
A. Sanfeliu et al. (Eds.): CIARP 2004, LNCS 3287, pp. 432–438, 2004. 
© Springer-Verlag Berlin Heidelberg 2004 

Detecting Inflection Patterns in Natural Language  
by Minimization of Morphological Model* 

Alexander Gelbukh1,2, Mikhail Alexandrov1, and Sang-Yong Han2,** 

1 National Polytechnic Institute, Mexico 
www.Gelbukh.com, dyner1950@mail.ru 

2 Chung-Ang University, Korea 
hansy@cau.ac.kr 

Abstract. One of the most important steps in text processing and information 
retrieval is stemming – reducing of words to stems expressing their base mean-
ing, e.g., bake, baked, bakes, baking → bak-. We suggest an unsupervised 
method of recognition such inflection patterns automatically, with no a priori 
information on the given language, basing exclusively on a list of words ex-
tracted from a large text. For a given word list V we construct two sets of 
strings: stems S and endings E, such that each word from V is a concatenation 
of a stem from S and ending from E. To select an optimal model, we minimize 
the total number of elements in S and E. Though such a simplistic model does 
not reflect many phenomena of real natural language morphology, it shows sur-
prisingly promising results on different European languages. In addition to 
practical value, we believe that this can also shed light on the nature of human 
language. 

1  Introduction 

Nowadays huge amounts of information are available in more and more languages. 
For example, in May 2004 the number of official languages of the European Union 
reached 20 and will grow soon. The need of processing multidisciplinary documents 
in so many languages results in growing interest to knowledge-poor methods of text 
processing. 

One of the most important modules in a system dealing with natural language, such 
as information retrieval or document classification system, is stemming. The task of a 
stemmer algorithm is to map the words having the same base meaning but differing in 
grammatical forms, to the same letter string that can be used to identify the word 
independently of its morphological form. As the common identifier of a set of word-
forms, their common initial substring is usually used, e.g., bake, baked, bakes, baking 
→ bak-. Often morphological derivations of the word are included in the set: bake, 
baked, bakes, baking, baker, bakery → bak-.  

Though the quite problem is important for English, it is much more important for 
processing texts in very many other languages, among which are almost all European 
languages. Indeed, while in English there are only four morphological variants of a 

                                                           
*  Work done under partial support of the ITRI of Chung-Ang University, Korea, and for the 

first author, Korean Government (KIPA) and Mexican Government (SNI, CONACyT, CGPI-
IPN). The first author is currently on Sabbatical leave at Chung-Ang University. 

** Corresponding author. 



Detecting Inflection Patterns in Natural Language      433 

verb, in Spanish verbs have 65 forms, while in Russian 250 (mostly due to partici-
ples), which are to be mapped to a common stem by the stemmer. 

Manual construction of the corresponding dictionaries or rules is a tedious and la-
bor-consuming task, especially for languages for which little linguistic resources are 
available (there are ca. 5,000 languages in the world). An attractive alternative is 
automatic learning of the necessary models from the texts themselves. 

The languages spoken in the world can be roughly classified as follows: 

� Inflective languages. Words in such languages consist of a stem and a number of 
suffixes and/or prefixes. The number of suffixes (or prefixes) for words of a given 
part of speech is fixed (or several different variants may exist), thus the number of 
different combinations of suffixes (prefixes) is fixed, e.g.: Eng. ask-ed, Span. 
pregunt-aba-s ‘you were asking’, pregunt-e-n-se ‘please you (many) ask your-
self’. Most European languages, except for Finnish, Hungarian, and Basque, are of 
this type. 

� Agglutinative languages. Words in such languages consist of a stem and a poten-
tially infinite number of suffixes attached to it as needed, e.g. Turkish Türk-yali-
lastir-a-ma-di-k-lar-i-mi-z-dan ‘one of those that we could not have possibly 
turned into a Turkish’, with the stem Türk- and a set of suffixes. Examples of such 
languages are Hungarian, Turkish, Korean, Aztec, etc. 

� Isolating languages. Words in such languages do not change, so that each word is 
its own stem. Examples of such languages are Chinese or Vietnamese. 

� Intraflective languages. In such languages the root meaning of a word is expressed 
with consonants, while the grammatical variations with vowels intermixed with 
the consonants, e.g., Arabic kitab ‘book’ consists of a stem k-t-b ‘book-’ and a 
morpheme -i-a- expressing grammatical meaning. Examples of such languages are 
Arabic and Hebrew. 

� Incorporating languages. In such languages words consist of many stems glued 
together by complicated rules. Such a word represents the meaning of a whole 
sentence. Examples of such languages are Sanskrit, Chukchee, and some North 
American native languages. 

In this paper we only deal with inflective languages, though we believe that our 
methods can be adjusted to the languages of other classes. We present an unsuper-
vised approach to automatic construction of a stemmer basing only on a list of words 
extracted from large enough text. 

The paper is organized as follows. In Section 2 we discuss the previous work on 
the topic, in Section 3 we explain our algorithm, and in Section 4 present the experi-
mental results. Section 5 draws conclusions and lists some future work directions. 

2  Previous Work 

There are three main approaches to stemming: 
� Dictionary-based, 
� Rule-based, and 
� Statistical-based. 

Dictionary-based approach. It provides the highest quality of results at the cost of 
the highest development expenses. This approach implies the development of a 
dictionary listing all known words of a given language along with their inflection 



434      Alexander Gelbukh, Mikhail Alexandrov, and Sang-Yong Han 

classes and other necessary information for generation of all their morphological 
forms [2]. A theoretical advantage of a dictionary-based approach is that it deals 
correctly with the words that look like inflected forms but in fact are not. For 
example, darling looks like a form of a verb *to darl, while in fact it is not. 

However, the main advantage of the dictionary-based approach is its correct treat-
ment of exceptions, which can be individual (men → man) or regular (stopping → 
stop, Span. conozco ‘I know’ → conocer ‘to know’, Rus. molotka ‘of hammer’ → 
molotok ‘hammer’). 

A weakness of the dictionary-based approach is the treatment of words absent in 
the dictionary. In this case one usually has to resort to a supplementary rule-based 
algorithm. Obviously, the need to develop, maintain, and process in runtime a large 
dictionary and/or a complex analysis system is the main practical disadvantage of 
such approaches. 

Rule-based approach. This approach can be well exemplified by the well-known 
Porter stemmer [4]. This stemmer uses a complex cascades system of manually tuned 
rules such as: 

1. (*v*) ING → 
2. BL → BLE 
3. (*d and not (*L or *S or *Z)) → single letter 
4. (m = 1 and *o) → E 

etc. 
The left-hand side of these transformation rules is a condition that fires the rule. It 

is an expression, usually containing a pattern to be matched with the string at hand. If 
the condition is met, the corresponding part of the string is substituted with another 
substring. The first rule above describes deletion (empty right-hand part) of a suf-
fix -eng given that the string contains a vowel (v) preceding this suffix, possibly sepa-
rated from it by an arbitrary substring (*). The second rule prescribes addition of -e 
after -bl. The third rule deletes repetition of the consonant in the words like stopped; d 
stands for this double consonant. In the fourth rule, m stands, roughly speaking, for 
the number of non-ending vowels, and o for a special form of the last syllable of the 
string. 

The rule-based approach is much less expensive in terms of necessary linguistic re-
sources, and yet powerful enough to correctly process many of regular exceptions; 
other exceptions can be treated with a small dictionary. Still, rule-based approach 
requires detailed analysis of the linguistic properties of the language at hand and care-
ful manual construction of the rules. 

Statistical-based approach. This approach allows for fast and totally automatic 
development of a stemmer for a new language. Most approaches of this type use 
supervised learning techniques, which rely on a set of manually prepared training 
examples [1]. However, collecting and selection of such training examples can be 
problematic. In addition, the absence of examples of a specific type can lead to 
lacunas in the learned data resulting in massive errors. 

In this paper we suggest an unsupervised approach to learning stemming rules from 
a list of words extracted from a corpus of the given language. Since the approach is 
unsupervised, it does not rely on subjective expert judgments. Just because of this, we 
believe that the possibility of learning morphological information from the texts with-
out human intervention can shed some light on the nature of human languages. 



Detecting Inflection Patterns in Natural Language      435 

As an example of a previous work on unsupervised learning of morphology [3] can 
be mentioned. However, unlike [3], we do not apply complex heuristics and do not 
use statistical considerations. Instead, we try to find the absolute minimum number of 
the elements (stems and endings, not letters) which describe the given language. 

3  The Algorithm 

Given a word list, we find the set of possible stems and endings of the language at 
hand. Then, we can decompose any word – either from the same list or an unseen one 
– into a stem and ending. In case of ambiguity we select a combination of the most 
frequent stem and ending (the global ambiguity can be solved by mutual reinforce-
ment method). Below we concentrate on the problem of finding the sets of stems and 
endings of the given language. 

Problem formulation. We rely on the following two hypotheses: 
1. The words of the language are simple concatenations of one stem and one (possi-

bly complex) suffix (or prefix). Thus, we currently ignore any sandhi phenomena 
(such as lady + es = ladies), suppletivism (foot / feet) and other complications of 
real language morphology. 

2. Language is constructed in such a way that minimal learning effort is necessary 
for its acquisition; in particular, it has the minimal necessary amount of stems and 
endings. The stems and endings are “re-used” to form many combinations: ask, 
ask-ed, ask-ing, bak-e, bak-ed, bak-ing. 

Mathematically, the task of finding the corresponding set of stems and endings can 
be formulated as follows: Given a set V of letter strings extracted from a text, find two 
sets of strings, S (standing for stems) and E (standing for endings), such that any word 
w ∈ V is a concatenation of a suitable stem and ending: w = s + e, s ∈ S, e ∈ E, and 
|S| + |E| has the minimum value over all sets with such properties, where |X| is the 
number of elements in the set X. In other words, find minimum sets S and E generat-
ing V, i.e., such that V ⊆ S + E. 

If we suppose in addition that the language is suffixal (and not prefixal), we can 
additionally require that of all possible pairs S and E with the same |S| + |E| preferable 
are those with smaller |E|. 

Genetic algorithm. Unfortunately, we are not aware of a less-than-exponential algo-
rithm for finding the sets S and E. So we conducted experiments using a genetic algo-
rithm to find an approximate solution; any other method of optimization could be 
used as well. 

First, we experimented with chromosomes of the length |V| whose genes are the 
points of division of the individual wordforms from V; for example, a gene 3 at the 
position corresponding to darling stands for the division hypothesis dar-ling. We used 
simple crossover and random mutation. For each such set of division hypotheses, we 
calculated the total number of stems |S| and endings |E|. To reflect our preference for 
smaller E (versus smaller S), we considered as fitness function 

|S| + 0.000001|E| → min, 

the coefficient only affecting the choice between chromosomes with the same |S| + |E|. 



436      Alexander Gelbukh, Mikhail Alexandrov, and Sang-Yong Han 

However, such a search space proved to be too large. To reduce the search space 
for sake of performance, we considered chromosomes with binary values indicating 
the presence or absence of a certain stem or ending in S or E. For this, we construct 
the maximal sets S' and E' of all possible prefixes and all possible suffixes of all 
strings from V. From them, we remove all those elements that occur only once. In-
deed, a decomposition of a w ∈ V into w = s + e, where either s or e occurs only once, 
can be substituted by a decomposition w = w + λ, where λ is an empty ending, with-
out changing |S| + |E|. 

Note that when an element is excluded from S' or E', the frequency of another ele-
ment – the second half of the decomposition of a word w – decreases and can become 
1, so that this element will also be excluded. Such iterative exclusion of elements 
from S' and E' further reduces their size, finally producing the sets S'' or E'' with such 
a property that for any element s ∈ S'' there are at least two different e ∈ E'' such that 
s + e ∈ V, and similarly for E''. 

With this, we form binary chromosomes of the length |S''| + |E''| so that a value of 1 
stands for the inclusion of the corresponding element in S or E, correspondingly. If for 
a given selection of S and E, some word w ∈ V cannot be decomposed, we consider 
the whole word w a new element of S. This gives us the following fitness function: 

|S| + 0.000001|E| + |V \ (S + E)| → min. 

The last member of the expression stands for the non-decomposable (with the given 
random selection of S and E) words from V, which we add to S on the fly. 

Since the search space with such a method is considerably reduced, we can find 
better approximate solutions. In addition, we observed significant gain in quality 
when we removed not only the endings occurring once but all too rare endings, e,g., 
all endings occurring less than |V|/1000 times. This is possible since we suppose that 
all endings used in the language are rather productive (are used many times). 

Note that due to eliminating the stem or ending candidates that occur only once, 
our algorithm will usually correctly deal with difficult words such as darling. Indeed, 
even if -ing is a likely ending, darl- is not a frequent stem. Thus, the algorithm will 
prefer decomposition of this word into the stem darling- and an empty ending. 

4  Experimental Results 

We applied our algorithm, as described at the end of the previous section, to the offi-
cial list of words permitted in crossword games such as Srabble. The list has 113,809 
wordforms; the found |S| + |E| = 60917. Here is an example of the divisions obtained: 

 



Detecting Inflection Patterns in Natural Language      437 

One can see that the results are not perfect but quite promising. Note that the ex-
amples shown here is not an optimal solution; if we run our genetic algorithm for a 
longer time, we will find a better solution. As compared with Porter stemmer [4] the 
result is not as good. However, unlike manually tuned Porter stemmer, our algorithm 
was presented with only 114 thousand of English wordforms and found the presented 
decomposition in a fully unsupervised manner. 

We also apply the same algorithm to a small Spanish wordlist extracted from Don 
Quijote, of only 22,966 words; the found |S| + |E| = 7959. Here is an example of ob-
tained decomposition: 

 

One can observe that accent alternations in Spanish verb stems present certain 
problems to our algorithm. However, given so small word list and the fact that the 
presented solution is not optimal (which can explain some random anomalies), the 
results seem promising. 

We also apply our algorithm to some other inflective languages, such as Russian, 
with similar results. 

5  Conclusions and Future Work 

We have presented an unsupervised algorithm for recognizing the morphological 
structure of an inflective language, with application to stemming. Currently our algo-
rithm ignores many phenomena of the real natural language morphology, such as 
sandhi (including Spanish accent alternations), suppletivism, or letter-phoneme corre-
spondence; dealing with such phenomena will be a topic of our future work. We also 
believe that a similar approach can be applied to some other types of languages, such 
as agglutinative ones, with suitable modifications. 

An interesting direction of future work is to detect, in an unsupervised manner, the 
syntactic classes of words, roughly corresponding to parts of speech. This can be done 
by clustering the contexts where the words with certain endings occur. With this, we 
expect to improve the behavior of our model on difficult words such as darling. 

We will also try different algorithms for finding better approximate solutions prob-
lem formulated in Section 3, for example, simulated annealing. 



438      Alexander Gelbukh, Mikhail Alexandrov, and Sang-Yong Han 

References 

1. M. Alexandrov, X. Blanco, A. Gelbukh, P. Makagonov. Knowledge-poor Approach to Con-
structing Word Frequency Lists, with Examples from Romance Languages. Procesamiento 
de Lenguaje Natural 33, 2004. 

2. A. Gelbukh, G. Sidorov. Approach to construction of automatic morphological analysis sys-
tems for inflective languages with little effort. In: Computational Linguistics and Intelligent 
Text Processing (CICLing-2003). Lecture Notes in Computer Science 2588, Springer-
Verlag, pp. 215–220. 

3. J. Goldsmith. Unsupervised Learning of the Morphology of a Natural Language. Computa-
tional Linguistics, 27 (2), 2001. 

4. M.F. Porter. An algorithm for suffix stripping. Program, 14 (3): 130–137, 1980. 


	1 Introduction
	2 Previous Work
	3 The Algorithm
	4 Experimental Results
	5 Conclusions and Future Work
	References



