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Abstract. In this paper, we describe the use of Riemannian geome-
try and graph-spectral methods for purposes of minimum spanning tree
recovery. We commence by showing how the sectional curvature can
be used to model the edge-weights of the graph as a dynamic system
in a manifold governed by a Jacobi field. With this characterisation
of the edge-weights at hand, we proceed to recover an approximation
for the minimum spanning tree. To do this, we present a random walk
approach which makes use of a probability matrix equivalent, by row-
normalisation, to the matrix of edge-weights. We show the solution to be
equivalent, up to scaling, to the leading eigenvector of the edge-weight
matrix. We approximate the minimum spanning tree making use of a
brushfire search method based upon the rank-order of the eigenvector
coefficients and the set of first-order neighbourhoods for the nodes in the
graph. We illustrate the utility of the method for purposes of network
optimisation.

1 Introduction

The recovery of the minimum spanning tree is a classical problem in pattern
recognition. For a weighted graph, the minimum spanning tree is the set of edges
that connects all its vertices without cycles and with minimum total length. The
minimum spanning tree finds application in a number of areas such as network
optimisation, database indexing and logistic planning. The problem is clearly
one of optimisation, which is traditionally solved using greedy algorithms [1, 2].

However, one of the methods that has received little attention is that of
posing the problem in an energy minimisation setting and using graph-spectral
techniques to recover the solution. To cast the problem in such way has a number
of advantages. Firstly, it would allow the modeling of processes that occur in
arbitrary dimension under non-linear constraints. It also allows the problem to
be modeled as a conservative process in a manifold. Viewed in this manner,
the edge-weight then becomes the energy required to move between a pair of
adjacent nodes in the graph. Once the edge-weights are at hand, the apparatus
of graph-spectral theory can be used to recover the tree whose cost is optimum.

Graph-spectral methods have recently proved highly effective in image pro-
cessing and computer vision. By computing the eigenvalues and eigenvectors of
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the weight matrix, it is possible to find groups or clusters of entities. Perhaps
the best known method is that of Shi and Malik [3] which has shown how to
locate image regions by recursively locating the eigenvector associated with the
second smallest eigenvalue of the Laplacian matrix, i.e. the degree matrix minus
the affinity weight matrix. Although it is convenient to work with the Lapla-
cian, since it is positive semi-definite, grouping and segmentation can also be
performed using an edge-weight or affinity matrix. For instance, both Sarkar
and Boyer [4] and Perona and Freeman [5] have developed matrix factorisation
methods for line-segment grouping that use eigenvectors of an affinity matrix
rather than the associated Laplacian. The Sarkar and Boyer [4] method can be
understood as that which maximises the total edge weight of the clusters.

The methods described above all share the feature of using the eigenvectors
of a Laplacian or an affinity matrix to define groups or clusters or objects.
However, graph-spectral methods can also be used for path analysis tasks on
graphs. For instance, it is well known that the path length distribution can be
computed from the spectrum of eigenvalues of the adjacency matrix [6]. Ideas
from spectral-graph theory have also been used to analyse the behaviour of
random walks in graphs [7–9]. In addition, there are important relationships
between the eigenvectors of the edge weight matrix and other quantities related
to random walks. Further, the relationship between the leading eigenvector of
the edge weight matrix and the steady state random walk has been exploited in
a number of areas including routeing theory and information retrieval [10, 11].

The advantage of graph-spectral methods is that they can be used to find
approximate or relaxed solutions without the need for parallel iterative updates
at the vertex level. The method also obviates the need for complex search al-
gorithms. However, although they have been applied to region segmentation
and grouping problems, graph-spectral methods have not been applied to curve
detection problems of the sort that arise in the determination of the optimal
spanning tree.

2 Riemannian Geometry and Markovian Processes

In this section, we provide the theoretical basis for our minimum spanning tree
approximation algorithm. We commence by showing how Riemannian geometry
invariants can be used to model the edge-weights of the graph as the energy of
a particle moving along a geodesic between a pair of points in a Riemannian
manifold. There are clearly a number of ways in which the energy of such dy-
namic system can be minimised. Here, we have chosen to present a random walk
approach that makes use of the apparatus of Markov chains to approximate the
tree whose cost is minimum.

2.1 Riemannian Manifolds

In this section, we aim at providing a means of characterising the step between
two adjacent nodes in the graph as a geodesic in a Riemannian manifold. To do
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this, we pose the problem in a graph-based setting. Let G = (V,E,W ) denote
a weighted graph with index-set V , edge-set E = {(i, j)|(i, j) ∈ V × V, i �= j}
and edge-weight set W = {W (i, j)|(i, j) ∈ V ×V ∧W (i, j) ∈ [0, 1]}. If the nodes
in the graph are viewed as points on the manifold, the edge weight between a
pair of nodes can then be interpreted as the energy of a particle moving along
the geodesic under the influence of a vector field. With these ingredients, the
energy Epi,pj of the dynamic system can be used to define the elements of the
edge-weight matrix such that W (i, j) = exp[−Epi,pj ].

To express the energy Epi,pj in terms of geometric invariants, we employ
the theory of Jacobi vector fields and their relation to the curvature tensor to
characterise the sectional curvature of the manifold. The reasons for using the
curvature tensor are twofold. Firstly, the curvature tensor is natural, i.e. invari-
ant under isometries. Secondly, the curvature tensor can be defined intrinsically
through coordinate changes and it appears as the second differential form of the
metric. Hence, the curvature tensor is one of the main invariants in Rieman-
nian geometry. Here, unless noted otherwise, we use tensor notation in order to
provide a framework which is both, consistent with the material available from
mathematics and compatible with concepts drawn from physics. We consider a
function f to be differentiable if it is of class C∞, i.e. all its partial derivatives,
of all orders, exist and are continuous.

Consider a n-dimensional differentiable manifold M . For any point p ∈ M ,
let Mp denote the tangent space of M at p. Further, let Y be a differentiable
vector field in �n such that Y =

∑n
i=1 η

i∂i, where ηi is the ith coordinate of
the vector η =

∑n
i=1 η

i∂i|p and e = {e1, e2, . . . , en} is the natural basis (�n)p,
i.e. the natural basis of �n at p ∈M . In the equations above, the symbol ∂i has
been defined so as to be consistent with both, the notion of chart in Riemannian
geometry and the natural basis e. To provide a definition of ∂i, we turn our
attention to the natural identification �p : �n �→ (�n)p of the tangent space
at p, i.e. (�n)p, onto �n. For the natural basis, the chart is then given by the
identity map such that ∂i|p = �pei.

In order to take our analysis further, we require a well-defined method for
differentiating vector fields. Hence, for a collection of vector fields ℘1 of class
C1 and a differentiable vector ξ ∈ Mp, the connection ∇ : Mp × ℘1(Mp) �→ Mp

is given by ∇ξY =
∑n

i=1(ξη
i)∂i. This definition implies that the vector ∇ξY

is in the same tangent space as ξ. Furthermore, the connection expresses the
covariant derivatives of the vector field Y in terms of the vector ξ. This is, ∇ξY
describes the rate of change of the vector field Y in the direction ξ in terms of
ξ itself.

In this section, we aim to characterise the transition between two nodes in the
graph as a dynamic system in a manifold. To provide a characterisation invariant
over isometric transformations, we use the notion of connection provided above
to define the curvature tensor. Consider the vector fields Y , X and Z to be
extensions in a neighbourhood of p of the vectors η, ξ, ζ ∈ Mp. The curvature
tensor, which is quadrilinear in nature [12], is then denoted by R(ξ, η)ζ. Here, we
are interested in the sectional curvature, which is bilinear in nature. To obtain a
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bilinear form, i.e. the sectional curvature, from the curvature tensor we use two
linearly independent vectors η, ξ ∈Mp and write

K(ξ, η) =
〈R(ξ, η)ξ, η〉

| ξ |2| η |2 −〈ξ, η〉 (1)

As mentioned earlier, we are interested in modeling the edges in the graph
as geodesics in a manifold. Consider the parameterised curve γ : t ∈ [α, β] �→M .
From Riemannian geometry, we know that for γ to be a geodesic, it must satisfy
the condition ∇γ′γ′ = 0. It can be shown that the connection ∇ for geodesics
is, in fact, a Levi-Civita connection [12]. Further, Levi-Civita connections are
metric preserving, unique and are guaranteed to exist.

To take our analysis further, we define the Jacobi field along γ as the dif-
ferentiable vector field Y ∈ Mp, orthogonal to γ, satisfying Jacobi’s equation
∇2

tY +R(γ′, Y )γ′ = 0, where ∇ is a Levi-Civita connection.
With this ingredients, we can substitute ξ and η with γ′ and Y in Equation

1 and write K(γ′, Y ) = 〈R(γ′,Y )γ′,Y 〉
|γ′|2|Y |2−〈γ′,Y 〉 . But, because Y is orthogonal to γ′, the

equation above becomes

K(γ′, Y ) =
〈R(γ′, Y )γ′, Y 〉
| γ′ |2| Y |2 (2)

To simplify the expression for the sectional curvature further, we make use
of the fact that, since Y is a Jacobi field, it must satisfy the condition ∇2

tY =
−R(γ′, Y )γ′. Hence, we write K(γ′, Y ) = 〈−∇2

t Y,Y 〉
〈Y,Y 〉 , where we have substituted

| Y |2 with 〈Y, Y 〉 and set | γ′ |= 1. As a result, it follows that ∇2
tY =

−K(γ′, Y )Y .
This suggests a way of formulating the energy along the geodesic γ ∈ M

connecting the pair of points indexed i and j. Consider a particle of mass ρ
moving along the geodesic γ subject to the Jacobi field Y . The energy of the
particle can be expressed making use of the equations above as

Epi,pj = ρ

(∫

γ

| γ′ + ∇2
tY |2 dt

)

= ρ

(∫

γ

| γ′ −K(γ′, Y )Y |2 dt
)

(3)

where pi is the point indexed i in M . This is, we have expressed the energy of
the particle moving from the point indexed i to the point indexed j as the sum
of its kinetic energy and the potential contributed by the Jacobi field along γ.
Hence, the edge-weight is small if a pair of points are far from each other or the
curvature along the geodesic between them is large.

2.2 Random Walks

To take our analysis further and make the relationship to the sectional curvature
more explicit, we cast the problem into a random walk setting. In order to profit
from a Markov chain approach to the problem, we commence by row-normalising
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the weight matrix W so its rows sum to unity. To do this, we compute the degree
of each node deg(i) =

∑|V |
j=1W (i, j). With the diagonal degree matrix D =

diag(deg(1), deg(2), . . . , deg(|V |)) at hand, the transition probability matrix is
given by P = D−1W . The elements of the transition matrix are hence given
by Pi,j = 1

deg(i)Wi,j . It is interesting to note that the transition matrix P is
a row stochastic matrix. Moreover, it is related to the normalised symmetric
positive definite matrix Ŵ = D− 1

2WD− 1
2 = D

1
2PD− 1

2 . As a result, we can
write P = D− 1

2 ŴD
1
2 . It is worth noting in passing that the matrix Ŵ is related

to the normalised Laplacian L = D− 1
2 (D−W )D− 1

2 = I−D− 1
2WD− 1

2 = I−Ŵ .
Our aim is to use the steady state random walk on the graph G for purposes

of recovering the spanning tree whose cost is minimum. The walk commences
at the node j1 and proceeds via the sequence of nodes Υ = {j1, j2, j3, ...}. If the
random walk can be represented by a Markov chain with transition matrix P ,
then the probability of visiting the nodes in the sequence above is

PΥ = P (j1)
∏

l∈Υ

Pjl+1,jl
=

∏

l∈Υ

Wjl+1,jl

deg(l)
(4)

Substituting for the path energy, we have that

PΥ =
exp

[

−ρ∑
l∈Υ

(
∫

γ | γ′ −K(γ′, Y )Y |2 dt
)]

∏
l∈Υ deg(l)

=
1
ZΥ

exp[−EΥ ] (5)

where EΥ = ρ
∑

l∈Υ

(
∫

γ
| γ′ −K(γ′, Y )Y |2 dt

)

and ZΥ =
∏

l∈Υ deg(l).

Hence, the path is a Markov chain with energy function EΥ and partition
function ZΥ . Further, let Qk(i) be the probability of visiting the node indexed i
after k-steps of the random walk and let Qk = [Qk(1), Qk(2), . . .]T be the vector
whose components are the probabilities of visiting the nodes at step k. After k
steps we have that Qk = P kQ0. If Ŵ k is the result of multiplying the symmetric
positive definite matrix Ŵ by itself k times, then P k = D− 1

2 Ŵ kD
1
2 .

To develop a spectral method for locating the steady state random walk,
we turn to the spectral decomposition of the normalised affinity matrix Ŵ

Ŵ = D− 1
2WD− 1

2 =
∑|V |

i=1 λiφiφ
T
i , where the λi are the eigenvalues of Ŵ

and the φi are the corresponding eigenvectors. By constructing the matrix Φ =
(φ1|φ2| . . . |φ|V |) with the eigenvectors of Ŵ as columns and the matrix Λ =
diag(λ1, λ2, ...., λ|V |) with the eigenvalues as diagonal elements, we can write
the spectral decomposition in the more compact form Ŵ = ΦΛΦT . Since, the
eigenvectors of Ŵ are orthonormal, i.e. ΦΦT = I, we have that Ŵ k = ΦΛkΦT .

Recall that the leading eigenvalue of Ŵ is unity. Furthermore, from spectral
graph theory [8], provided that the graph G is not a bipartite graph, then the
smallest eigenvalue λ|V | > −1. As a result, when the Markov chain approaches
its steady state, i.e. k → ∞, then all but the first term in the above series become
negligible. Hence, the steady state random walk is given by Qs = limk→∞Qk =
D

1
2φ∗φT∗D− 1

2Q0. This establishes that the leading eigenvector of the normalised
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affinity matrix Ŵ determines the steady state of the random walk. It is also
important to note that the equilibrium equation for the Markov process is Qs =
PQs, where Qs is the vector of steady-state site visitation probabilities. Hence,
since the leading eigenvalue of P is unity, then it follows that Qs is the leading
eigenvector of P . For a more complete proof of this result see the book by Varga
[13] or the review of Lovasz [7].

We aim to visit the points in the manifold in the order of their steady-state
state probabilities. Suppose that the initial state vector for the sites is uniform,
i.e. Q0 = ( 1

|V | , . . . ,
1

|V |)
T . As a result, the steady-state probability of visiting the

node indexed i is

Qs(i) =
1

|V |
|V |∑

j=1

√
deg(j)

deg(i)
φ∗(i)φ∗(j) =

1

|V |
φ∗(i)

√
deg(i)

|V |∑

j=1

√
deg(j)φ∗(j) (6)

Since the summation appearing above is the same for all the vertices in the
graph, the probability rank order is determined by the quantity ψ∗(i) = φ∗(i)√

deg(i)
.

We can make the relationship to the energy of the path more explicit by
expanding the expressions above and substituting the energy functional for every
element of the matrix W . Further, if the mass of the particle is small, we can
make use of the Maclaurin expansion for the exponential weighting function and
write Ŵ (i, j)  1√

deg(i)deg(j)
(1 − ρ[

∫
γ | γ′ − K(γ′, Y )Y |2 dt]). Hence, the path

can be shown to be the one that satisfies the condition

φ∗ = argmin
Φ

|V |∑

i=1

|V |∑

j=1

(
φ(i)φ(j)

√
deg(i)deg(j)

∫

γ

| γ′ −K(γ′, Y )Y |2 dt
)

(7)

As a result, the integration path will minimise both, the sectional curvature
along the geodesic and the length of the geodesic itself.

Our aim is to use the probability rank order to recover the spanning tree for
which the cost of traversing its branches is minimum. If we visit the nodes in the
order defined by the magnitudes of the coefficients of the leading eigenvector of
the normalised affinity matrix, then the path is the steady state of the Markov
chain. Unfortunately, the path followed by the steady state random walk is not
edge-connected. Hence, we need a means of placing the nodes in an order in
which neighbourhood connectivity constraints are preserved using the elements
of the scaled leading eigenvector ψ∗.

3 Recovering the Spanning Tree

The idea underpinning our spanning tree recovery algorithm is to use the rank-
order provided by the components of the leading eigenvector to locate those
graph-edges that correspond to branches of the spanning tree. We pose this
as a brushfire search which is driven from the rank order of the nodes in the
data. In a nutshell, the idea is to traverse the rank-ordered list of graph nodes,
commencing with the node of largest coefficient and terminating with the node of
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Fig. 1. From left-to-right: Delaunay triangulation corresponding to 30 cities in the UK;
Corresponding matrix W ; Approximation to the minimum spanning tree delivered by
our algorithm.

smallest coefficient. To do this, we use the rank-order of the nodes in the graph,
which is given by the list of sorted node-indices OD = (j1, j2, j3, ...., j|VD |) where
ψ∗(1) > ψ∗(2) > ψ∗(3) > ... > ψ∗(|V |). The subscript i of the node-index ji ∈ V
is hence the rank-order of the coefficient ψ∗(i).

We commence by placing the first ranked node as the root of the spanning
tree, which we label j1. We proceed with our brush-fire search by considering the
list of first-neighbours Nj1 for the root node j1. The candidates which may be
assigned to the node j1 must satisfy the edge-connectivity constraints provided
by the graph-edges. These candidates are the first-neighbours of the root j1.
We rank the nodes in the list Nj1 according to the coefficients of the vector φ∗
and propagate this procedure by visiting each node in the graph in the order
specified by the ranked-list OD. This is an iterative process which spreads like a
brush-fire from the root node j1.

To keep track of the nodes visited we maintain a list L of the nodes that have
already been assigned to a branch of the tree. Suppose that we have reached the
nth ranked node which is not in the list L, i.e. jn /∈ L, such that L∩Njn �= ∅. The
algorithm proceeds as follows. We find the set of first-neighbours of the node jn
which are in the list L. We would like to preserve edge-connectivity constraints
while assigning the node ranked n as a leaf of the node ji ∈ L on the basis of
the rank-order of the coefficients of the scaled leading eigenvector ψ∗. Hence,
we assign the node jn as a leaf of the node ji so as to satisfy the condition
ji = {jl | ψ∗(l) = maxjl∈{Njn∩L}{ψ∗(l)}}. This process is repeated until all of
the nodes in the graph have been assigned to a branch of the spanning tree, i.e.
L = V .

4 Experiments

In this section, we illustrate the utility of our method for purposes of network
optimisation. Our experimental vehicle is a distribution network in the United
Kingdom (UK). For this purpose, we have used a set of 30 points drawn from
city locations in the UK. We do this by making use of the postcodes for 30 cities
to locate points, by longitude and latitude, on a map of the UK. Our graph is
then given by the Delaunay triangulation of these points.
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To compute the edge-weights, we have done the following. Since the earth
can be considered to be a sphere, we have set the sectional curvature to the
constant κ, i.e. K(γ′, Y ) ≡ κ. It can be shown that, for the special case of
constant, positive sectional curvature, Jacobi’s equation becomes ∇2

tY = −κY
and its solution, given Y (0) = 0 and | ∇tY (0) |= 1, is Y (t) = sin(

√
κt)√

κ
η, where

the vector η is in the tangent space of M at pi and is orthogonal to γ′ at the
point indexed i, i.e. η ∈Mpi and 〈η, γ′ |pi〉 = 0.

With these ingredients, and by rescaling the parameter t so that | γ′ |= τ ,
we can express the cost of the step between nodes indexed i and j as follows

Epi,pj =
∫ a

0

(

(τ)2 + κ

(

sin(
√
κt)

)2)

dt (8)

In our experiments, we have set κ to unity and rescaled τ so as to take into
account the circumference of the earth and satisfy the condition | γ′ |= τ . As
a result, the value of a is given by the arc length of the geodesic between the
points pi and pj .

In Figure 1, we show the results obtained by our algorithm. In the left-hand
panel, we show the Delaunay graph for the 30 cities used in our experiments. The
middle panel shows the edge-weight matrix, i.e. the matrix W for the Delaunay
graph in the left-hand panel. Finally, the right-hand panel shows the spanning
tree recovered by our algorithm. Here, we have indicated the root of the tree
with a circle, while the rest of the points have been plotted using asterisks.

5 Conclusions

In this paper, we have described how geometric invariants and random walks
can be used to pose the recovery of the minimum spanning tree in an energy
minimisation setting. The work described here can be further extended and im-
proved in a number of different ways. Firstly, there is clearly scope for developing
a more sophisticated method for the brushfire search process. It may also be in-
teresting to investigate whether the ideas presented here can be applied to 2D
curve enhancement problems.
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