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Abstract. It is well known that a direct integration of acoustic and lan-
guage models (LM) into a Continuous Speech Recognition (CSR) system
leads to low performances. This problem has been analyzed in this work
as a practical numerical problem. There are two ways to get optimum
system performances: scaling acoustic or language model probabilities.
Both approaches have been analyzed from a numerical point of view.
They have also been experimentally tested on a CSR system over two
Spanish databases. These experiments show similar reductions in word
recognition rates but very different computational cost behaviors. They
also show that the values of scaling factors required to get optimum CSR
systems performances are closely related to other heuristic parameters
in the system like the beam search width.

1 Introduction

Integration of language and acoustic models in a Continuous Speech Recogni-
tion (CSR) system is invariably based on the well-known Bayes’ rule, i.e., the
recognizer must find the word sequence Ω̂ that satisfies:

Ω̂ = argmax
Ω

P (Ω)P (A/Ω) (1)

where P (Ω) is the probability that the word sequence Ω ≡ ω1ω2 . . . ω|Ω| from
some previously established finite vocabulary Σ = {ωj}, j = 1 . . . |Σ|, will be
uttered and P (A/Ω) is the probability of the sequence of acoustic observations
A = a1a2...a|A| for a given sequence of words Ω. Probabilities P (A/Ω) are
represented by acoustic models, usually Hidden Markov Models (HMM). The a
priori probabilities P (Ω) are given by the Language Model (LM).

However, the combination of acoustic and LM probabilities obtained through
Equation 1 usually leads to poor CSR system performances. In fact, it is well
known that best performances of a CSR system are obtained when acoustic
and language model probabilities in the Bayes’ rule are modified by introducing
exponential scaling factors [1] [2] [3].
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From a theoretical point of view, the scaling parameters are needed because
acoustic and LM probability distributions are not real but approximations [1].
The two probability distributions are estimated independently using different
stochastic models that model different knowledge sources. Moreover, the param-
eters of the acoustic and language models are estimated on the basis of speech
and text data corpora, respectively. Thus, scaling parameters need to be applied
to lessen these effects and then obtain good system performances.

In practice a numerical problem needs to be solved: the acoustic probabili-
ties are normally much smaller than those of the LM. In addition, they appear
more times. As a consequence, the contribution of LM probabilities could not be
relevant [4] to obtain the most probable word sequence Ω̂. Therefore, low CSR
system performances are usually obtained.

Section 2 illustrates this problem through an example of word sequence recog-
nition. The usual way to get better system performances is to reduce the LM
probabilities using a scaling factor α > 1: P (Ω)α. Alternatively, the acous-
tic probabilities can be increased by using a scaling factor γ < 1: P (Ω/A)γ .
The effects of both scaling procedures are also analyzed in Section 2. Section
3 shows an experimental evaluation of both scaling procedures. The CSR sys-
tem performance was measured in terms of both the Word Error Rate (WER)
and the involved computational cost, which are also related with the heuristic
beam-search applied. The experiments were carried out on two Spanish applica-
tion tasks including read and spontaneous speech respectively. Therefore these
databases represent two different levels of difficulty. Finally, some concluding
remarks are given in Section 4.

2 Scaling Factors over Acoustic
and LM Probability Distributions

Most of the current CSR systems use the one-pass Viterbi algorithm to obtain a
sequence of decoded words given a sequence of acoustic observations according
to Equation 1. The Viterbi-based search solves a maximization problem at each
time t by choosing the higher accumulated probability for each node of the
trellis. The argument of the maximization, i.e. the node at time t − 1 leading
to maximum accumulated probability at time t, is also saved. Thus, finally the
algorithm recovers in a backward step the most probable path of trellis nodes
according to the whole acoustic observations sequence and, as a consequence,
the most probable sequence of words uttered. Figure 1 shows this procedure for
a small vocabulary of five words: w1, ...w5 at time t and time t + 1. −logPwi

1

represents accumulated probabilities corresponding to partial paths ending at
each word wi, i.e. at trellis nodes that match the final state of word wi at
time t. For these nodes, the LM has to be checked to get the −logP (wi/wj).
1 In practice probabilities are managed as minus their logarithm to avoid numbers

quickly falling to zero. We keep this representation in the example to better analyze
differences among probability values. Thus lower values stand for higher probable
paths.
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Then, the accumulated probability −logPwi at time t + 1 is obtained through
a new maximization procedure that includes this time combinations with LM
probabilities. As a consequence of this maximization, a new word is added to
the partial path under consideration.

-log Pw2
=5200

-log Pw5
=5230

-log Pw4
=5175

-log Pw1
=5210

t

w1

w2

w3

w4

w5

-logP(w1/w1)=30

-logP(w1/w2)=5

-logP(w1/w3)=50

-logP(w1/w4)=15

t+1

-log Pw3
=5090

-logP(w1/w5)=1

-logPw1
(t+1)=

minwi
(-logPw1

(t)-logP(w1/wi))

Fig. 1. The Viterbi based search choose at each time t the highest accumulated prob-
ability for each node of the trellis. −logPwi represents accumulated probabilities for
nodes matching the final state of a word model at time t. For these nodes, the language
model has to be checked to get the −logP (wi/wj). Then, the accumulated probability
−logPwi at time t+1 is obtained through a new maximization procedure that includes
this time combinations with language model probabilities.

Figure 1 also shows the numerical problem previously discussed. The exam-
ple in Figure 1 shows that the most probable partial path at time t ends at
word w3 and the less probable one ends at word w5. According to the bigram
model probabilities P (w1/wj) the most probable word to be added at time t to
the partial path is word w5 and the less probable is w3, when the word w1 is
considered at time t+1. Then, a new maximization has to be solved to estimate
the accumulated probabilities at time t + 1. For trellis node matching the initial
state of word w1:

P t+1
w1

= max
wi

(P t
wi

P (w1/wi)) → −log(P t+1
w1

) = min
wi

(−logP t
wi
−logP (w1/wi)) (2)

Table 1 shows the accumulated probabilities −logP t+1
w1/wi

at time t + 1 and
initial state of word w1 for all possible recognized word wi at time t for the
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Table 1. Accumulated probabilities −logP t+1
w1/wi

at time t+1 and initial state of word
w1 for all possible recognized word wi at time t for the example in Figure 1.

−logP t+1
w1/w1

−logP t+1
w1/w2

−logP t+1
w1/w3

−logP t+1
w1/w4

−logP t+1
w1/w5

5249 5205 5140 5190 5231

example in Figure 1. Maximization in 2 is solved by choosing among values in
Table 1. Thus word w3 is selected to be added to this partial path, even if it is
the less probable word according to the LM probabilities.

This example illustrates the numerical problem when Equation 1 is directly
applied to decodeingan utterance without any scaling probabilities. Accumulated
probabilities at the end of each partial sequence of words in the Viterbi trellis
mainly depend on the values of acoustic P(A/Ω) probabilities because they are
usually much smaller than those of the LM P(Ω). Moreover, acoustic probabili-
ties appear, i.e. should be multiplied (or be summed their minus logarithm), at
each node of the trellis whereas LM probabilities are only considered for trellis
nodes matching final states of each word in the task lexicon. The gap among
accumulated probabilities is therefore usually bigger than the gap among LM
probabilities (see Figure 1). The immediate consequence is that LM probabil-
ities are irrelevant in most situations when choosing the best, most probable,
partial path [4]. The scarce contribution of the LM probabilities leads to low
CSR system performances.

There are two easy ways to avoid this situation: to increase the gap among LM
probabilities or to decrease the gap among accumulated probabilities. In the first
case the LM probabilities are scaled by an exponential parameter α > 1:(P (ω))α.
In the second one the acoustic model probabilities are scaled by γ < 1:(P (A/ω))γ

When LM probabilities are raised to a power α > 1: (P (ω))α, all of them are
attenuated, but this attenuation is higher for lower probability values. The gap
between high and low probability values is now bigger. The LM probability values
become more competitive with the increase of α values, up to a maximum where
LM probabilities are overvalued. As a consequence, LM probabilities are now
more relevant to choose the best partial path. Table 2 shows the accumulated
probabilities at time t + 1 for the example in Figure 1 and Table 1 when LM
probabilities have been scaled by different values of parameter α. This Table
shows that word w2 (α = 4 and α = 6) or w4 (α = 8) could now be selected
to be added to partial path, even if they correspond to partial paths with low
accumulated probabilities (see Figure 1). When acoustic probabilities are raised
to a power γ < 1: (P (A/ω))γ , all of them are increased but the increase is higher
for lower probability values. The gap among accumulated probabilities is reduced
in this case because accumulated probability values mainly depend on acoustic
probabilities. The LM probabilities are also more and more competitive when γ
decreases down to a minimum. As a consequence, LM probabilities are now also
more relevant to choose the best partial path. Table 3 shows the accumulated
probabilities at time t + 1 for example in Figure 1 and Table 1 when acoustic
probabilities have been scaled by different values of parameter γ.
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This Table shows that word w2 (γ = 0.4), w3 (γ = 0.5) or w4 (γ = 0.3) could
be now selected to be added to partial path, even if they correspond to partial
paths with low accumulated probabilities at time t (see Figure 1).

Table 2. Accumulated probabilities −logP t+1
w1/wi

at time t+1 and initial state of word
w1 for all possible recognized word wi at time t for the example in Figure 1 and Table
1. LM probabilities have been scaled by α = 4, 6, 8.

α −logP t+1
w1/w1

−logP t+1
w1/w2

−logP t+1
w1/w3

−logP t+1
w1/w4

−logP t+1
w1/w5

4 5330 5220 5340 5235 5234

6 5390 5230 5440 5265 5236

8 5450 5240 5540 5295 5238

Table 3. Accumulated probabilities −logP t+1
w1/wi

at time t+1 and initial state of word
w1 for all possible recognized word wi at time t for the example in Figure 1 and Table
1. Acoustic probabilities have been scaled by γ = 0.5, 0.4, 0.3.

γ −logP t+1
w1/w1

−logP t+1
w1/w2

−logP t+1
w1/w3

−logP t+1
w1/w4

−logP t+1
w1/w5

0.5 2635 2605 2595 2602 2616

0.4 2114 2085 2086 2085 2093

0.3 1593 1565 1577 1555 1570

When no scaling factors are applied (α = 1 and γ = 1), the most probable
partial path includes word w3 (see Table 1). However, for α > 1 (Table 2) and
for γ < 1 (see Table 3) the most probable partial paths include word w2. High
values of α and low values of γ are not usually considered since LM probabilities
are overvalued leading to low recognition rates.

CSR systems introduce a beam-search in order to reduce the computational
cost of the search. The maximum probability of all trellis nodes, i.e. of all par-
tial path is calculated at each time t, 1 ≤ t ≤ |A|. Then, partial paths with
accumulated probabilities under a percentage of this maximum are not consid-
ered any more. The value of an heuristic parameter 0 ≤ bf ≤ 1 controls the
number of partial paths considered. This parameter should be adjusted to re-
duce the computational cost without reducing the recognition rate. The number
of partial paths to be evaluated mainly depends on the gap among accumu-
lated probabilities corresponding to different partial paths at each time t. Both
scaling factors modify partial path probabilities. However, scaling LM probabil-
ities (α > 1) increases the gap among accumulated probabilities whereas scaling
acoustic probabilities (γ < 1) reduces it. As a consequence, the number of partial
paths considered, and the involved computational cost, are expected to be very
different for the two scaling procedures: higher for γ scaling than for α one.

3 Experimental Evaluation

The experimental evaluation was carried out on two Spanish databases with very
different levels of difficulty: Bdgeo and Info Tren.
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Bdgeo is a task-oriented Spanish speech corpus [5] consisting of 82000 words
and a vocabulary of 1208 words. This corpus represents a set of queries to a
Spanish geography database. This is a specific task designed to test integrated
systems for automatic speech understanding. Acoustic models were previously
trained over a phonetic database consisting of 1530 sentences uttered by 47
speakers. The ML training corpus consisted of 9150 sentences. The test set con-
sisted of 600 sentences uttered by 12 speakers in a laboratory environment at
16KHz. Perplexity values for this task were 13.1 for n=2, 7,53 for n=3 and 7,17
for n=4.

Info Tren database was recorded as part of a Spanish project to develop a
dialogue system. The task consisted of 227 Spanish dialogues on train informa-
tion resulting in a vocabulary of around 2000 words. Info tren is a difficult task
since it was recorded through the telephone (8Khz), applying the well known
Wizard of Oz mechanism. Thus, it is a spontaneous speech database were many
different types of disfluencies are found: speaker and background noises, filled
pauses, lengthenings, etc. [6]. Info tren is the first spontaneous dialogue database
recorded by Castilian Spanish speakers. The training corpus consisted of 191 dia-
logues uttered by 63 different speakers (1349 user turns resulting in 16500 words
plus 5000 disfluencies). The test set consisted of 36 new dialogues uttered by 12
new speakers (308 user turns including 4000 words plus around 500 disfluencies).
Perplexity values for this task were 36,8 for n=2, 34,8 for n=3 and 36,3 for n=4.

Uttered sentences were decoded by the time-synchronous Viterbi algorithm.
In order to reduce the computational cost a beam-search algorithm was applied
with different widths: high values of bf parameter for narrow beams and low
values of bf for wide beams. The experiments were carried out using standard
back-off n-gram models. Two series of experiments were carried out. In the first
series LM probabilities were scaled by |α > 1 (P (ω))α. Table 4 shows the CSR
system performance measured in terms of both, the Word Error Rate (WER)
and the Average number of Active Nodes (AAN) in the lattice, including both
acoustic and language model states. It shows WER and ANN for α=1 . . . 7 and
bf = 0.6, 0.5, 0.4 values for three different n-gram (n = 2, 3, 4) models. Optimum
performances are emphatized and underlined.

These experiments confirm that the scaling Language Model probabilities
clearly leads to better CSR systems performances. Table 4 shows that both the
word error rate and the average number of nodes in the lattice increased with α
(up to a minimum), for any n-gram model and value of bf parameter. This Table
also shows a relationship between the bf and α values required to get optimum
performances: higher values of α are needed for wider beams search.

In the second series of experiments the acoustic probabilities have been scaled
by γ < 1 (P (A/ω))γ . Table 5 shows the CSR system performances obtained
through these experiments: the word error rate and the average number of active
nodes in the lattice for three different n-gram (n = 2, 3, 4) models and different
values of bf and γ parameters. Optimum performances are also emphatized and
underlined.

These experiments confirm that the scaling acoustic model probabilities
clearly leads to better CSR systems performances measured in terms of word
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Table 4. CSR performance obtained using n-grams LMs with n = 2 . . . 4 for Bdgeo
task and Info tren task. Different values of the scaling factor over LM probabilities (α)
and beam-search (bf) were applied.

BDGEO Info tren
α bf=0.6 bf=0.5 bf=0.4 bf=0.6 bf=0.5 bf=0.4

WER AAN WER AAN WER AAN WER AAN WER AAN WER AAN

n=2
1 41.89 1824 41.62 3964 41.87 6358 62.15 1363 61.69 3260 62.16 4798
2 26.43 781 25.8 2588 25.93 4843 51.12 751 50.23 2594 51.14 4038
3 21.65 280 20.22 1508 20.34 3456 47.06 369 43.83 1912 45.52 3217
4 20.54 114 16.99 764 16.72 2330 47.91 190 41.08 1291 43.95 2422
5 24.76 62 15.80 380 15.33 1441 51.50 97 39.60 799 42.56 1734
6 31.42 40 15.95 218 14.81 858 59.37 54 40.32 467 42.29 1204
7 40.39 28 17.01 143 14.29 526 66.61 36 41.75 294 42.34 855

n=3
1 44.18 2027 38.85 5189 38.85 9737 62.02 2011 58.69 6400 59.10 9998
2 22.43 746 21.86 2984 21.85 6659 51.30 1035 48.72 4668 53.08 5213
3 17.19 238 15.35 1529 15.18 4207 47.31 488 42.14 3172 47.10 3954
4 17.51 90 11.74 702 11.6 2526 47.68 240 38.72 1978 44.68 3112
5 21.79 48 10.85 328 10.32 1426 52.48 118 38.01 1135 42.73 2437
6 29.52 32 10.82 179 9.65 800 60.04 66 38.41 631 41.13 1935
7 36.81 23 13.04 114 9.45 467 68.43 41 41.58 378 43.01 968

n=4
1 38.75 2052 38.50 5374 38.51 9930 62.10 2122 58.80 6480 60.01 10112
2 21.77 746 21.86 3053 21.13 7041 51.40 1193 48.90 4720 53.10 5293
3 16.41 235 14.44 1544 14.35 4379 47.48 593 42.25 3286 47.30 4015
4 16.71 89 10.92 704 10.82 2593 47.96 310 38.83 2229 44.78 3210
5 21.11 47 10.24 328 9.45 1451 52.56 195 37.84 1269 42.96 2563
6 28.64 31 10.22 177 8.72 808 60.34 92 38.63 702 41.20 2078
7 35.84 23 12.48 113 8.83 469 67.13 68 42.31 415 43.60 1050

error rates. However, the reduction of word error rates is obtained along with
important raises of the average number of active nodes in the lattice. Moreover,
in this case a wide beam-search keeps a very high number of active hypotheses
in the lattice increasing not only the involved computational cost but also the
number of recognition errors. Table 5 also shows a relationship between the bf
and γ values required to get optimum performances: lower values of γ are needed
for wider beam search.

4 Concluding Remarks

In this work, we have experimentally analyzed the bad relationship between
acoustic and LM probabilities when they are directly integrated using de Bayes’
rule in CSR systems. A practical numerical problem arises since acoustic proba-
bilities are much smaller than language ones. In addition they appear more times.
As consequence, the contribution of LM probabilities could not be relevant when
choosing the best path in the trellis. The gap among LM probabilities can be
increased by scaling them by an exponential factor α > 1 or the gap among
accumulated probabilities can be reduced by scaling acoustic probabilities by an
exponential factor γ < 1. Both possibilities have been analyzed and tested on a
CSR system over two Spanish databases. Both scaling approaches clearly led to
important reductions of word error rates. However, α scaling of LM probabilities
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Table 5. CSR performance obtained using n-grams LMs with n = 2 . . . 4 for Bdgeo
and Info tren task. Different values of the scaling factor over acoustic probabilities (γ)
and beam-search (bf) were applied.

BDGEO Info tren
γ bf=0.9 bf=0.8 bf=0.6 bf=0.8 bf=0.6 bf=0.5

WER AAN WER AAN WER AAN WER AAN WER AAN WER AAN

n=2
1 68.58 20 46.91 243 41.89 1824 93.53 178 61.15 1363 61.69 3260

0.8 61.31 24 39.50 341 35.98 2484 92.06 350 58.03 2133 58.06 4334
0.5 44.34 39 27.15 708 25.60 4620 51.45 793 43.92 4051 50.87 7247
0.2 19.63 123 15.13 2775 24.87 6538 67.21 2987 67.21 9369 67.42 11610
0.1 19.15 358 17.45 7248 26.10 9361 91.48 6055 91.81 11455 91.99 12336
0.05 46.54 1076

n=3
1 65.88 18 44.58 222 44.18 2027 93.82 204 60.02 2011 58.69 9980

0.8 60.34 20 37.24 315 33.12 2905 92.13 416 56.28 3364 56.30 12415
0.5 42.23 30 22.49 668 22.47 6402 50.03 1024 41.77 5830 59.77 18780
0.2 16.12 94 10.4 3172 17.34 9000 64.86 4010 53.60 12360
0.1 12.04 303 10.95 12031 21.10 12314 80.04 8135
0.05 44.85 1424

n=4
1 65.23 18 44.36 221 38.75 2052 93.90 230 62.10 2122 58.80 6480

0.8 59.82 20 36.75 313 32.75 2961 92.23 426 55,35 3650 54.30 13415
0.5 42.12 30 21.89 668 21.26 6757 49.92 1068 40.13 6930 63.10 19565
0.2 16.63 93 9.67 3313 17.10 9990 63.10 4340 52.15 13360
0.1 11.74 308 10.85 13730 20.90 12816 79.10 8240
0.05 43.12 1472

also led to important reductions of the computational costs whereas γ scaling of
acoustic probabilities led to undesirable raises. It has also been shown that these
effects are not independent of other heuristic phenomena in the system like the
beam-search width. Thus, the values of scaling factors in CSR systems should
be experimentally established along with other heuristic parameters.
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