavelet transform has attracted increasing attention in recent years 
for its ability in signal features extraction [3][4], and noise elimination [5]. While in 
many mechanical dynamic signals, such as the acoustical signals of an engine, 
Donoho’s method seems rather ineffective, the reason for their inefficiency is that the 
feature of the mechanical signals is not considered. Therefore, when the idea of 
Donoho’s method and the sound feature are combined, and a de-noising method 
based on the Morlet wavelet is added, this methodology becomes very effective when 
applied to an engine sound detection [6]. 
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In this work, we propose a new approach in order to discriminate among different 
industrial machine sounds, which can be affected by noise of various sources. We use 
the Morlet wavelet to de-noise the machine sounds, before frequency spectrums are 
extracted. These purified spectrums are the bases for a comparison between sound 
signals and a further discrimination step among sounds. A structural pattern recogni-
tion technique is used to compare the signal spectrums, because we convert each 
spectrum into a string, and a distance is found between strings. Since frequency spec-
trum does not follow a perfect pattern repeated along signals, it is not possible to use 
an exact matching algorithm to compare spectrums. To perform such comparison an 
approximated matching is used and the Levenshtein distance between spectrums is 
found. If the distance is short enough, these spectrums correspond to similar sounds. 
The use of string-to-string correction problem applied to pattern recognition is deeply 
treated in [7] and [8]. In order to check our approach, firstly we use some artificial 
signals with added gaussian noise, and the results are promising enough as to be used 
with real sounds.  

This paper is organized as follows. In Section 2 the Morlet wavelet transform for 
de-noising the acoustical signals is explained. In Section 3 the approximated string 
matching is shown. Simulation and experimental results are presented in Section 4 
and Section 5. 

2   Wavelet and Its Application for Feature Extraction 

2.1   Review of Wavelet Transform 

The wavelet was originally introduced by Goupilland et al. in 1984 [9]. Let ψ(t) be 
the basic wavelet function or the mother wavelet, then the corresponding family of 
daughter wavelets consists of 
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where a is the scale factor and b the time location, and the factor 
2/1−a  is used to 

ensure energy preservation. 
The wavelet transform of signal x(t) is defined as the inner product in the Hilbert 

space of the L2 norm, as shown in the following equation 
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Here the asterisk stands for complex conjugate. Time parameter b and scale pa-
rameter a vary continuously, so that transform defined by Eq. (2) is also called a 
continuous wavelet transform, or CWT. The wavelet transform coefficients W(a,b) 
can be considered as functions of translation b for each fixed scale a, which give the 
information of x(t) at different levels of resolution. The wavelet coefficients W(a,b) 
also measure the similarity between the signal x(t) and each daughter wavelet ψa,b(t). 

This implies that wavelets can be used for feature discovery if the wavelet used is 
close enough to the feature components hidden in the signal. 
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For many mechanical acoustic signals impulse components often correspond to the 
feature sound. Thus, the basic wavelet used for feature extraction should be similar to 
an impulse. The Morlet wavelet is such a wavelet defined as  

)cos()2/exp()( 22 ttt πβψ −=  (3) 

2.2   Feature Extraction Using the Morlet Wavelet 

The most popular algorithm of wavelet transform is the Mallat algorithm. Though this 
algorithm can save a lot of computations, it demands that the basic wavelet is or-
thogonal. The Morlet wavelet is not orthogonal. Thus, the wavelet transform of the 
Morlet wavelet has to be computed by the original definition, as shown in Eq. (2). 
Although the CWT brings about redundancy in the representation of the signal (a 
one-dimensional signal is mapped to a two-dimensional signal), it provides the possi-
bility of reconstructing a signal. A classical inversion formula is 
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Another simple inverse way is to use the Morlet’s formula, which only requires a 
single integration. The formula is: 
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where 
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It is valid when x(t) is real and either ψ(t) is analytic or )(� ωψ  is real. The condi-

tion is satisfied by the Morlet wavelet. If the wavelet coefficients W(a,b), correspond-
ing to feature components, could be acquired, we could obtain the feature compo-
nents just by reconstructing these coefficients. In calculations, the feature coefficients 
should be reserved and the irrelevant ones set to zero, then the signal can be purified 
by using formula Eq. (5). Thus, the key to obtaining the purified signal is how to 
obtain these feature coefficients. 

Wavelet coefficients measure the similarity of the signal and each daughter wave-
let. The more the daughter wavelet is similar to the feature component, the larger is 
the corresponding wavelet coefficient. So these large wavelet coefficients are mainly 
produced by the impulse components in the signal if the signal is transformed by the 
Morlet wavelet. We can get the impulse components in the signal reconstructing these 
large coefficients. Usually a threshold Tw should be set in advance, but it is not evi-

dent to choose it properly. The basic rule for threshold choice is that the higher the 
correlation between the random variables, the larger the threshold; and the higher the 
signal-noise ratio (SNR), the lower the threshold. In practice, the choice of the 
threshold Tw mainly depends on experience and knowledge about the signal. In fact, 

the quantitative relation between the threshold Tw and the SNR still remains an open 

question. 
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3   Approximated Matching of Strings 

Since we propose a structural approach, two purified frequency spectrum can be rep-
resented by Rp and Rq, the discrimination step is defined as follows: two sounds p and 

q are similar iif their purified frequency spectrum Rp and Rq approximate match.  

The problem of string-matching can generally be classified into exact matching 
and approximate matching. For exact matching, a single string is matched against a 
set of strings and this is not the purpose of our work. For approximate string match-
ing, given a string v of some set V of possible strings, we want to know if a string u 
approximately matches this string, where u belongs to a subset U of V. In our case, V 
is the global set of purified frequency spectrums and u and v are purified frequency 
spectrums obtained from different sounds. Approximate string matching is based on 
the string distances that are computed by using the editing operations: substitution, 
insertion and deletion [10]. 

Let Σ be a set of symbols and let Σ* be the set of all finite strings over Σ. Let Λ de-
note the null string. For a string A = a1a2...an ∈ Σ*, and for all i, j ∈{1, 2,..., n}, let  

A<i, j> denote the string aiai+1...aj, where, by convention A<i, j> = Λ if i > j. 

An edit operation s is an ordered pair (a, b) ≠ (Λ,Λ) of strings, each of length less 
than or equal to 1, denoted by a → b. An edit operation a → b will be called an insert 
operation if a = Λ, a delete operation if b = Λ, and a substitution operation otherwise. 

We say that a string B results from a string A by the edit operation s = (a → b), de-
noted by A → B via s, if there are strings C and D such that A = CaD and B= CbD. 
An edit sequence S:= s1s2...sk is a sequence of edit operations. We say that S takes A 

to B if there are strings A0, A1, ..., Ak such that A0 = A, Ak = B and Ai-1 → Ai via si for 

all i ∈ {1, 2, ..., k}. 
Now let γ be a cost function that assigns a nonnegative real number γ(s) to each 

edit operation s. For an edit sequence S as above, we define the cost γ(S) by  
γ(S):= Σi=1,..,kγ(si). The edit distance δ(A, B) from string A to string B is now defined 

by δ(A, B):= min{γ(S) S is an edit sequence taking A to B}. We will assume that  
γ(a → b)= δ(A, B) for all edit operations a → b. The key operation for string match-
ing is the computation of edit distance. Let A and B be strings, and D(i,j)= δ(A(1, i),  
B(1, j)), 0 ≤ i ≤ m, 0 ≤ j ≤ n, where m and n are the lengths of A and B respectively, 
then: 

D(i,j)= min{ D(i-1,j-1) + γ(A(i) → B(j)), D(i-1,j) +  
γ(A(i) → Λ), D(i,j-1) + γ( Λ → B(j)) } 

(7) 

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Determining δ(A, B) in this way can in fact be seen as 
determining a minimum weighted path in a weighted directed graph. Note that the 
arcs of the graph correspond to insertions, deletions and substitutions. The Leven-
shtein distance (metric) is the minimum-cost edit sequence taking A to B from verti-
ces v(0,0) to v(n,m). In our case both strings have the same length (N) and the algo-
rithm used is O(N2) [7]. 
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4   Discrimination of Artificial Signals 

In order to test the capacity of analysis, feature extraction, and discrimination of the 
above proposed method, eight artificial signals have been taken. The first set of sig-
nals are two sinusoidal signals with the equation Si(t)=Aicos(2πfit) (with i=1,2, and 

A1=0.2, f1=0.002Hz, and A2=0.1, f2=0.01Hz) and two signals described by the follow-

ing expressions: 
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The other set of signals are the contaminated first set of signals, with additive 
white noise, which has a normal distribution with variance σ2 = 0.2 and zero mean. 
The SNR for these signals is 0.09677, 0.02471, 0.36153 and 0.11263, respectively. 

 

 

Fig. 1. Artificial signals; top to bottom: signals, signals with noise, frequency spectrum of the 
clean signals, frequency spectrum of contaminated signals, and frequency spectrum of the 
purified noisy signals. 
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Fig. 1 shows the two sets of artificial signals. In the first rows, the clean signals S1, 

S2, S3 and S4 as well as their contaminated versions can be seen. The next row con-

tains the frequency spectrum from the clean signals, while the fourth row contains the 
spectrum of the signals with noise. It is important to note that there exists a huge 
difference between the signal spectrum with noise respect the spectrum of its clean 
signal.  

In order to remove the maximum added noise to the signals, the contaminated sig-
nals are transformed with the Morlet wavelet, filtered (that is, removing the coeffi-
cients lower that a prefixed threshold) and reconstructed again. The frequency spec-
trum for these purified signals can be seen in the fifth row, and now, it is easy to 
observe that they are quite similar to these spectrums of the clean signals. The thresh-
old Tw values are set to one-third of the maximum wavelet coefficients of the clean 

signals, fulfilling the basic rule stated in Section 2.2. 
In order to quantify the similarity between signals, these spectrums are treated as 

strings, where each position is the amplitude of the spectrum. As the match will not 
be perfect, we use an approximate string matching technique and the Levenshtein 
distance (metric) is calculated, see Table 1. The distance is normalized respect the 
maximum distance, and the higher the distance, the more unlikely the signals is the 
same. 

Table 1. Normalized distance from the artificial clean signals to the contaminated signals. 

 Distance, using Ts = 0 

Signals with noise 
Clean signals S1 S2 S3 S4 

S1 0.32 0.60 0.68 0.92 
S2 0.39 0.56 0.68 0.88 
S3 0.54 0.69 0.40 1.00 
S4 0.58 0.71 0.81 0.64 

The study and analysis of the discrimination algorithm are performed setting three 
threshold values Ts. This threshold Ts serves to eliminate all the amplitudes in the 

frequency spectrum above its value. Initially, we do not use any threshold (Ts = 0), 

and we use all the amplitudes in the spectrum; second, we use a value of Ts = 0.2 in 

order to remove the spurious frequencies; and finally, the threshold is set to Ts = 0.5 

to capture the fundamental frequency and the most important harmonics in the signal.  
In this study, we have realized that a similar distance i) between a clean signal and 

its contamined version and ii) between this clean signal and another contamined sig-
nal, can be discriminant enough if the distance between the clean signals is close. For 
this reason, it is important to check all the distances among the clean and contamined 
signals. This effect can be observed in Table 1. The distance between S1 and S1 with 

noise (d= 0.32) and S2 and S1 with noise (d=0.39) is enough to think that S1 with 

noise is a contamined version of S1, because the distance between S1 and S2 is only 
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d=0.09. The same reasoning is applied to S2 with noise respect S1 and S2, obviously. 

In the other contamined signals (S3 and S4) their distance to their clean signals is short 

enough to perform a good discrimination (d=0.40 and d=0.64). 

5   Discrimination of Real Sounds 

For testing the proposed method with real sounds we have been working with 4 ma-
chine sounds: mill sound (Sl1), drill sound (Sl2), mill sound contamined with vibra-

tions and speech (Sr1), drill sound contamined with speech (Sr2). The two former 

signals are considered the clean sounds. The latter are their contaminated version. 
The frequency sample is 22,050Hz, 16-bit, mono.  

  

Fig. 2. (Left) Machine sounds; (right) first and second row: spectrums of machine sounds; third 
row: purified spectrums of the contaminated signals Sr1 and Sr2. 

As it can be seen in Fig.2. (1st and 2nd row right), the spectrum of clean signals (Sl1 

and Sl2) have two distinct features: i) Sl1 has two important frequency peaks and Sl2 

has only one; ii) the fundamental frequencies of each signal are located at different 
spectrum positions. Taking into account these features and the low SNR of contami-
nated signals, the threshold Tw values are set to one-fourth of the maximum wavelet 

coefficient.  

Table 2. Normalized distance among the real sounds and their contaminated versions. 

 Distance 
Signals with noise 

Clean signals Sr1 Sr2 

Sl1 0.58 0.64 
Sl2 0.83 0.35 
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When the drill sound is contamined with vibrations and speech, the signal becomes 
stronger and there is a shift in the fundamental frequency from 258.7 Hz to 44.5 Hz 
due to: i) the vibrations reduce the fundamental frequency; and ii) the pitch in adult 
male speakers is between 50 Hz and 250 Hz. On the other hand, when the mill signal 
is contaminated with speech, the fundamental frequency does not vary because the 
clean signal fundamental frequency is already in this range (about 86.1 Hz). 

In Fig.2 (3rd row right), the purified spectrum (with Morlet wavelet transform) cap-
tures very well the most important frequency peaks of the clean signals.  

When these spectrums are converted into strings, if the frequency peaks between 
signals are closely located, the distance will also be close, and then the discrimination 
will be effective.  

Many experiments have done with different parameters, Ts = 0.2 and Ts = 0.6, con-

sidering all the frequencies or discretizing them (the X-axis of the spectrums) when 
the string is generated. In all the cases the results (see Table 2) show that the pro-
posed method can be used to discriminate real sounds. 

6   Conclusions 

Machine sound varies depending on the factors as background noise, failures of their 
mechanisms, environmental aspects (speech, noise, ...), etc. Besides, when the feature 
sound is immersed in heavy perturbations as the previously cited is hard to capture. 
CWT can be used to discover the relevant signal components respect the selected 
wavelet bases. Then, using a proper basic wavelet, we can obtain the feature compo-
nents of a signal by reconstructing the wavelet coefficients. The machine sound can 
be purified following this procedure. Together with an approximated matching tech-
nique, the original source of real contamined sounds can be effectively detected. 
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