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Abstract. The implementation of a pseudo text-independent Speaker Verifica-
tion system is described. This system was designed to use only information ex-
tracted directly from the coded parameters embedded in the ITU-T G.729 bit-
stream. Experiments were performed over the YOHO database [1]. The feature 
vector as a short-time representation of speech consists of 16 LPC-Cepstral co-
efficients, as well as residual information appended in the form of a pitch esti-
mate and a measure of vocality of the speech. The robustness in verification ac-
curacy is also studied. The results show that while speech coders, G.729 in 
particular, introduce coding distortions that lead to verification performance 
degradation, proper augmented use of unconventional information nevertheless 
leads to a competitive performance on par with that of a well-studied traditional 
system which does not involve signal coding and transmission. The result sug-
gests that speaker verification over a cell phone connection remains feasible 
even though the signal has been encoded to 8 Kb/s. 

1   Introduction 

The objective of a Speaker Verification (SV) system is to correctly accept legitimate 
registered users and reject impostors, who falsely claim to be legitimate users, there-
fore protecting restricted information or privileges. The task of recognizing or verify-
ing a person's identity has gained relevance and interest as the technology allows us 
to perform critical operations or receive services remotely, such as on-line or tele-
phone banking, shopping, trading, etc. [2]. Among all biometrics, “voice” has the 
advantage [3] that it doesn't require any sophisticated apparatus; individuals can pro-
vide speech samples in a very natural way and most people are accustomed to speak-
ing to a handset. Furthermore, the availability of cell phone services and Internet 
access (wired or wireless) makes this kind of operations simple and low-cost. 

Speaker verification is a subject that has been rather well studied [2-3]. Many new 
advances have also been reported. For example, Ref. [4] proposed the use of general 
Gaussian mixture models which offer improved speech modeling resulting in better 
verification accuracy; Ref. [5] reported significant performance improvement using 
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minimum verification error training; and Li et al. in [6] proposed the method of utter-
ance verification embedded in a human-machine dialog which can be used for both 
automatic registration and speaker verification. In this work, we focus on the issue of 
speech coding and its impact on the performance of a speaker verification system due 
to the fact that nearly all telecommunication networks today are digital and thus 
speech signals that are being transmitted through the networks are all encoded into 
bit-streams at various bit rates. Since speech coding is in general of a lossy type, it 
thus will inevitably introduce distortion to the decoded signal. An assessment of the 
impact of signal distortion due to coding upon automatic speech recognition was 
provided by [7] for the purpose of evaluating the potential detriment that speech cod-
ing may bring upon voice-enabled services. Here we turn our attention to the applica-
tion of speaker verification with a similar motivation. However, unlike the earlier 
report on speech recognition based on coded speech [8], our work here includes a 
novel use of additional information already existent in the output of the speech coder; 
our system thus can be considered a new design. 

SV can be classified into a 'text-dependent' mode in which the SV system knows 
the transcription of the utterance pronounced by the claimant; or a 'text-independent' 
mode in which the transcription is unknown and the utterance may be arbitrary. In 
this work, a ‘pseudo text-independent’ SV system was built, where the system doesn't 
know the transcription of the input utterance, but it does know it is within a closed set 
(see Section 2.3). 

This paper is organized as follows. First, background information is presented in 
Section 2, including details of interest about the encoder, the speaker verification 
database, and how they were used to build the SV system. Section 2.3 presents the 
basic configuration of the experiments, and Section 3 describes the proposed use of 
additional information which is derived from the encoded bit-stream; for brevity, we 
call the system a bit-stream level system. Finally, Section 4 presents a comparison of 
results obtained with our scheme against those with conventional SV systems. 

2   Background 

2.1   Database 

Our evaluation uses the YOHO database [1], which consists of a series of lock-
combination sentences pronounced in American English by 138 subjects (106 male 
and 32 female), having a wide range of ages, jobs and education, including at least 4 
speakers with foreign mother tongue. 

This database is originally divided into two main sets: the ENRollment set and the 
VERification set; furthermore, ENR has 4 sessions with 24 utterances each, and VER 
has 10 sessions with 4 utterances each; resulting in a total of 13,248 enrollment utter-
ances and 5,520 verification utterances. Although the length of each wave file is 
around 3 to 4 seconds, only about 2.5 seconds is active speech, which yields to 
roughly 240 seconds of active speech for ENR per speaker. 
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2.2   ITU-T G.729 

ITU-T G.729 [9] is a set of speech coding standards recommended for digital cellular 
phones, operating at the rate of 8 kb/s. The recommendation ITU-T G.729 describes a 
“toll quality” 8 kb/s Conjugate-Structure Algebraic-Code-Excited Linear-Prediction 
encoder (CS-ACELP), with a frame rate of 10ms at 80 bits/frame. The input speech 
waveform is sampled at 8 kHz with each sample represented in a 16-bit linear PCM 
(Pulse Code Modulation) format. A 10th order linear prediction analysis is performed 
on every frame of windowed speech generating parameters that characterize the sig-
nal production system. These parameters, sometimes referred to as short-term predic-
tion or spectral envelope information, are transformed into Line Spectral Pairs (LSP) 
parameters for quantization. The residual or excitation information consists of two 
components: periodic and random. Table 1 illustrates how the 80 bits are allocated to 
the complete set of encoder parameters. 

Table 1. Bit allocation for various parameters in G.729 

Parameter Codeword Subframe 1 Subframe 2 Total per frame 
Line Spectrum pairs L0, L1, L2, L3 - - 18 
Periodic 
component 

Pitch Delay index for 
Adaptive Codebook 

P1, P2 8 5 13 

 Pitch-Delay Parity P0 1 – 1 

 Gains (pitch) for 
Adaptive Codebook 

Gp1, Gp2 3 3 6 

Random 
component 

Fixed Codebook Index Ic1, Ic2 13 13 26 

 Fixed Codebook Sign S1 4 4 8 

 Algebraic Codebook 
Gains 

Ga1, Ga2 4 4 8 

Total  80 

As shown in the table, a total of 18 bits per frame are spent for the short-term pre-
dictor in the form of line spectral pair parameters, while 62 bits are used for the resid-
ual (20 for the periodic part and 42 for the random component).  

The periodic part of the residual consists of pitch estimates Ps, which provides an 
index pointer for a position in the adaptive codebook to facilitate “long-term” predic-
tion spanning over a pitch period; and pitch gains Gps, which is the corresponding 
scaling factor to produce the best match between the input speech and its delayed 
version as encapsulated in the adaptive codebook. Note that the gain is also a measure 
of correlation between the input and its delayed version; the magnitude of such a 
long-span correlation is nearly one for a periodic signal and nearly zero if the signal 
lacks periodicity. It can thus be considered a crude measure of vocality. 

The random part consists of the algebraic codebook indices and signs (Ics and Ss) 
and the fixed (algebraic) codebook gain (Gas). This component is related to the exci-
tation function that cannot be properly represented with both the long and short-term 
predictors. 

Figure 1 depicts how the decoded bit-stream is used in various components of the 
decoder/receiver for the reconstruction of speech waveform. Here we assume that the 
inner layer of information is available to the speaker verification system. We thus 
refer to such an SV system “the bit-stream level system” without ambiguity. 



Speaker Verification Using Coded Speech      369 

 

Fig. 1. Decoded parameters at the decoder for speech synthesis 

Typical applications of G.729 speech coder include Voice over IP, satellite com-
munications, and digital cellular phone service. 

2.3   Experimental Setup 

The application scenario considered consists of an individual requesting access to 
restricted information or privilege from a remote location (via a cellular phone or a 
Voice over IP connection) to a server, which has full access to the bit-stream trans-
mitted (for example, an SV service provided by a cellular phone carrier, or an SV 
server connected to the Internet). 

The SV system follows the Gaussian mixture universal background model (GMM-
UBM) paradigm, also known as general or world background model [3]. There are 
138 different models (one for each speaker) plus one speaker independent universal 
background model (UBM), a silence and a short pause. Although the transcriptions 
are unknown, it is known that the utterances have three words (lock combinations). 

In order to build a UBM background model, the database was repartitioned into 
two sets: I and II, keeping half of the individuals on each set (53 male and 16 female 
per set). Each set has an ENR and VER subsets. Two separate runs of SV experi-
ments were performed, where in one case, the entire set II was used to estimate (train) 
the background model, while in the other, only set I was used for registered users and 
verification attempts. By doing this, it is ensured that none of the individuals used to 
estimate the background model would be present during verification. 

We use the tool kits of HTK [10] to train and test the models. Each individual's 
model and the UBM consist of Gaussian mixtures (single-state HMMs) with 40 mix-
ture components, which attempt to model the different vocal tract configurations [4] 
as represented in the feature vectors. 

We test the hypothesis {H0: the claimant is indeed the registered user} against {H1: 

the claimant is an impostor}, using the log likelihood ratio (LLR) computed as fol-
lows: 
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where λc is the claimed identity's model, λUBM is the universal background model, 

and O is the sequence of observed feature vectors. The decision whether to accept or 
reject the claimant depends on the threshold τ. For analysis purposes, results are pre-
sented using DET (Detection Error Tradeoff) plots, therefore leaving the choice of τ 
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open to suit a desired application. False-Alarm corresponds to False Acceptance (FA) 
and Miss corresponds to False Rejection (FR). 

3   Bit-Stream Level Speaker Verification 

As mentioned in Section 2.2, a quantized version of the spectral envelope information 
is available in the bit-stream from the 10 LSP parameters (Line Spectrum Pair fre-
quencies). These parameters have a one-to-one correspondence to the LPC coeffi-
cients (Linear Prediction Coefficients), which can be further transformed to cepstral 
domain using the following recursion [11]: 
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where we have used the convention of 1-A(z) for the inverse filter and a0=1 and an=0 

for n>p. It is clear that when p is known, c[1] … c[p] are sufficient to recover back 
the LPC coefficients. The effect of truncating the LPC-Cepstral coefficients (also 
called rec-cepstrum [12]), or multiplying the coefficients by a rectangular window, is 
a convolution of the log power spectrum with the Fourier transform of a rectangle 
window (i.e., a sinc function), causing smoothing of the power spectrum estimate 
from LPC coefficients, and reducing the sharpness of the formant peaks [13]. This 
smoothing effect is up to a point desirable, since sharp formant peaks are often arti-
fact themselves. 

Although spectral envelope conveys information that characterizes a person’s 
identity, the residual carries another component (it is well known that it is still possi-
ble to guess the identity of the talker by simply listening to the LPC residual signal). 
Several techniques have been proposed to extract these characteristics from the resid-
ual, including LPC analysis over the residual [15] and appending the residual parame-
ters [12] to the feature vector. 

Our proposed feature vector appends residual information to the LPC-Cepstral co-
efficients, in the form of a fundamental frequency measure (log f0) and a measure of 

vocality (mvk) estimated by combining the pitch gain (Gp) and codebook gain (Ga) 

as follows: 
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and similarly for Γak, to find: 
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where index k denotes the frame number, and Γs are results of a 40ms moving me-
dian, therefore removing spurious glitches. 

The structure of our 54-dimensional feature vector is: 
[ ].][],[,),log(,,,, 2

01621 ∆∆= mvfcccFV …  (5) 

A baseline experimental setup ‘A’ consists of a conventional SV system applied to 
the original set of waveforms in YOHO. The SV system uses 12 MFCC (Mel-
frequency cepstral coefficients) plus an energy term. 
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Additionally, ∆ and ∆2 are appended, resulting in a 39-dimensional feature vector.  
Similarly, in order to illustrate the impact on SV performance using G.729 coded 

waveform, experimental setup ‘B’ applies the same scheme as in setup ‘A’ to a 
transcoded version of the database. 

The performance of the proposed feature vector eq.(5) is tested in experimental 
setup ‘C’. 

For every experimental setup described above, robustness was tested in noisy con-
ditions with SNR values of 20dB and 15dB. Noise level was adjusted using ITU-T 
P.56 recommendation software [14]. 

4   Experimental Results 

As shown in Figure 2, a conventional SV system is capable of achieving an equal 
error rate (i.e., when %FA=%FR) of slightly more than 1.6% without obvious noise 
interference. When additive noise is present at 20dB SNR, the performance deterio-
rates to about 3.5% and to about 5% when SNR is 15dB.  

When the speech signal undergoes G.729 coding and decoding, the SV system that 
takes the reconstructed waveform as input can only achieve roughly 2%, 4% and 5% 
equal error rate under clean, 20dB SNR and 15 dB SNR conditions, respectively, as 
shown in the second plot (Set B) of Figure 3. Note that the coder G.729 is generally 
considered toll quality at 8 kb/s. The result shows that while the distortion introduced 
by the coder may not be obvious to our perceptual apparatus, it is causing deteriora-
tion in the performance of a speaker verification system. The result is consistent with 
that of [7] and the recommendation is to avoid transcoding if possible.  

  

Fig. 2. Speaker Verification results from 
experimental setup A. Clean and noisy data 
with SNR values of 20 dB and 15 dB, using 
conventional MFCC features extracted from 
the waveform 

Fig. 3. Speaker Verification results from ex-
perimental setup B. Transcoded waveforms 
and noise added before the codification for 
SNR values of 20 dB and 15 dB 

When additional feature parameters are used as described in eq.(5), the perform-
ance is slightly better than experimental setup B, without having to synthesize the 
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quantized parameters into a waveform for preprocessing. Under a “clean” condition, 
use of the augmented feature vector is able to reduce the equal error rate to nearly 
2%, as shown in Figure 4 (Set C). Even when noise is present, at 20dB and 15dB 
SNR, respectively, the equal error rates achieved by the new proposed system are 
approximately 4% and 4.8%. The augmented features show robustness comparable to 
MFCCs. 

5   Conclusions and Future Work 

Given the availability of mobile and telecommunication infrastructure that allows 
remote, ubiquitous access to critical service transactions, SV is an area that has 
gained attention recently. We have presented a bit-stream level SV system, that in-
corporates the residual in terms of an estimate of the log pitch frequency, and a meas-
ure of vocality, derived from G.729 pitch gains and codebook gains. 

The experimental results show that this somewhat crude incorporation of the re-
sidual-derived (or excitation-derived) feature matches the performance of MFCCs 
extracted from transcoded speech; setting a baseline and leaving the opportunity to 
improve the performance by using the measure of vocality to distinguish the seg-
ments of speech that characterize the best the anatomic characteristics of the speakers. 
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